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Abstract— The software implementations of sophisticated mul- experience without objective measures become extremgly di
timedia applications/algorithms are often huge and it is vi- ficult or impossible tasks [6]. It may leads to late realiaati
tually impossible to analyze these applications without geeric of sub-optimal (or even wrong) solution in the design cycle

automated tools and appropriate methodologies. Architeatral Ii . tv desi iterati The t lgorithmi
implementation choices for these applications based on mely resulting In costly design iteration. € term algorithmic

designer experience without objective measures can lead tostly complexity itself is not well defined [7]. In this paper we
re-design loops. Application analysis at algorithmic levecan consider it in terms of number of arithmetic operations,

produce a variety of useful information providing valuable design memory bandwidth, regularity of the algorithm and posgipil

space exploration indications. . of parallel processing. Here the term complexity is not used
We present a generic application analysis approach based on .

instrumentation based profiling for early design space exm- N its strict mth.ematicaI d.efi.nition only considering thees
ration. First we transform the source specification of applca- Of algorithm minimal descriptions. In a broader sense, vee ar

tion implemented in a high level language (Smalltalk in this mainly interested in run-time aspects of algorithm comitjex
paper) into an internal trace tree representation by dynamtc metrics.
analysis. The trace tree of the source specification is then |, grder to make appropriate choices about architectural

characterized/explored at the algorithmic level. The reslis of . I tati f the qi licati t the beginni f
characterization provide guidelines to the designer to sekt impiementation of the given application at the beginning o

target architecture(s) for the application. These guidehes include the design cycle, it is desirable to measure and understand
memory, control and processing orientations as well as the the algorithmic characteristics/complexity of an appioa

inherited spatial parallelism in the specification. The aimis to  pefore starting the design of the target architecture [le T
improve application architecture matching by bridging the gap objective of application exploration is to obtain approate

between application specification and target architecture . . : .
As a case study, we have taken MPEG-2 decoder implemented MEaSures that can identify classes of candidate archieectu

in Smalltalk. Experimental results show the applicability of the ~ for the actual implementation. Consequently, an autoneted
the proposed methodology for early design space exploratio generic application exploration tool in the early desigacsp

exploration is required.
In this paper, we propose a high level generic application
The exponential growth of VLSI technology is yieldinganalysis framework that characterizes the applicationrat a
more and more powerful multicore architectures enabling-mayjgher abstraction level without any architectural diness.
sive integration of processing units and fast communicatiqpe proposed framework provides desirable charactesizati
channels on a single chip [1] [2]. A leading example of thigesylts and can be used as a first step in design space
industrial trend is the Cell processor from IBM/Toshibai$o exploration. It bridges the gap between specification of a
that has 9 cores [3]. Cisco has described a next-generatigitem and the definition of a target (or a set of target) ar-
network processor containing 192 Tensilica Xtensa corgs [¢hitecture(s) for that system. This characterizationrimiation
The performance gains in these multicore architecturesm®p of the application is obtained very early in the design pssce
on effective application parallelization across the co®s snd can be used in three different ways.
the same time, the continuous growing effort of developing, \when the target architecture is fixed and the focus

multimedia standards with higher compression efficieney; b of analysis is to optimize the application by providing
ter quality of service and more functionalities have reslilt guidelines about the algorithmic choices.

in an extremely high level of algorithmic complexity and , \when the application at higher abstraction level is fixed,
sophistication [5]. As a result, architectural impleméiota and the analysis focus is to provide indications about
choices for complex multimedia algorithms based on designe implementation choices for that application.

This work was carried out to address an industrial probleleva@t to the * When neither _the Spedﬁcat_ion nor the architecture ) is
early design space exploration for multimedia application fixed, the designer can refine both aspects by using

I. INTRODUCTION



characterization results. 1) Application Analysis Techniquedt may be static or

In this paper we focus on the second point by presentiﬁg”amic- Static analysis techniques yields bounds onira-t
a high-level generic framework for application analysigeT Pest and worst cases [10] [11]. The main drawback of these
basic idea is to take a standard code as an input (withd@ghniques is that the processing complexity of multimedia
performing any additional effort) and to analyze it for garl@lgorithms heavily depends on the input data statisticdewnhi
design space exploration. The starting point is an exetaitaptatic analysis can only detect upper and lower bounds [12].
software specification written in Smalltalk [8] which is an dynamic analysis [13], alternative solutions are aldéa
high level language. This input specification is then autemd0r tracing a program behavior [14]. It includes source code
ically transformed into internal trace tree representatiy Modification , byte code modification, instrumenting the- vir
dynamic analysis of the specification. By dynamic analysi§/al machine and method wrappers [15] [16] [17]. Instruttio
we obtain valuable information about the run time behavidgvel profiling is also a form of dynamic analysis providing
of the specification in a form of trace tree that represeriffformation at a relatively high level of abstraction (anhés
implementation-independent specification charactesistind tion level). However it does not provide the statistics abou
provide information about the inherent characteristicshef the processing operations executed by those functions. The
application. We then present a generic analysis framewdpformation gathered with profilers strictly depends on the
to analyze and explore the trace tree (representation of #ederlying machine and on the compiler optimization. This i
source specification). By using the information provided b§dainst the requirement of high level system design in which
the analysis results, the designer is guided in his ardhitaic complexity evaluation depends only on the algorithm itself
choices since he gets an insight of the application behavioF18]- o o o

The exploration of the design space for embedded sys-2) Appl|c_:at|on Chara}cter!zatmn:A c.:ha_ractenzatlon.ap-
tems may have different meanings. The proposed analyB[§ach to find the algorithmic complexity is presented in][19
framework is generic in a sense that it may extract multi- The source code is instrumented and simulated to collect
ple characteristics/features of the application dependin ©x€cution counts that capture the dynamic behavior of the
a particular analysis requirement by simply defining ne\{R\,pp.hcauon. Spef:mca'uon characteristics are then caetpby
analysis operations on the trace tree representation of f@tically analyzing the code together with the collectge d
application. In this paper, we focus on the features at syst&amic information. The idea is to explore the deS|g_n spaQe wi
level (where the target architecture is not yet defined)idicig the results that are accurate enough to prune out infeatible
exploitation of spatial parallelism and application otaion Sign alternatives. In [18], authors introduce an integtagl
of the application in terms of processing, control and me;mofor the complexity analysis of C reference descriptionse Th
accesses. tool is capable of measuring all C language operators during

This paper is organized as follows: Section 2 describes stii€ €xecution of algorithms. The tool capabilities alsdude
of the art in the domain of application characterization fdf'€ Simulation of virtual memory architectures extendingi

early design space exploration targeting the multimeatiaty data tra_nsfer and storage analysis. Simulator can be cmeﬁgu
field. It also summarizes the innovative points of our framd® Provide measurements and performances of the algorithm
work. Section 3 describes proposed generic analysis frank@der study on user configured memory architectures. In [20]
work to extract the important characteristics of the agian. @PPlication specified in systemC is statically analyzedeo g
Section 4 describes some usage scenarios of analysissresiline analysis results as well as simulated to get some dgnami
and their significance in design space exploration. Sediorinformation. By combining the static analysis and simaiati
partially evaluates MPEG2 decoder algorithm [9] (2D IDCT€SUlts, work load is estimated in form of metrics. Then a
Huffman decoding) to illustrate the proposed analysis weth HW/SW partitioning _tool is drlven.based on _these apaIyS|s
ology. It provides some examples of the analysis results rgsults. The purpose is to characterize application fonstac-

terms of computational complexity, data flow and inherite6Prding to three kinds of targets: GPP, DSP and ASIC. In [21],
spatial parallelism. Finally, section 6 concludes the pape 2 high level exploration methodology based on C language is
presented. Applications are characterized using a hieicaic

Il. REVIEW OF RELATED WORK AND CONTRIBUTION graph-based representation of the application, resutirgset
of metrics. These metrics characterize the applicatioerims$

A. Related Work of memory bandwidth, processing parallelism and relative

In [6], some state-of-the-art high-level application as& control/processing/data transfers. In [22], a way of maagu
approaches for multimedia system design have been commethmetic complexity of multimedia applications is débed.
hensively reviewed including the academic and commercidbwever it only measures the number of arithmetic and céontro
frameworks. Two main axes are typically recognized: theperations and ignores other aspects of complexity likeberm
orientation of the application in terms of processing opens of memory accesses, possibility of parallel operations smd
(algorithmic complexity) and amount of inherited spatiatg@- on.
lelism present in the application. So we consider relateckwo 3) Spatial Parallelism:In [23], a profile based technique
in application analysis techniques, application charaaton is presented to extract parallelization from a sequenpalia
and spatial parallelism. cation. It transforms the source specification to a grapledas



representation to identify parallelizable code. As it meas [1l. PROPOSEDANALYSIS FRAMEWORK
the memory dependencies between different functions of th
application so granularity of the extracted parallelisrtarger

and is not well suited to extract fine grain parallelism. S¥RI source specification (written in Smalltalk) into an inteciage

Ei)l]det??ri g;ts(:;nn?gcz'lcgrtglzn?rgar:we?se?q?lei);z\?uéazf deC(;nnC durl:;?ga}ce tree representation. The second part is related tgzana
) ; - . . of explore the trace tree of the source specification to get-de
defined directives. First, it transforms C code to controlflo b P ga

Lo . able analysis results. We describe the two parts of the geapo
graph Wh'tcth 'i ijArthe.r :Lgn?forlme? o tmO(t:ieIf thet.d'ﬁererﬂ;amework in the following paragraphs without going into
;ﬁgﬁ:rr;e;n daIIZa\S/'es ?r?emextlrz\c(t)ignotg‘)(/jaeél rangIlglri]:n:C mal_l- implementation details as it is not the main focus of thisquap

P : We refer interested readers to [27] for the implementation
research group from MIT presents a framework [25] th

. . ) %Ietails of the proposed framework.
exposes task, data and pipeline parallelism present in an ap
plication written in Streamlt [26] (an streaming programmi
language). It further explains that not all parallelism bgsal
benefits so it is critical to leverage the right combinatidn o
task, data and pipeline parallelism.

eFigure 1 show the proposed framework which is divided
into two parts. The first part is related to the transfornmatié

SOURCE SPECIFICATION INPUT TEST SEQUENCE

a polymorphic, pure object-oriented language which is ﬁmg
yet powerful with an incremental programming environment- - - - - - - - - - _ _ _ __ - \h Record
and a large robust class library make Smalltalk an attractiy Events
choice for building complex systems that must adapt to tIp(
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changing needs of embedded system design [8].
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1) Source SpecificationrAlmost all the application analysis | (] § V |
methodologies cited in this section start with application AST Instrumentation | & Generaie w
specifications written in C language. We propose an apdli— v — Record Events 1
cation analysis framework in which application is specified | Compiling instrumented AST) |
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ploration instrument the source code but in the proposed
framework, parse tree of the source code is instrumented due
to its simplicity, control, generality and preservatiorooiginal |
source code semantics. Smalltalk is a reflective progragmin
language, whereby the objects that define the language a 1
themselves built with the language. It allows the programme |
to extend the language and environment in a way that:isecond Part |
unparalleled in conventional programming environmerkg li - ------------ -~
C. Consequently, the proposed framework advocates tamnstr Fig. 1.
ment on a parse tree rather than any other form.

3) Generic Application Analysisin most of the cases ,
analysis results are summarized/restricted to only soraeiaip e .
design metrics [21] [18] [23]. According to the fact thatA" Source Specification Transformation into Trace Tree
design space exploration of the embedded systems may havEhe first step is to write the source specification in Smalltal
different requirements like extracting inherited spapalral- enabling the designer to specify and program algorithms at a
lelism, analyzing application orientation, code optinti@as high level of abstraction (executable specifications) \eagly
etc, a generic analysis framework is more attractive choige the design cycle. Executable specifications in Smalltalk
keeping in mind the increasing heterogeneity of applicegtioare high level programs, far simpler than their equivalent
and architectures [4]. Our analysis framework is generit aimplementation on heterogeneous SoCs. In order to tramsfor
can be extended to fulfill multiple requirements of desigsource specification into a trace tree (intermediate iadern
space exploration by simply defining new operations on thepresentation) that contains information about the ei@tu
trace tree representation of the source specification. of an application at run time, dynamic analysis is used as

Trace Tree

Operations

ANALYSIS
RESULTS

The Skeleton Of Analysis Framework



the code instrumentation mechanism that allows insertion behavior of all the entities in a trace tree.

of code to monitor and track the runtime behavior of the « Every operation (computation, memory transfer, control)
source specification of the application. It enables to ektra  in a trace tree is recorded aRecordltem

valuable information about how the specifications works ate The top level of every function in a trace tree is recorded
runtime [14]. The run time information is recorded in a  asRecordMethod

form of trace tree representing implementation independen. Every variable in a trace tree is recorded BecordVari-
specification characteristics. Each function in the apyibn able

is transformed into trace tree representation. Individiaades o Every assignment to the variable in a trace tree is
for each function are then combined to get the final trace tree recorded asRecordAssignment

of the application that characterizes the complete apjlica  The detail description of each entity likRecordBlock

[27]. RecordltemRecordMethodindRecordVariablen a trace tree
1) Steps Of Transformation ProcesBirst part of figure 1 can be found in [27].

summarizes the required steps of source specificationftrans )
mation into trace tree. These sub-steps are: B. Trace Tree Analysis

« Instrumentorsgenerate probing messages for recordersOnce source specification is transformed into trace tree
in four sub-steps. The first sub-step is to parse souré@presentation, we perform operations on trace tree for dif
code and generate an abstract syntax tree (parse tré@ent types of analysis. These analysis operations may be,
The second sub-step is to instrument (alter) the parse tfee €xample, checking the value assigned to each variable in
to generate a new parse tree with additional nodes. T&@ch step of the program execution. In the context of code
third sub-step is to compile the instrumented syntax tre@writing, one may perform operations for type-checkiragle
The output of this sub-step is a compiled method. THptimization, flow analysis and so on. These operations are
fourth and last sub-step is to replace the original sourg€rformed on basic entities lik®ecordBlock Recorditem
code with the compiled source code. The implementatidtecordMethodand RecordVariableof the trace tree as shown
details of these sub-steps can be seen in [27]. in figure 2.

. The output ofInstrumentorsis in the form of prob-  We keep basic entities of the trace tree and their subclasses
ing messages. Th®ecorder answers these message#idependent of the analysis operations that apply to them by
and create events on reception of probes activatif@ckaging related operations from each class in a separate
messages. These events @ecordBlock Recordltem oObject named awisitor and passing it to elements of the
RecordMethogRecordVariablendRecordAssignmeiats  trace tree. There are different analysis purposes and fir ea

shown in figure 2. analysis purpose, there is a separate visitor.
« Visualizersare responsible to bind each event to the The proposed analysis framework is generic as it is not
original source code. restricted to a particular set of analysis operations. ltvad

2) Trace Tree:The output of the first part of the frameworkthe designer to extend the framework by defining new analysis

is a trace tree which represents the sequence of recor@8§rations (visitors) to fulfill different requirements aésign
events, in a tree-like form. A typical use of the trace tre8P@ce exploration such that for each analysis operatieng th

is to hierarchically show the structure of function callsieT 1S @ corresponding visitor for the trace tree making a wisito
basic entity of the trace tree is abstract Recordwhich in Niérarchy similar to visitors on a parse tree [28]. The roul a

turn has its sub entities (children) as shown in figure 2. &l elements of a parse tree aRgogramNode(s)while the
basic element of a trace tree Abstract Recordas shown in

:] figure 2.
Abstract Record
IV. USAGE SCENARIOS OFANALYSIS RESULTS INDESIGN

\L \L SPACE EXPLORATION
We have mentioned in the introductory part of this paper
[ Record ltem J { Record Block } [ Record Variable } that design space exploration for embedded systems may have

Record Method

different requirements due to the growing heterogeneity of
applications and architectures [3]. In section Ill, we have
explained that we can perform multiple analysis operations
on trace tree representation of the source specification to
build a generic analysis framework. Each analysis operatio
in our proposed framework depends on a particular design
requirement of design space exploration. These analysis op
o The AbstractRecords the super class of all the nodesrations may be for extracting spatial parallelism, analyz
in a trace tree. It is an abstract class and does not happlication orientation, type-checking, code optimiaatand
any instances. However, all the entities in a trace tree o many other requirements. To illustrate these concemps,
the subclasses dfbstractRecordlt contains the common perform analysis operations on trace tree representatitireo

Fig. 2. Record Hierarchy in Trace Tree



source specification to extract application charactegsin with large explicit parallelisms. Functions with lowBrvalue
terms of application orientation [19] [18] [20] and inhexit are rather sequential, so the acceleration can only benautai
spatial parallelism [21] [23] [25]. In this section, we peas by exploiting temporal parallelisnf® enables the classification
a number of the usage scenarios of our analysis results aridapplication functions according to their criticality am
their significance in the design space exploration. other words their capability to exploit the inherited sphti
parallelism.

The value ofP at any hierarchical level of a trace tree

The orientation of an application gives guidelines aboig computed by dividing the total number of operations
architecture selection. An application may have threedygfe (Recordltems in a trace tree) by i@ritical Path [21]. The
operations: computations, memory and control. Our amaly€iritical Path at any hierarchical level of a trace tree is the
results describe the operations in terms of percentagé®sét number of longest sequential chain of operations (prongssi
three basic types of operations. These types are: control, memory). It is computed for each hierarchical leve

1) Computation Oriented Operationdt includes the arith- ~ When we compute the value &f for a hierarchical level
metical operations (Addition, Multiplication, Subtramti etc) in a trace tree, we assume that the parallel execution of sub
as well as logical operations (And, Or etc). The highédiierarchical levels is possible and the valud?a$ given as the
percentage of this type of operations tells the designer thatio between the sum of all operations in the sub hieraathic
how much a particular function is computationally intewesiv levels of the node and the longest of all the critical pattus. F
Consequently, designers should more concentrate on comgxample, if a nodé\ has three sequential sub nodgsC and
tation optimization. There are different types of compiotat D containing 10, 20 and 30 sequential operations respegtivel
operations. The analysis results show the percentage bf elow the value ofP at each sub nod8, C andD is 1 (as
type of computation operations in a function. For exampléiey contain only sequential operations and hence no $patia
if most of the operations are multiplications, then targgtarallelism) but the value oP at nodeA is 2 (60 divided
architecture should have dedicated hardware multiplfersce by 30) assuming that all the sub nodes can be executed in
guiding the designer towards architecture selection. parallel on different execution units. Functions with regtP

2) Memory Oriented OperationsThe percentage of this (spatial parallelism) value can be first considered siney th
type of operations indicates the frequency of memory aesesshow the most important optimization potential regardimg t
in a trace tree. The higher percentage of this type of opmrati acceleration.
tells the designer that a particular function is data access _ . . .
dominated and is most likely to require a high data bandwidtﬁ' Guidelines for mapping
It indicates that the computations are not performed oniprev The mapping process requires application model (in form of
ously computed data (reside in local memories) but perfdrmdifferent functions) as well as architecture model (in foof
on the input data (data entering to trace tree). Therefotiedn processing elements, interconnections etc) to map thécappl
case of real time constraints, some efficient mechanismtaf diion behavior on the architecture model. Our analysis tgsul
movement and high performance memories are required. enable the designer to identify the most complex functions i

3) Control Oriented Operations:The percentage of this terms of computations in an application, which may be the
type of operations indicates the frequency of control oper@est candidates for mapping to the fastest PEs. The designer
tions in a trace tree. This percentage guides the designeratgo prefer to map the functions which communicate heavily
evaluate the need for complex control structures to imptemdidentified by analysis results) to the same PE or to the PEs
a function. The functions with high percentage of this typegonnected by dedicated busses.
of operations are good candidate for a GPP processor imqge- Estimation
mentation rather than a DSP processor implementatione sinc
the latter is not well suited for control dominated funcgoin  The performance estimation of different functions of the
addition to this, a hardware implementation of these céntr@Pplication on multiple processing elements (PEs) of the

dominated functions would require large state machines. architecture is another important issue in the design space
exploration. For example, assuming a function F1 is mapped

B. Spatial Parallelism to processing element PE1l. If F1 contaiksinteger-type

Trace tree of a particular function or the complete applmultiplication operations (revealed by analysis resules)d
cation shows the existing parallelism among the operatiof¥ecuting such an operation on PE1 requiveslock cycles
of the function or application. It implies the possibilityf o (Known to designer from architecture model), then the execu
mapp|ng different Operationslfunctions to different PEH)( tion time of function F1 on proceSSing element PE1 wil>be
cessing elements) of the target architecture for conctirrénY = XY clock cycles.
execution. In other words, we can exploit the inheritedigpat
parallelism present in the application. We represent theusn
of average inherited spatial parallelism for every functin A MPEG-2 Decoder
the source specification by [21] such that functions with  In this section we give analysis results of some parts of
higherP values are considered as appropriate to architectuMBPEG2 decoder application [9] implemented in Smalltalk][29

A. Application Orientation

V. EVALUATION RESULTS



to illustrate our tracing based analysis methodology. MPE Gl Ealiis
is a well known encoding and decoding standard for digit}™ . T T
video. The basic principle is to remove redundant inforovati | /2 .. s o e J
prior to transformation and re-inserting it at the decodibere = 35!?15;'[J’E.‘S%%%%%’E%’SEU”U”U“U'Lj
are two types of redundancieSpatial Redundandp remove | =3nsiy |
correlation of pixels with their neighboring pixels with in| =2
the same frame andemporal Redundancio remove the el
correlation of pixels with neighboring pixels across thenfies. | 7 """ £
The MPEG-2 decoder can be summarized in the followir] &
three points [9] : 0]
« Parseris responsible for parsing the MPEG-2 bit strearn] ..
and performing Huffman and Variable run-length dg !
coding (VLD). The input to the parser is MPEG-2 bil' = = i
stream. The output of the parser is an interleaved stred -]
of quantized macro blocks encoded in the frequend @ .;
domain, and offset encoded motion vectors. In the fd .0i

lowing steps, the quantized macro blocks are inver| .. s

010: 63 by: 8 do: [ | self idctRow: aBlock index: i ]
110: 8 do: [ 0 | self idctCol: aBlock indes: i ]

Ofo: 7 do: [y
Tio G do: [ i
dest at: offset + stride * y + ) put: (({aBlock gk y =8 +%)

I
|
|
‘-, + (dest at: offset + (strice ™ y + ¥} ma: 0) min: 253) ] ]

transformed while motion compensation is performed ol
decode offset encoded motion vectors. i-$:1uﬂdu

« Inverse Transformationstep is due to the spatial re- “L-J;j\xi\_]
dundancy reduction at the MPEG-2 encoder. The i av
verse transformations map each 8x8 block from tl S
frequency domain back to the spatial domain. Each blo '33::
is reordered, inversely quantized and then followed | -
an inverse DCT. Similarly, encoded motion vectors a S
decoded. A

« Motion Compensatiostep is due to the temporal redun e -0
dancy reduction at the MPEG-2 encoder. It performs th wl
motion compensation to recover predictively coded mac E'E

blocks. The motion compensation uses the motion vectdw
to find a correspondmg macro block in a preVIOUS|¥jg. 3. Trace Tree Representation and Corresponding S@&peeification
decoded reference picture. The reference macro-bock is
added to the current macro-block to recover the original
picture data.

For simplicity, we experiment with 2D Inverse Discrete ® UPdaterefreshes the trace tree display with the current

Cosine Transform and Huffman Decoding to illustrate our ~contents of the trace. _
analysis approach. » Resetresets the trace recorder, removing all recorded

events.
B. Trace Tree Representation « Uninstall uninstalls instrumentation from the instru-
The figure 3 shows the trace tree representation of a single mented methods.

function and its corresponding source specification. A trace tree is generated for each function in the source
It consists of two parts. The right hand side shows thgecification of the application using the flow in figure 1 and

original source specification (written in Smalltalk) whilee ingjvidual trace trees of each function are combined to get
left hand side shows its corresponding trace tree repraent e final trace tree of the application that characterizes th
showing all the operations/events according to the executicomplete application [27].

order. The right hand side of the figure 3 highlights the

portion_ of '_[he original source code according tq the seﬂact%_ 2D Inverse Discrete Cosine Transform

operation in the trace tree on the left hand side. It means

one can easily go through the trace tree step by step an@D IDCT (for 8x8 image blocks) source specification is

visualize all the entriesRecordBlock Recordltem Record- first transformed into trace tree using the flow in figure 1.

Variable, RecordMethodand RecordAssignmentof a trace We perform analysis operations on trace tree representtio

tree in each step of the source code execution. The sympet analysis results for 2D IDCT. Table | shows the analysis

# shows aRecordltem However, the symbo# at the top of results for different functions in 2D IDCT.

trace tree shows RecordMethodSimilarly symbol{ } shows 1) Orientation: From a structural point of view, 2D IDCT is

a RecordBlockand so on. composed of two identical and sequential 1D-DCT sub-blocks
An Actionsmenu regroup three commands: (operating on rows and columns), so the corresponding trace




TABLE |

ORIENTATION RESULTS FOR2D IDCT 100
Function Computation | Memory | Control P 80
idctCol:index: 76.36 23.64 0 1
idctRow:index: 76.36 23.64 0 1
add:on:offset:stride: 77.11 22.89 0 24.14
60 M 2p IDCT
46 45
trees have the same orientation values for both methods 40 . g:ggj?:g
seen in table I. 27 30 i
The first observation is that the percentage of contr %
operations is zero for all the methods, since it is compoged 207 a— ammm N
deterministic loops and does not contain any test. Secamnelly | 19
observe that computation percentage for 2D IDCT function .

blocks are higher so it is computation oriented. The resu OMu|tip|ications Additions Subtractions  Logical
also show a good percentage of memory operations.

Figure 4 shows the percentage of each type of computatigg. 4. Percentages Of Computation Types For 2D IDCT and riaiff
in the 2D IDCT. It does not contain any floating point buPecoding
only integer type operations, i.e. processors with deddat

floating point units are not necessary and processor satecti TABLE II

should focus on integer performance instead. Furthern2atre, ORIENTATION RESULTS FORHUFFMAN DECODING

% operations are multiplications, so selected processass m

have dedicated hard\_Nare multipliers. Function Computation | Memory | Control
The fact that there is no need for complex control structurelS getChromaDCDctDiff 49 2 49

the high data-accesses requirements and the coarse grain 9etCodedBlockPattern 52 S 43

llelism mean that optimizations can be obtained with g 3St-umabCDCtDif 60 2 38

pgra_ ) p ; . . “getMacroblockAddrincrement 50 5 45

pipelined architecture with possible coarse grain deditat getMacroblockMode: 58.3 8.4 333

hardware modules providing a large bandwidth. So if high getMotionDelta: 58.2 3 38.8
erformances are required, an ASIP or a programmable degi-9€QuantizerScale: L 0 25

P 9 prog Huffman Decoding 60 7 33

cated hardware can be introduced within the SOC.

2) Spatial Parallelism: We can notice that at the lowest
level of granularity (1D-DCT sub-blocks operating on rows
and columns), the value d? is 1 indicating no fine grain decoding. There are no floating-point but only integer-type
spatial parallelism. It shows that these sub blocks (methogrations. Furthermore, there are no multiplications, $ecsed
are sequential in nature and does not contain any inherifgcessors have no need for dedicated hardware multipliers
parallelism. However the level of parallelism increasethat The results show that 45 % of the computations are logical
higher level of granularity (2D IDCT). The value d¢® at operations.
this level is 24.14 indicating that a coarse grain paraleli 2) Spatial Parallelism:We have not shown the value Bf

is available. in table Il because the value Bfremains 1 at all hierarchical
_ levels of trace tree. It reveals that suitable target aechitre
D. Huffman Decoding for Huffman decoding algorithm may be a GPP (General

We first generate the trace tree for each function of Huffmdtrpose Processor). There is no need for a DSP and for a
decoding and then combine the individual trace trees to g&@&mplex data path structure, since the parallelism caneot b
the complete trace tree of Huffman decoding using the flofploited at any level.
in figure 1. We perform analysis operations on trace tree rep-
resentation to get analysis results. Table Il shows theyaisal
results for representative functions of Huffman Decoding. In this paper we have proposed a high-level application

1) Orientation: It can be noticed that these functions havanalysis methodology which aims at guiding the embedded
relatively high percentages of control operations demptirsystems design process for early design space exploration
heavily conditioned data-flows. The percentage of comjmrtat targeting the multimedia domain. Application is specified
operations also indicates an important computation freque in a higher level object oriented language (Smalltalk) and
There are less number of memory operations as compatkedn transformed into a trace tree representation by dynami
to computations and control operations. It indicates thas¢ analysis. Unlike conventional dynamic analysis technsque
methods are control and computation oriented. Figure 4 shoiwstrumentation is done on abstract syntax tree rather than
the percentage of each type of computation in the Huffmaource code. Instrumented application is then executed to

VI. CONCLUSIONS



get trace tree representation. Due to the diverse requirtsmeg13] T. Ball, “The concept of dynamic analysis,” Foundations of Software

of embedded system design space exploration, the propose

framework enables the characterization of applicatioasetr
tree by a generic analysis approach which is not restricted
to only a set of metrics. Designer can extend the framewdd¢!
by defining new operations on the trace tree of the source
specification. To illustrate the methodology, we discuss th
significance of some analysis results in the design spade-exp!®!

ration of embedded systems and perform analysis operations

on trace tree representation of the application. The outcism [16]
a set of guidelines characterizing the application in teohs
processing, control and memory orientation as well as imser [17]
of potential spatial parallelism. Experiments with 2D IDCT
and Huffman decoding algorithms shows that our approach not
only helps designers to intensively comprehend the apjica 18]
but also provides valuable indications to highlight aretitiral
opportunities and directions to improve application atety

ture matching.

[19]

The proposed framework is a starting point of the complete
design flow and is still in its early phase of developmentngsi

the proposed methodology, we are developing a framework

automatic conversion of sequential programs to paralle} pr
grams dedicated to streaming applications. We are working t
integrate our analysis framework with the available sysithe |59
tools by scheduling the trace tree to a family of coarse gdhin
reconfigurable architectures.
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