
A High Level Generic Application Analysis
Methodology For Early Design Space Exploration

Muhammad Rashid
Thomson Silicon Components

Rennes, France
&

Université de Bretagne Occidentale
Brest, France

Email: muhamad.rashid@thomson.net

Thierry Goubier
Université de Bretagne Occidentale

Brest, France
Email: thierry.goubier@gmail.com

Bernard Pottier
Université de Bretagne Occidentale

Brest, France
Email: pottier@univ-brest.fr

Abstract— The software implementations of sophisticated mul-
timedia applications/algorithms are often huge and it is vir-
tually impossible to analyze these applications without generic
automated tools and appropriate methodologies. Architectural
implementation choices for these applications based on merely
designer experience without objective measures can lead tocostly
re-design loops. Application analysis at algorithmic level can
produce a variety of useful information providing valuable design
space exploration indications.

We present a generic application analysis approach based on
instrumentation based profiling for early design space explo-
ration. First we transform the source specification of applica-
tion implemented in a high level language (Smalltalk in this
paper) into an internal trace tree representation by dynamic
analysis. The trace tree of the source specification is then
characterized/explored at the algorithmic level. The results of
characterization provide guidelines to the designer to select
target architecture(s) for the application. These guidelines include
memory, control and processing orientations as well as the
inherited spatial parallelism in the specification. The aim is to
improve application architecture matching by bridging the gap
between application specification and target architecture.

As a case study, we have taken MPEG-2 decoder implemented
in Smalltalk. Experimental results show the applicability of the
the proposed methodology for early design space exploration.

I. I NTRODUCTION

The exponential growth of VLSI technology is yielding
more and more powerful multicore architectures enabling mas-
sive integration of processing units and fast communication
channels on a single chip [1] [2]. A leading example of this
industrial trend is the Cell processor from IBM/Toshiba/Sony
that has 9 cores [3]. Cisco has described a next-generation
network processor containing 192 Tensilica Xtensa cores [4].
The performance gains in these multicore architectures depend
on effective application parallelization across the cores. At
the same time, the continuous growing effort of developing
multimedia standards with higher compression efficiency, bet-
ter quality of service and more functionalities have resulted
in an extremely high level of algorithmic complexity and
sophistication [5]. As a result, architectural implementation
choices for complex multimedia algorithms based on designer

This work was carried out to address an industrial problem relevant to the
early design space exploration for multimedia applications.

experience without objective measures become extremely dif-
ficult or impossible tasks [6]. It may leads to late realization
of sub-optimal (or even wrong) solution in the design cycle
resulting in costly design iteration. The term algorithmic
complexity itself is not well defined [7]. In this paper we
consider it in terms of number of arithmetic operations,
memory bandwidth, regularity of the algorithm and possibility
of parallel processing. Here the term complexity is not used
in its strict mathematical definition only considering the size
of algorithm minimal descriptions. In a broader sense, we are
mainly interested in run-time aspects of algorithm complexity
metrics.

In order to make appropriate choices about architectural
implementation of the given application at the beginning of
the design cycle, it is desirable to measure and understand
the algorithmic characteristics/complexity of an application
before starting the design of the target architecture [6]. The
objective of application exploration is to obtain approximate
measures that can identify classes of candidate architectures
for the actual implementation. Consequently, an automatedand
generic application exploration tool in the early design space
exploration is required.

In this paper, we propose a high level generic application
analysis framework that characterizes the application at an
higher abstraction level without any architectural directives.
The proposed framework provides desirable characterization
results and can be used as a first step in design space
exploration. It bridges the gap between specification of a
system and the definition of a target (or a set of target) ar-
chitecture(s) for that system. This characterization information
of the application is obtained very early in the design process
and can be used in three different ways.

• When the target architecture is fixed and the focus
of analysis is to optimize the application by providing
guidelines about the algorithmic choices.

• When the application at higher abstraction level is fixed,
and the analysis focus is to provide indications about
implementation choices for that application.

• When neither the specification nor the architecture is
fixed, the designer can refine both aspects by using

characterization results.

In this paper we focus on the second point by presenting
a high-level generic framework for application analysis. The
basic idea is to take a standard code as an input (without
performing any additional effort) and to analyze it for early
design space exploration. The starting point is an executable
software specification written in Smalltalk [8] which is a
high level language. This input specification is then automat-
ically transformed into internal trace tree representation by
dynamic analysis of the specification. By dynamic analysis,
we obtain valuable information about the run time behavior
of the specification in a form of trace tree that represents
implementation-independent specification characteristics and
provide information about the inherent characteristics ofthe
application. We then present a generic analysis framework
to analyze and explore the trace tree (representation of the
source specification). By using the information provided by
the analysis results, the designer is guided in his architectural
choices since he gets an insight of the application behavior.

The exploration of the design space for embedded sys-
tems may have different meanings. The proposed analysis
framework is generic in a sense that it may extract multi-
ple characteristics/features of the application depending on
a particular analysis requirement by simply defining new
analysis operations on the trace tree representation of the
application. In this paper, we focus on the features at system
level (where the target architecture is not yet defined) including
exploitation of spatial parallelism and application orientation
of the application in terms of processing, control and memory
accesses.

This paper is organized as follows: Section 2 describes state
of the art in the domain of application characterization for
early design space exploration targeting the multimedia/video
field. It also summarizes the innovative points of our frame-
work. Section 3 describes proposed generic analysis frame-
work to extract the important characteristics of the application.
Section 4 describes some usage scenarios of analysis results
and their significance in design space exploration. Section5
partially evaluates MPEG2 decoder algorithm [9] (2D IDCT,
Huffman decoding) to illustrate the proposed analysis method-
ology. It provides some examples of the analysis results in
terms of computational complexity, data flow and inherited
spatial parallelism. Finally, section 6 concludes the paper.

II. REVIEW OF RELATED WORK AND CONTRIBUTION

A. Related Work

In [6], some state-of-the-art high-level application analysis
approaches for multimedia system design have been compre-
hensively reviewed including the academic and commercial
frameworks. Two main axes are typically recognized: the
orientation of the application in terms of processing operations
(algorithmic complexity) and amount of inherited spatial paral-
lelism present in the application. So we consider related work
in application analysis techniques, application characterization
and spatial parallelism.

1) Application Analysis Techniques:It may be static or
dynamic. Static analysis techniques yields bounds on run-time
best and worst cases [10] [11]. The main drawback of these
techniques is that the processing complexity of multimedia
algorithms heavily depends on the input data statistics while
static analysis can only detect upper and lower bounds [12].
In dynamic analysis [13], alternative solutions are available
for tracing a program behavior [14]. It includes source code
modification , byte code modification, instrumenting the vir-
tual machine and method wrappers [15] [16] [17]. Instruction
level profiling is also a form of dynamic analysis providing
information at a relatively high level of abstraction (at func-
tion level). However it does not provide the statistics about
the processing operations executed by those functions. The
information gathered with profilers strictly depends on the
underlying machine and on the compiler optimization. This is
against the requirement of high level system design in which
complexity evaluation depends only on the algorithm itself
[18].

2) Application Characterization:A characterization ap-
proach to find the algorithmic complexity is presented in [19]
. The source code is instrumented and simulated to collect
execution counts that capture the dynamic behavior of the
application. Specification characteristics are then computed by
statically analyzing the code together with the collected dy-
namic information. The idea is to explore the design space with
the results that are accurate enough to prune out infeasiblede-
sign alternatives. In [18], authors introduce an integrated tool
for the complexity analysis of C reference descriptions. The
tool is capable of measuring all C language operators during
the execution of algorithms. The tool capabilities also include
the simulation of virtual memory architectures extending it to
data transfer and storage analysis. Simulator can be configured
to provide measurements and performances of the algorithm
under study on user configured memory architectures. In [20],
application specified in systemC is statically analyzed to get
some analysis results as well as simulated to get some dynamic
information. By combining the static analysis and simulation
results, work load is estimated in form of metrics. Then a
HW/SW partitioning tool is driven based on these analysis
results. The purpose is to characterize application functions ac-
cording to three kinds of targets: GPP, DSP and ASIC. In [21],
a high level exploration methodology based on C language is
presented. Applications are characterized using a hierarchical
graph-based representation of the application, resultingin a set
of metrics. These metrics characterize the application in terms
of memory bandwidth, processing parallelism and relative
control/processing/data transfers. In [22], a way of measuring
arithmetic complexity of multimedia applications is described.
However it only measures the number of arithmetic and control
operations and ignores other aspects of complexity like number
of memory accesses, possibility of parallel operations andso
on.

3) Spatial Parallelism: In [23], a profile based technique
is presented to extract parallelization from a sequential appli-
cation. It transforms the source specification to a graph based

representation to identify parallelizable code. As it measures
the memory dependencies between different functions of the
application so granularity of the extracted parallelism islarger
and is not well suited to extract fine grain parallelism. SPRINT
[24] tool automatically generates an executable concurrent
model in SystemC starting from sequential C code and user
defined directives. First, it transforms C code to control flow
graph which is further transformed to model the different
concurrent tasks. Again this tool only extracts functionalpar-
allelism and leaves the extraction of data parallelism. Commit
research group from MIT presents a framework [25] that
exposes task, data and pipeline parallelism present in an ap-
plication written in StreamIt [26] (an streaming programming
language). It further explains that not all parallelism hasequal
benefits so it is critical to leverage the right combination of
task, data and pipeline parallelism.

B. Contribution

The main innovations of our work versus the state of the
art tool technology can be summarized as follows.

1) Source Specification:Almost all the application analysis
methodologies cited in this section start with application
specifications written in C language. We propose an appli-
cation analysis framework in which application is specifiedin
Smalltalk. It is a dynamic implicitly-typed language where
objects, not variables, carry type information, freeing the
programmer from declaring variable types. The combinationof
a polymorphic, pure object-oriented language which is simple
yet powerful with an incremental programming environment
and a large robust class library make Smalltalk an attractive
choice for building complex systems that must adapt to the
changing needs of embedded system design [8].

2) Instrumentation Techniques:All the instrumentation
based application analysis approaches for design space ex-
ploration instrument the source code but in the proposed
framework, parse tree of the source code is instrumented due
to its simplicity, control, generality and preservation oforiginal
source code semantics. Smalltalk is a reflective programming
language, whereby the objects that define the language are
themselves built with the language. It allows the programmer
to extend the language and environment in a way that is
unparalleled in conventional programming environments like
C. Consequently, the proposed framework advocates to instru-
ment on a parse tree rather than any other form.

3) Generic Application Analysis:In most of the cases ,
analysis results are summarized/restricted to only some special
design metrics [21] [18] [23]. According to the fact that
design space exploration of the embedded systems may have
different requirements like extracting inherited spatialparal-
lelism, analyzing application orientation, code optimizations
etc, a generic analysis framework is more attractive choice
keeping in mind the increasing heterogeneity of applications
and architectures [4]. Our analysis framework is generic and
can be extended to fulfill multiple requirements of design
space exploration by simply defining new operations on the
trace tree representation of the source specification.

III. PROPOSEDANALYSIS FRAMEWORK

Figure 1 show the proposed framework which is divided
into two parts. The first part is related to the transformation of
source specification (written in Smalltalk) into an intermediate
trace tree representation. The second part is related to analyze
or explore the trace tree of the source specification to get desir-
able analysis results. We describe the two parts of the proposed
framework in the following paragraphs without going into
implementation details as it is not the main focus of this paper.
We refer interested readers to [27] for the implementation
details of the proposed framework.

Instrumentors Recorders

Handling Probing
Messages

Generate
Record Events

Trace Building

Record
Events

Visualizers

Binding Recorded
Event To Source Code

P
ro

bi
ng

 M
es

sa
ge

s

Analyzers

Operations

Visitor

T
ra

ce
 T

re
e

INPUT TEST SEQUENCE

ANALYSIS
RESULTS

Second Part

First Part

SOURCE SPECIFICATION

Compiling instrumented AST

Replacing Original Method

AST Instrumentation

Parsing

Vistor Based Analysis

Fig. 1. The Skeleton Of Analysis Framework

A. Source Specification Transformation into Trace Tree

The first step is to write the source specification in Smalltalk
enabling the designer to specify and program algorithms at a
high level of abstraction (executable specifications) veryearly
in the design cycle. Executable specifications in Smalltalk
are high level programs, far simpler than their equivalent
implementation on heterogeneous SoCs. In order to transform
source specification into a trace tree (intermediate internal
representation) that contains information about the execution
of an application at run time, dynamic analysis is used as

the code instrumentation mechanism that allows insertion
of code to monitor and track the runtime behavior of the
source specification of the application. It enables to extract
valuable information about how the specifications works at
runtime [14]. The run time information is recorded in a
form of trace tree representing implementation independent
specification characteristics. Each function in the application
is transformed into trace tree representation. Individualtraces
for each function are then combined to get the final trace tree
of the application that characterizes the complete application
[27].

1) Steps Of Transformation Process:First part of figure 1
summarizes the required steps of source specification transfor-
mation into trace tree. These sub-steps are:

• Instrumentorsgenerate probing messages for recorders
in four sub-steps. The first sub-step is to parse source
code and generate an abstract syntax tree (parse tree).
The second sub-step is to instrument (alter) the parse tree
to generate a new parse tree with additional nodes. The
third sub-step is to compile the instrumented syntax tree.
The output of this sub-step is a compiled method. The
fourth and last sub-step is to replace the original source
code with the compiled source code. The implementation
details of these sub-steps can be seen in [27].

• The output of Instrumentorsis in the form of prob-
ing messages. TheRecorder answers these messages
and create events on reception of probes activation
messages. These events areRecordBlock, RecordItem,
RecordMethod, RecordVariableandRecordAssignmentas
shown in figure 2.

• Visualizers are responsible to bind each event to the
original source code.

2) Trace Tree:The output of the first part of the framework
is a trace tree which represents the sequence of recorded
events, in a tree-like form. A typical use of the trace tree
is to hierarchically show the structure of function calls. The
basic entity of the trace tree is anAbstract Recordwhich in
turn has its sub entities (children) as shown in figure 2.

Abstract Record

Record Assignment

Record Block Record VariableRecord Item

Record Method

Fig. 2. Record Hierarchy in Trace Tree

• The AbstractRecordis the super class of all the nodes
in a trace tree. It is an abstract class and does not have
any instances. However, all the entities in a trace tree are
the subclasses ofAbstractRecord. It contains the common

behavior of all the entities in a trace tree.
• Every operation (computation, memory transfer, control)

in a trace tree is recorded asRecordItem.
• The top level of every function in a trace tree is recorded

asRecordMethod.
• Every variable in a trace tree is recorded asRecordVari-

able.
• Every assignment to the variable in a trace tree is

recorded asRecordAssignment.

The detail description of each entity likeRecordBlock,
RecordItem, RecordMethodandRecordVariablein a trace tree
can be found in [27].

B. Trace Tree Analysis

Once source specification is transformed into trace tree
representation, we perform operations on trace tree for dif-
ferent types of analysis. These analysis operations may be,
for example, checking the value assigned to each variable in
each step of the program execution. In the context of code
rewriting, one may perform operations for type-checking, code
optimization, flow analysis and so on. These operations are
performed on basic entities likeRecordBlock, RecordItem,
RecordMethodandRecordVariableof the trace tree as shown
in figure 2.

We keep basic entities of the trace tree and their subclasses
independent of the analysis operations that apply to them by
packaging related operations from each class in a separate
object named asvisitor and passing it to elements of the
trace tree. There are different analysis purposes and for each
analysis purpose, there is a separate visitor.

The proposed analysis framework is generic as it is not
restricted to a particular set of analysis operations. It allows
the designer to extend the framework by defining new analysis
operations (visitors) to fulfill different requirements ofdesign
space exploration such that for each analysis operation, there
is a corresponding visitor for the trace tree making a visitor
hierarchy similar to visitors on a parse tree [28]. The root and
all elements of a parse tree areProgramNode(s), while the
basic element of a trace tree isAbstract Recordas shown in
figure 2.

IV. U SAGE SCENARIOS OFANALYSIS RESULTS IN DESIGN

SPACE EXPLORATION

We have mentioned in the introductory part of this paper
that design space exploration for embedded systems may have
different requirements due to the growing heterogeneity of
applications and architectures [3]. In section III, we have
explained that we can perform multiple analysis operations
on trace tree representation of the source specification to
build a generic analysis framework. Each analysis operation
in our proposed framework depends on a particular design
requirement of design space exploration. These analysis op-
erations may be for extracting spatial parallelism, analyzing
application orientation, type-checking, code optimization and
for many other requirements. To illustrate these concepts,we
perform analysis operations on trace tree representation of the

source specification to extract application characteristics in
terms of application orientation [19] [18] [20] and inherited
spatial parallelism [21] [23] [25]. In this section, we present
a number of the usage scenarios of our analysis results and
their significance in the design space exploration.

A. Application Orientation

The orientation of an application gives guidelines about
architecture selection. An application may have three types of
operations: computations, memory and control. Our analysis
results describe the operations in terms of percentages of these
three basic types of operations. These types are:

1) Computation Oriented Operations:It includes the arith-
metical operations (Addition, Multiplication, Subtraction etc)
as well as logical operations (And, Or etc). The higher
percentage of this type of operations tells the designer that
how much a particular function is computationally intensive.
Consequently, designers should more concentrate on compu-
tation optimization. There are different types of computation
operations. The analysis results show the percentage of each
type of computation operations in a function. For example,
if most of the operations are multiplications, then target
architecture should have dedicated hardware multipliers,hence
guiding the designer towards architecture selection.

2) Memory Oriented Operations:The percentage of this
type of operations indicates the frequency of memory accesses
in a trace tree. The higher percentage of this type of operations
tells the designer that a particular function is data access
dominated and is most likely to require a high data bandwidth.
It indicates that the computations are not performed on previ-
ously computed data (reside in local memories) but performed
on the input data (data entering to trace tree). Therefore inthe
case of real time constraints, some efficient mechanism of data
movement and high performance memories are required.

3) Control Oriented Operations:The percentage of this
type of operations indicates the frequency of control opera-
tions in a trace tree. This percentage guides the designer to
evaluate the need for complex control structures to implement
a function. The functions with high percentage of this types
of operations are good candidate for a GPP processor imple-
mentation rather than a DSP processor implementation, since
the latter is not well suited for control dominated functions. In
addition to this, a hardware implementation of these control
dominated functions would require large state machines.

B. Spatial Parallelism

Trace tree of a particular function or the complete appli-
cation shows the existing parallelism among the operations
of the function or application. It implies the possibility of
mapping different operations/functions to different PEs (pro-
cessing elements) of the target architecture for concurrent
execution. In other words, we can exploit the inherited spatial
parallelism present in the application. We represent the amount
of average inherited spatial parallelism for every function in
the source specification byP [21] such that functions with
higherP values are considered as appropriate to architectures

with large explicit parallelisms. Functions with lowerP value
are rather sequential, so the acceleration can only be obtained
by exploiting temporal parallelism.P enables the classification
of application functions according to their criticality orin
other words their capability to exploit the inherited spatial
parallelism.

The value ofP at any hierarchical level of a trace tree
is computed by dividing the total number of operations
(RecordItems in a trace tree) by itsCritical Path [21]. The
Critical Path at any hierarchical level of a trace tree is the
number of longest sequential chain of operations (processing,
control, memory). It is computed for each hierarchical level.

When we compute the value ofP for a hierarchical level
in a trace tree, we assume that the parallel execution of sub
hierarchical levels is possible and the value ofP is given as the
ratio between the sum of all operations in the sub hierarchical
levels of the node and the longest of all the critical paths. For
example, if a nodeA has three sequential sub nodesB, C and
D containing 10, 20 and 30 sequential operations respectively.
Now the value ofP at each sub nodeB, C and D is 1 (as
they contain only sequential operations and hence no spatial
parallelism) but the value ofP at nodeA is 2 (60 divided
by 30) assuming that all the sub nodes can be executed in
parallel on different execution units. Functions with highestP
(spatial parallelism) value can be first considered since they
show the most important optimization potential regarding the
acceleration.

C. Guidelines for mapping

The mapping process requires application model (in form of
different functions) as well as architecture model (in formof
processing elements, interconnections etc) to map the applica-
tion behavior on the architecture model. Our analysis results
enable the designer to identify the most complex functions in
terms of computations in an application, which may be the
best candidates for mapping to the fastest PEs. The designers
also prefer to map the functions which communicate heavily
(identified by analysis results) to the same PE or to the PEs
connected by dedicated busses.

D. Estimation

The performance estimation of different functions of the
application on multiple processing elements (PEs) of the
architecture is another important issue in the design space
exploration. For example, assuming a function F1 is mapped
to processing element PE1. If F1 containsX integer-type
multiplication operations (revealed by analysis results), and
executing such an operation on PE1 requiresY clock cycles
(Known to designer from architecture model), then the execu-
tion time of function F1 on processing element PE1 will beX
* Y = XY clock cycles.

V. EVALUATION RESULTS

A. MPEG-2 Decoder

In this section we give analysis results of some parts of
MPEG2 decoder application [9] implemented in Smalltalk [29]

to illustrate our tracing based analysis methodology. MPEG-2
is a well known encoding and decoding standard for digital
video. The basic principle is to remove redundant information
prior to transformation and re-inserting it at the decoder.There
are two types of redundancies:Spatial Redundancyto remove
correlation of pixels with their neighboring pixels with in
the same frame andTemporal Redundancyto remove the
correlation of pixels with neighboring pixels across the frames.
The MPEG-2 decoder can be summarized in the following
three points [9] :

• Parser is responsible for parsing the MPEG-2 bit stream
and performing Huffman and Variable run-length de-
coding (VLD). The input to the parser is MPEG-2 bit
stream. The output of the parser is an interleaved stream
of quantized macro blocks encoded in the frequency-
domain, and offset encoded motion vectors. In the fol-
lowing steps, the quantized macro blocks are inverse
transformed while motion compensation is performed to
decode offset encoded motion vectors.

• Inverse Transformationsstep is due to the spatial re-
dundancy reduction at the MPEG-2 encoder. The in-
verse transformations map each 8x8 block from the
frequency domain back to the spatial domain. Each block
is reordered, inversely quantized and then followed by
an inverse DCT. Similarly, encoded motion vectors are
decoded.

• Motion Compensationstep is due to the temporal redun-
dancy reduction at the MPEG-2 encoder. It performs the
motion compensation to recover predictively coded macro
blocks. The motion compensation uses the motion vectors
to find a corresponding macro block in a previously
decoded reference picture. The reference macro-bock is
added to the current macro-block to recover the original
picture data.

For simplicity, we experiment with 2D Inverse Discrete
Cosine Transform and Huffman Decoding to illustrate our
analysis approach.

B. Trace Tree Representation

The figure 3 shows the trace tree representation of a single
function and its corresponding source specification.

It consists of two parts. The right hand side shows the
original source specification (written in Smalltalk) whilethe
left hand side shows its corresponding trace tree representation
showing all the operations/events according to the execution
order. The right hand side of the figure 3 highlights the
portion of the original source code according to the selected
operation in the trace tree on the left hand side. It means
one can easily go through the trace tree step by step and
visualize all the entries (RecordBlock, RecordItem, Record-
Variable, RecordMethodand RecordAssignment) of a trace
tree in each step of the source code execution. The symbol
shows aRecordItem. However, the symbol# at the top of
trace tree shows aRecordMethod. Similarly symbol{ } shows
a RecordBlockand so on.

An Actionsmenu regroup three commands:

Fig. 3. Trace Tree Representation and Corresponding SourceSpecification

• Update refreshes the trace tree display with the current
contents of the trace.

• Resetresets the trace recorder, removing all recorded
events.

• Uninstall uninstalls instrumentation from the instru-
mented methods.

A trace tree is generated for each function in the source
specification of the application using the flow in figure 1 and
individual trace trees of each function are combined to get
the final trace tree of the application that characterizes the
complete application [27].

C. 2D Inverse Discrete Cosine Transform

2D IDCT (for 8x8 image blocks) source specification is
first transformed into trace tree using the flow in figure 1.
We perform analysis operations on trace tree representation to
get analysis results for 2D IDCT. Table I shows the analysis
results for different functions in 2D IDCT.

1) Orientation: From a structural point of view, 2D IDCT is
composed of two identical and sequential 1D-DCT sub-blocks
(operating on rows and columns), so the corresponding trace

TABLE I

ORIENTATION RESULTS FOR2D IDCT

Function Computation Memory Control P
idctCol:index: 76.36 23.64 0 1
idctRow:index: 76.36 23.64 0 1

add:on:offset:stride: 77.11 22.89 0 24.14

trees have the same orientation values for both methods as
seen in table I.

The first observation is that the percentage of control
operations is zero for all the methods, since it is composed of
deterministic loops and does not contain any test. Secondlywe
observe that computation percentage for 2D IDCT functional
blocks are higher so it is computation oriented. The results
also show a good percentage of memory operations.

Figure 4 shows the percentage of each type of computation
in the 2D IDCT. It does not contain any floating point but
only integer type operations, i.e. processors with dedicated
floating point units are not necessary and processor selection
should focus on integer performance instead. Furthermore,27
% operations are multiplications, so selected processors may
have dedicated hardware multipliers.

The fact that there is no need for complex control structures,
the high data-accesses requirements and the coarse grain
parallelism mean that optimizations can be obtained with a
pipelined architecture with possible coarse grain dedicated
hardware modules providing a large bandwidth. So if high
performances are required, an ASIP or a programmable dedi-
cated hardware can be introduced within the SOC.

2) Spatial Parallelism: We can notice that at the lowest
level of granularity (1D-DCT sub-blocks operating on rows
and columns), the value ofP is 1 indicating no fine grain
spatial parallelism. It shows that these sub blocks (methods)
are sequential in nature and does not contain any inherited
parallelism. However the level of parallelism increases atthe
higher level of granularity (2D IDCT). The value ofP at
this level is 24.14 indicating that a coarse grain parallelism
is available.

D. Huffman Decoding

We first generate the trace tree for each function of Huffman
decoding and then combine the individual trace trees to get
the complete trace tree of Huffman decoding using the flow
in figure 1. We perform analysis operations on trace tree rep-
resentation to get analysis results. Table II shows the analysis
results for representative functions of Huffman Decoding.

1) Orientation: It can be noticed that these functions have
relatively high percentages of control operations denoting
heavily conditioned data-flows. The percentage of computation
operations also indicates an important computation frequency.
There are less number of memory operations as compared
to computations and control operations. It indicates that these
methods are control and computation oriented. Figure 4 shows
the percentage of each type of computation in the Huffman

Fig. 4. Percentages Of Computation Types For 2D IDCT and Huffman
Decoding

TABLE II

ORIENTATION RESULTS FORHUFFMAN DECODING

Function Computation Memory Control
getChromaDCDctDiff 49 2 49
getCodedBlockPattern 52 5 43
getLumaDCDctDiff 60 2 38

getMacroblockAddrIncrement 50 5 45
getMacroblockMode: 58.3 8.4 33.3

getMotionDelta: 58.2 3 38.8
getQuantizerScale: 75 0 25
Huffman Decoding 60 7 33

decoding. There are no floating-point but only integer-typeop-
erations. Furthermore, there are no multiplications, so selected
processors have no need for dedicated hardware multipliers.
The results show that 45 % of the computations are logical
operations.

2) Spatial Parallelism:We have not shown the value ofP
in table II because the value ofP remains 1 at all hierarchical
levels of trace tree. It reveals that suitable target architecture
for Huffman decoding algorithm may be a GPP (General
Purpose Processor). There is no need for a DSP and for a
complex data path structure, since the parallelism cannot be
exploited at any level.

VI. CONCLUSIONS

In this paper we have proposed a high-level application
analysis methodology which aims at guiding the embedded
systems design process for early design space exploration
targeting the multimedia domain. Application is specified
in a higher level object oriented language (Smalltalk) and
then transformed into a trace tree representation by dynamic
analysis. Unlike conventional dynamic analysis techniques,
instrumentation is done on abstract syntax tree rather than
source code. Instrumented application is then executed to

get trace tree representation. Due to the diverse requirements
of embedded system design space exploration, the proposed
framework enables the characterization of applications trace
tree by a generic analysis approach which is not restricted
to only a set of metrics. Designer can extend the framework
by defining new operations on the trace tree of the source
specification. To illustrate the methodology, we discuss the
significance of some analysis results in the design space explo-
ration of embedded systems and perform analysis operations
on trace tree representation of the application. The outcome is
a set of guidelines characterizing the application in termsof
processing, control and memory orientation as well as in terms
of potential spatial parallelism. Experiments with 2D IDCT
and Huffman decoding algorithms shows that our approach not
only helps designers to intensively comprehend the application
but also provides valuable indications to highlight architectural
opportunities and directions to improve application architec-
ture matching.

The proposed framework is a starting point of the complete
design flow and is still in its early phase of development. Using
the proposed methodology, we are developing a framework for
automatic conversion of sequential programs to parallel pro-
grams dedicated to streaming applications. We are working to
integrate our analysis framework with the available synthesis
tools by scheduling the trace tree to a family of coarse grained
reconfigurable architectures.

REFERENCES

[1] H. J. Stolberg, S. Moch, L. Friebe, A. Dehnhardt, M. B. Kulaczewski,
M. Berekovic, and P. Pirsch, “An soc with two multimedia DSPsand
a RISC core for video compression applications,”Digest of Technical
Papers. ISSCC., pp. 330–531, Feb. 2004.

[2] P. Kongetira, K. Aingaran, and K. Olukotun, “Niagara: a 32-way
multithreaded sparc processor,” vol. 25, no. 2, Mar./Apr. 2005, pp. 21–
29.

[3] H. P. Hofstee, “Power efficient processor architecture and the cell proces-
sor,” in HPCA ’05: Proceedings of the 11th International Symposium
on High-Performance Computer Architecture, Washington, DC, USA,
2005, pp. 258–262.

[4] W. Eatherton, “The push of network processing to the top of the
pyramid,” in Symposium on Architectures for Networking and Commu-
nications Systems, Princeton, New Jersey, USA, 2005.

[5] P. M. Kuhn and K. P. M.,Algorithms, Complexity Analysis and VLSI
Architectures for MPEG-4 Motion Estimation. Norwell, MA, USA:
Kluwer Academic Publishers, 1999.

[6] M. Gries, “Methods for evaluating and covering the design space during
early design development,”Integr. VLSI J., vol. 38, no. 2, pp. 131–183,
2004.

[7] H. Zuse,Software complexity: measures and methods. Hawthorne, NJ,
USA: Walter de Gruyter & Co., 1991.

[8] I. Tomek, Feb, 2002. [Online]. Available:
http://www.iam.unibe.ch/ ducasse/FreeBooks/Joy/

[9] “Information technology - coding of moving pictures andassociated
audio for digital storage media at up to about 1.5 mbit/s.” ISO/IEC
13818-3:International Organization for Standardization, 1999.

[10] Y.-T. S. Li and S. Malik, “Performance analysis of embedded software
using implicit path enumeration,” inDAC ’95: Proceedings of the 32nd
ACM/IEEE conference on Design automation. New York, USA: ACM
Press, 1995, pp. 456–461.

[11] P. Puschner and C. Koza, “Calculating the maximum, execution time of
real-time programs,”Real-Time Syst., vol. 1, no. 2, pp. 159–176, 1989.

[12] S. Mallat and F. Falzon, “Analysis of low bit rate image transform
coding,” Signal Processing, IEEE Transactions on Speech, and Signal
Processing, vol. 46, no. 4, pp. 1027–1042, 1998.

[13] T. Ball, “The concept of dynamic analysis,” inFoundations of Software
Engineering. Los Alamitos CA: Proceedings of the 7th European soft-
ware engineering conference held jointly with the 7th ACM SIGSOFT
international symposium on Foundations of software engineering, 1999,
pp. 216 – 234.

[14] A. Lienhard, S. Ducasse, T. Grba1, and O. Nierstrasz1, “Capturing
how objects flow at runtime,” inProceedings of the 2nd Workshop
on Program Comprehension through Dynamic Analysis (PCODA’06).
IEEE, 2006, pp. 45–49.

[15] M. Denker, O. Greevy, and M. Lanza, “Higher abstractions for dynamic
analysis,” inProceedings of the 2nd Workshop on Program Comprehen-
sion through Dynamic Analysis (PCODA’06). IEEE, 2006.

[16] A. Hamou-Lhadj, “The concept of trace summarization,”in Proceedings
of the Ist Workshop on Program Comprehension through Dynamic
Analysis (PCODA’05). IEEE, 2005, pp. 43–47.

[17] J. Brant, B. Foote, R. E. Johnson, and D. Roberts, “Wrappers to the
rescue,” inECCOP ’98: Proceedings of the 12th European Conference
on Object-Oriented Programming. London, UK: Springer-Verlag, 1998,
pp. 396–417.

[18] M. Ravasi and M. Mattavelli, “High abstraction level complexity anal-
ysis and memory architecture simulations of multimedia algorithms,”
IEEE Transactions on Circuits and Systems for Video Technology,
vol. 15, no. 5, pp. 673–684, May 2005.

[19] L. Cai, A. Gerstlauer, and D. Gajski, “Multi-metric andmulti-entity
characterization of applications for early system design exploration,” in
ASP-DAC ’05: Proceedings of the 2005 conference on Asia South Pacific
design automation, New York, USA, 2005, pp. 944–947.

[20] F. Salice, L. D. Vecchio, L. Pomante, and W. Fornaciari,“Partitioning
of embedded applications onto heterogeneous multiprocessor architec-
tures,” inSAC ’03: Proceedings of the 2003 ACM symposium on Applied
computing. New York, USA: ACM Press, 2003, pp. 661–665.

[21] Y. Moullec, J.-P. Diguet, N. B. Amor, T. Gourdeaux, and J.-L. Philippe,
“Algorithmic-level specification and characterization ofembedded mul-
timedia applications with design trotter,”J. VLSI Signal Process. Syst.,
vol. 42, no. 2, pp. 185–208, 2006.

[22] J. Reichel and M. J. Nadenau, “How to measure arithmeticcomplexity
of compression algorithms: asimple solution,” inMultimedia and Expo,
2000. ICME 2000. 2000 IEEE International Conference on, vol. 3, New
York, USA, 2000, pp. 1743–1746.

[23] S. Rul, H. Vandierendonck, and K. D. Bosschere, “Function level
parallelism driven by data dependencies,”SIGARCH Comput. Archit.
News, vol. 35, no. 1, pp. 55–62, 2007.

[24] J. Cockx, K. Denolf, B. Vanhoof, and R. Stahl, “Sprint: Atool to
generate concurrent transaction-level models from sequential code,”
EURASIP Journal on Advances in Signal Processing, pp. Article ID
75 373, 15 pages, 2007, doi:10.1155/2007/75373.

[25] M. I. Gordon, W. Thies, and S. Amarasinghe, “Exploitingcoarse-grained
task, data, and pipeline parallelism in stream programs,”SIGOPS Oper.
Syst. Rev., vol. 40, no. 5, pp. 151–162, 2006.

[26] M. Drake, H. Hoffmann, R. Rabbah, and S. Amarasinghe, “MPEG-
2 decoding in a stream programming language,” inParallel and Dis-
tributed Processing Symposium, 2006. IPDPS 2006. 20th International,
Apr. 2006.

[27] T. Goubier, “The Trace and Dynamic Program Analysis Framework,”
Architectures et Systmes, UBO, Brest, Tech. Rep., May 2007.

[28] E. Gamma, R. Helm, R. Johnson, and J. Vlissides,Design
Patterns. Addison-Wesley Professional, January 1995. [Online].
Available: http://www.amazon.ca/exec/obidos/redirect?tag=citeulike04-
20&path=ASIN/0201633612

[29] L. L. Hours, “Etude et Modlisation MPEG 2,” Architectures et Systmes,
UBO, Brest, Tech. Rep., 2002.

