
Application Specific Processors for Multimedia Applications

Muhammad Rashid, Ludovic Apvrille and Renaud Pacalet
System-on-Chip laboratory

LabSoC, GET/ENST
Sophia-Antipolis, France

muhamad.rashid@thomson.net

Abstract

A well-known challenge during processor design is to
obtain best possible results for a typical target applica-
tion domain by combining flexibility and computational
performance. ASIPs (Application Specific Instruction
Set Processors) provide a tradeoff between generality
of processor (flexibility) and its physical characteristics
(computational performance and silicon area).

This paper evaluates an ASIP design methodology
based on the extension of an existing instruction set
and architecture described with LISA 2.0 language. The
objective is to accelerate the ASIPs design process by
using partially predefined, configurable RISC-like em-
bedded processor cores that can be quickly tuned to
given applications by means of ISE (Instruction Set
Extension) techniques. A case study demonstrates the
methodological approach for the JPEG algorithm and
motion estimation encoding algorithm of H.264 encod-
ing standard.

1. Introduction

An ASIP is an hardware architectural concept
meant to fill the gap between ASICs (Application Spe-
cific Integrated Circuits) and DSPs (Digital Signal Pro-
cessors). The formers are highly efficient but lack
flexibility. On the other hand, software development
on DSPs provide reusable and programmable solutions
with less performance and energy inefficiency as com-
pared to ASICs [1]. An ASIP is a microprocessor spe-
cialized for a given set of algorithms. By specialized, we
mean that its instruction set is designed from scratch
or extended from a known microprocessor. The pro-
grammability of ASIPs enables the designer to map
multiple related applications as well as different gener-
ations (versions) of the same application on the same
ASIP.

There may be two approaches to design ASIPs. The
first approach is to design from scratch: an entirely new
instruction set is specifically designed for the target ap-
plication [2]. The second approach is to customize the
instruction set of an existing general purpose partially
predefined configurable processor [3] [4] [5]. In this pa-
per, we have designed ASIPs by extending the instruc-
tion set of a 32-bit RISC processor. In each of the two
approaches, the objective is to design customized pro-
cessors in order to make the best application-dependent
trade off between given criteria [6] such as:

• Flexibility: ASIPs should be designed to support
at least minor variations of the implemented algo-
rithm. For example, if an ASIP has been designed
for a given version of a video decoding algorithm,
it should also support next versions of the same
decoding algorithms. But adding flexibility also
certainly means adding complexity, therefore rais-
ing cost and silicon area.

• System efficiency: It implies computational
power, area and cost.

By partially sacrificing silicon efficiency, config-
urable processors make ASIPs design more incremental
and less complex, since both the hardware architecture
and software tools are partially predefined [5].

The main contribution of this paper is to evaluate
the LISATek ASIP toolkit (from CoWare) [7] [8] [9].
LISATek assists an ASIP design process by automati-
cally generating the software tool suite (compiler, as-
sembler, linker, simulator) as well as the RTL (Reg-
ister Transfer Level) description of the designed pro-
cessor. It covers all phases of the design process from
algorithmic specification of the application down to im-
plementation of the micro architecture. As a starting
point for model creation LISATek provides a library of
sample models which contains processors for different

architecture categories like VLIW (Very Large Instruc-
tion Word), SIMD (Single Instruction Multiple Data),
RISC (Reduced Instruction Set Computer). We extend
the instruction set of a 32-bit RISC processor. The rea-
son of 32-bit RISC core selection is the observation that
many ASIPs tend to have a RISC-like core architecture
and ISA (Instruction Set Architecture) [3]. Two well
known applications from multimedia domain serve as
case study: 1) The Motion Estimation sub-algorithm of
H.264 encoding [13]. 2) The JPEG compression stan-
dard [12].

The rest of the paper is organized as follows: Section
2 introduces the evaluation methodology for LISATek
design flow starting from the sample model. Section
3 describes ASIPs design for Motion Estimation algo-
rithm in H.264 encoding. Section 4 describes ASIPs de-
sign for JPEG algorithm. Section 5 provides simulation
and synthesis results. Section 6 comments on strengths
and weaknesses of LISA-based design methodology.
Section 7 describes related work and section 8 con-
cludes the paper.

2 Evaluation Methodology for

LISATek Design Flow

2.1 Evaluation Steps

To evaluate LISATek, we propose the following
ASIP design methodology:

• The design flow starts by writing the application
specifications in a high level language like C.

• Application specifications written in C are profiled
to identify critical parts of the application. Crit-
icality refers to computational intensive parts of
the application.

• Customized instructions are identified for criti-
cal parts of the application to increase compu-
tational performance. These customized instruc-
tions are application specific instructions with a
higher complexity than generic instructions like
ADD, SUB, etc. We further explain this identi-
fication step in the paper.

• Customized instructions are integrated into a
LISATek predefined configurable processor tem-
plate to speed up the application.

• Customized instructions are functionally verified
and simulated using an adequate instruction set
simulator (ISS) generated by LISATek [7] [9]. The
simulation also makes it possible to calculate the
application speedup in terms of cycle counts.

• After simulation,, an RTL HDL model (VHDL
or verilog) of target architecture is generated by
LISATek from the corresponding LISA descrip-
tion. It triggers hardware synthesis process via
standard logic synthesis tools. As a result, max-
imum clock rate and silicon area overhead is ob-
tained for the selected CMOS target library.

2.2 Presentation of the Toolkit: Coware
LISATek

The LISATek-based processor design flow [7] [9] cov-
ers all phases of the design process from algorithmic
specification of the application down to implementa-
tion of the micro architecture. It improves flexibility of
modeling target architectures and significantly reduces
description efforts. It provides high level of flexibility
to facilitate the description of various processors, such
as SIMD, VLIW and RISC type architectures. To de-
scribe ASIPs, LISATek is based on a language called
LISA 2.0. LISA offers two main features:

• The description of the ASIP structure: registers,
pipeline structure, instruction set binary coding,
instruction set syntax, etc.

• The description of the behavior of each instruc-
tion. This behavior is described with a pseudo C
language.

The two main ASIP development phases of the LISA
2.0 based design flow are shown in figure 1. On the left
hand side of the figure 1, the architecture exploration
phase with the software development tool generation
is visualized. On the right hand side, the implemen-
tation phase is shown that starts with the automatic
creation of an RTL model of the ASIP. These phases
are iterative and repeated until a best fit between se-
lected architecture and target application is obtained.
Every change to architecture specification requires a
completely new set of software development tools. (i.e.
C compiler, assembler, linker, simulator). This itera-
tive exploration approach demands very flexible, retar-
getable software development tools to optimize compu-
tational performance, flexibility and silicon area.

2.3 Sample Architecture: 32-bit RISC
processor

LISATek provides a library of sample models for dif-
ferent architectural categories. Our case study relies on
the LISATek 32-bit RISC processor. The sample archi-
tecture has following characteristics:

Specification

LISA Description

Language Compiler

HDL Description

Software Development Tools

C Compiler

Assembler

Linker

Simulator

Gate Level Synthesis

Evaluation Results

Clock Speed

Chip Area

Power Consumption

Evaluation Results

Profile Information

Application Performance

I

M

P

L

E

M

E

N

T

A

T

I

O

N

E

X

P

L

O

R

A

T

I

O

N

Figure 1. LISATek Design Flow

1. 32-bit instructions with five stage pipeline. (FE,
DC, EX, MEM, WB)

(a) FE: To fetch instructions from memory.

(b) DC: To decode instructions for the next
stages (EX, MEM, WB).

(c) EX: To execute operations.

(d) MEM: To store results in memory.

(e) WB: To write results back into registers.

2. Sixteen 32-bit general purpose registers.

3. PC register, Status registers, Pipeline registers
and Bypass registers.

4. Six functional units (ALU , Control, DSP, LDST,
Shifter and Writeback).

(a) ALU: To perform arithmetic and logical op-
erations.

(b) Control: To perform branching operations.

(c) LDST: To perform load and store operations.

(d) Shifter: To perform shift operations.

(e) DSP: To perform DSP oriented operations.

(f) Writeback: To perform write back opera-
tions.

The sample architecture has already a minimal instruc-
tion set. There are four types of instructions: Arith-
metic and Logical instructions, Branch instructions,
Compare instructions and Load/Store instructions.

3 First Case Study: ASIP Design for

Motion Estimation Algorithm

To evaluate the strength of LISATek toolkit for
ASIP designing, we have performed two case stud-
ies: 1) ASIP Design for the Motion Estimation sub-
algorithm of H.264 encoding process. 2)ASIP Design
for the JPEG compression algorithm.

Motion Estimation is the most computationally in-
tensive part in the entire H.264 encoder.

3.1 Application Specification and Profil-
ing Results

The starting point of our design process is a pro-
file step. Profiling results show that the key func-
tional blocks of motion estimation are Half-Pixel In-
terpolation, Quarter-Pixel Interpolation and Sum of
Absolute Differences (SAD) algorithm. Half-Pixel In-
terpolation takes a 16x16 macro block as input and
outputs four macro blocks containing the calculated
half-pixels. Quarter-pixel interpolation takes four Half-
pixels macro blocks and returns one macro block. SAD
takes two macro blocks: a current macro block and a
reference macro block. SAD algorithm returns a table
(called error table) containing the errors.

3.2 Customization of Sample Model for
Motion Estmation

The LISATek RISC processor sample model is pro-
vided with an already-defined instruction set. We ex-
tend this instruction set by identifying and implement-
ing customized instructions. These dedicated (cus-
tomized) instructions are identified to accelerate the
computational intensive parts of the application. How-
ever, an important challenge for these customized in-
structions is to accelerate the execution of computa-
tional intensive parts while being flexible enough to
accommodate variations in the algorithm. There are
large number of possible instruction set extensions and
each set of extensions describes various levels of trade-
offs between flexibility and efficiency. In this paper, we
describe only one possible set of instruction set exten-
sion.

3.3 Data Memory Organization

H264 [13] encoding needs to compute Half Pixels
several times during different encoding steps. There-
fore the first step is to compute Half Pixels and store
them in memory. Then, SAD is performed for a com-
plete picture. Quarter pixels are computed by a sim-
ple average between two numbers stored in memory.
Moreover, to compute Half Pixels, the notion of Mac-
roblocks has no importance. Therefore we will compute
Half Pixels for the whole image instead of processing
macroblocks.

3.4 Customized Instructions

• HINTER Rdst, Rsrc1, Rsrc2 takes two source
registers and one destination registers as param-
eters. It loads 4 pixels from the second operand
(32-bits wide), and multiply each pixel by a coef-
ficient previously loaded in registers. The result
of each multiplication is added to an intermediate
result loaded from the first source register. Due
to 32-bit restriction, we can not pass all the coef-
ficient registers as parameters. We therefore use
general purpose registers of the sample architec-
ture as coefficient registers.

• HSHIFT Rdst, Rsrc1, Rsrc2 divides the result
of HINTER by 32 (5 bit right shift) to obtain cor-
responding half pixels. Since each pixel is of 8-bits
only, we store the pixels back into memory in the
group of four. This instruction right shifts the re-
sult of HINTER loaded from Rsrc2 and eventually
saturate it. It then writes it to the buffer specified
by Rdst as shown in figure 2. It also writes the
contents of the previous buffer Rsrc1 left shifted
by one pixel (one byte).

• CSHIFT2 shifts pixels from one register to an-
other This instruction requires that the two in-
volved registers are necessarily R1 and R2 (Two
general purpose registers of the sample architec-
ture). We may pass the two involved registers as
parameters on the cost of additional complex by-
pass operations.

• LVW Vdst, Rsrc1, #16immOffset loads a 32
bit word stored in memory at address (Rsrc1 +
#16immOffset) into the Vertical Register Vdest.
The destination registers are necessarily R1, .. R4,
since we are not able to pass all these registers as
parameters due to 32-bit restriction.

E F G H

new

pixel

Rsrc2

if negative, saturate

>> 5

if greater than 255, saturate

Rdest

Rsrc1

<< 8

A B C D

B C D

HSHIFT

OR

Figure 2. HSHIFT instruction dataflow

3.5 Modifications in Architecture

In order to implement customized instructions,
LISA offers the possibility to either put the new in-
structions in a new Functional Unit or in (modified)
existing Functional Units. In this paper, customized
instructions are implemented by modifying existing
Functional Units. The reason is that the sample archi-
tecture already contains some local registers in existing
Functional Units that we can reuse for our purpose. In-
deed, the creation of a new Functional Unit implies the
creation of new local registers: already available local
registers could not be reused. However, even in the ex-
isting Functional Units, some additional local registers
are needed to implement the customized instructions.

We can notice that LVW instruction requires five
operands: four operands to store the contents of the
registers R1, R2, R3 and R4, and one register to store
the address of the word to be loaded from memory. So
we have to add two pipeline registers. Moreover this
instruction writes results back to memory, we therefore
have to add three bypass registers and three writeback
registers.

4 Second Case Study: ASIP Design for

JPEG Algorithm

JPEG is a general purpose compression standard for
still-image applications. The key functional blocks for

JPEG compression are FDCT (Forward Discrete Co-
sine Transform), Quantization and Entropy Encoding
while key functional blocks for JPEG Decompression
are IDCT (Inverse Discrete Cosine Transform), De-
quantization and Entropy Decoding.

4.1 Application Specification and Profil-
ing Results

The starting point of our design process is a pro-
file step. To perform that profiling, we consider an
open source C implementation of the JPEG algorithm
[16]. The application code is profiled using the gprof
GNU profiler [15] on a Pentium machine. Profiling re-
sults show that FDCT and quantization are the most
computational intensive parts for compression, while
IDCT and dequantization are the most computational
intensive parts for decompression. 1 D LLM algorithm
[19] computes DCT and IDCT with minimum number
of operations. The flow graph of the 1 D (8 point)
LLM algorithm is shown in figure 3. In figure 3, dots

Figure 3. LLM Algorithm Flow Graph for DCT
Computations

represent additions or subtractions. Hollow circles rep-
resent multiplication by a number. Rectangular boxes
represent rotation and its computational cost is 4 mul-
tiplications and 2 additions. There are 4 stages in the
LLM algorithm for DCT computation. Stage 1 consists
of 8 additions/subtractions. In Stage 2, the algorithm
splits into two parts. One part is for even coefficients
(only additions and subtractions) and the second part
is for odd coefficients (rotations). Stage 3 again splits
into even and odd parts. The signal flow graph of LLM

algorithm for forward and inverse DCTs are mirror im-
ages of each another.

4.2 Data Memory Organization

To evaluate the efficiency of customized instructions,
the following data memory organization is defined for
each input image block.

TmpAddress is used to store partial DCT results and
is calculated as:

TmpAddress = (BaseAddress + 64)
Quantization table address Tabaddress is calculated

as:
TabAddress = (TmpAddress + 128)
CoefAddress shows the starting address of quantized

DCT coefficients.
CoefAddress = (TabAddress + 128)
FDCT and Quantization is performed in two steps:

First 8x8 block is loaded from memory, 1 D DCT is
performed and temporary results are stored into mem-
ory. Then these temporary results are retrieved back
from memory to compute 1 D DCT column wise, and
quantize the results before storing them in memory and
so on.

4.3 Customized Instructions

Stage 1 of the LLM algorithm shown in figure 3 loads
8-bit pixels from data memory. This stage outputs 16-
bit data. All the subsequent stages (stage 2, stage 3,
stage 4) work with 16-bit data input and output. On
the basis of the LLM algorithm flow graph and selected
memory organization, we have explored various possi-
ble instruction set extensions. One possible set of in-
struction set extension is presented hereafter.

• DCT01ROW Rsrc1, Rsrc2 computes DCT
stage 1 of the LLM algorithm. It computes 08 ad-
ditions/subtractions. It takes two source operand
registers (Rsrc1, Rsrc2) and returns results in the
registers which are implicitly defined inside the
definition of this instruction. The use of implicit
registers is due to the 32-bit instruction set restric-
tion.

• DCT02 Rdst1, Rdst2, Rsrc1, Rsrc2 com-
putes DCT stage 2 of the LLM algorithm. It takes
input from two source registers (Rsrc1, Rsrc2) and
returns results in two destination registers (Rdst1,
Rdst2).

• ADDEVEN Rdst1, Rdst2, Rsrc1, Rsrc2
computes upper part in stage 2 and lower parts
in stage 3.

• DCTEVEN Rdst, Rsrc computes upper part
in stage 3 of the LLM algorithm.

• DCTODD Rdst, Rsrc1, Rsrc2, Rsrc3 com-
putes DCT computations in stage 4.

• QUANTIZE Rdst, Rsrc1, Rsrc2 computes
quantization. First source register stores 2 DCT
coefficients (16 bit data). Second source register
stores 2 quantization factor (16 bit data). It takes
DCT coefficient to be quantized from first register
and takes quantization factor from second source
register, performs the quantization and stores the
result in Rdst.

4.4 Architecture Modifications

We have added nine 32-bit registers and fourteen 16-
bit registers. In order to execute customized instruc-
tions in pipeline, additional pipeline registers are also
needed. We have added ten 32-bit registers and four
8-bit registers to pass data between pipeline stages.

4.5 Generation of HDL Code

The LISATek Processor Generator [8] [7] tool allows
the designer to automatically create an implementation
model of the target architecture modelled in LISA 2.0
language. The output of the Processor Generator is
VHDL or VeriLog code, which can be processed by
standard synthesis tools.

5 Experimental Results

The following experiments have been performed to
evaluate the relevance of the proposed LISA-based de-
sign flow.

5.1 Simulation Results with Native In-
structions

To compute 2D DCT of one input block with only
the native instructions of the sample model, 640 cy-
cles are required. Similarly 128 cycles are needed to
compute quantization for one input image block of size
8x8. In addition to this, some cycles are consumed
in loading pixels from memory, loading quantization
coefficient from memory, storing and loading partial
results to and from memory respectively and storing
quantized DCT coefficients in the memory. It has con-
sumed additional 240 cycles for one input block. Hence
total number of consumed cycles are 640+128+240
= 1008. Computational cost for IDCT and dequanti-
zation is same as that of FDCT and quantization.

5.2 Simulation Results with Customized
Instructions

To compute 2D DCT of one input block with our
ASIP (i.e. customized instructions), 192 cycles are
needed. 240 additional cycles are required to compute
one input block. So total number of consumed cycles
are 192+240 = 432. Computational cost for IDCT
and dequantization is same as that of FDCT and quan-
tization.

The designed architecture is not specialized for this
application only. The customized instructions are
reusable even if we change the DCT algorithm. Also,
some of the instructions could also be reused for other
algorithm (For example FFT algorithm).

5.3 Summary of Simulation Results

• The speedup due to new instructions is: Speedup
= 1008/432 = 2.33. The speedup is obtained
at the cost of silicon area. The increase in area is
due to the additional pipeline registers and local
registers.

• 2.33 is not the maximum possible speedup. The
computational efficiency of the designed architec-
ture (Minimum cycle counts) can be increased at
the cost of silicon area (additional registers) and
flexibility (More specific towards a single appli-
cation) demonstrating the trade-off between re-
usability and efficiency.

• The entire design flow for the processor is per-
formed beginning from the functional description
of the application down to the hardware imple-
mentation within three man-weeks. This time
also includes the creation of architecture simula-
tors and production quality software development
tools. This short development time demonstrates
effectiveness of the design flow.

5.4 Synthesis Results

We have performed logic synthesis by means of Ca-
dence Encounter RTL Compiler using a standard cell
CMOS 0.13. The target frequency is 200MHz while
external input and output delays are 2.5 ns.

The processor model instantiates three main sub-
blocks: PipeLine, RegisterFile and Memories. The
simulation memories are replaced with technology spe-
cific vendor memories.

Synthesis results for the entities Pipeline and Reg-
isterFile are combined to get total area which is 42.5

k-gates at 160 MHz maximum frequency. For JPEG
application, the minimum memory needs are:

• Program memory: The minimum size of program
memory is the size of ASM code (assembly code)
for the application.

• Data memory: The minimum size of required data
memory depends on the size of stored image in
memory.

6 LISATek Evaluation

6.1 Strengths of LISATek

• As a starting point of model creation LISATek
provides a library of sample models which con-
tains processors for different architecture cate-
gories. Taking such model as basis has a major ad-
vantage to directly have compiler support for the
architecture due to the existence of an instruction
set. This removes the entry barrier usually caused
by new modeling languages and tools.

• It is quite easy to list a set of resources (memory,
buses, registers). Operations are described in a
hierarchical way, which facilitates reusability and
modularity.

• Step by step simulation is quite useable.

• The toolkits Processor Designer and Processor
Debugger [8] [9] creation have a good graphical
user interface thus offering ways to design and de-
bug the processor before the generation of its hard-
ware description.

6.2 Weaknesses of LISATek

• Although toolkit Processor Designer and Proces-
sor Debugger has a good graphical user interface
but design methodology still lacks the large degree
of automation as compared to its counterpart like
Tensilica [3] that has more automated approach.

• The LISA language analyzer is quite limited. It
means that description errors may occur when
compiling the simulation environment. In that
case, we must understand gcc errors to correct the
LISA description.

• Although VHDL code can be automatically gener-
ated from LISA source code by Processor Genera-
tor but generation process showed many errors in
the generated VHDL code. So we have to modify
the LISA code in order to remove those errors.

• LISATek profiler [10] provides detailed processor
specific information. However, it is bound to spe-
cific architectures and not suitable for performance
estimation in a general, target processor indepen-
dent way. In [18], a tool has been propsed that
estimates the cycles counts and memory profiles.
However, it does not extract inherited spatial par-
allelism present in the application.

• LISATek based design methodology has no notion
for modeling coarse grain reconfigurable architec-
tures. The recent work in this regard is [14]. But
it describes only fine grain reconfigurable architec-
ture with static reconfiguration.

7 Related Work

The Xtensa [3] environment from Tensilica is built
upon a choice between elements from a predefined set
of hardware components which can be adapted to the
user requirements. For this reason the design space ex-
ploration can be performed efficiently but the designer
has not the flexibility of modeling arbitrary ASIPs.
The PEAS-III [4] generates not only HDL descriptions
but the target compiler and target assembler as well.
However, it works with a set of predefined components
which limits the resulting flexibility in modeling ar-
bitrary processor architectures. The EXPRESSION
[11] language allows the cycle-accurate processor de-
scription. It provides the mechanism for capturing
the information needed to support ADL (Architecture
Description Language) based design space exploration
and software toolkit generation methodology. How-
ever, currently there is no information whether the im-
plementation step can be done based on this language.

None of the introduced approaches provides the de-
signer with efficient design exploration and implemen-
tation capabilities coupled with the required flexibil-
ity for the development of arbitrary ASIPs. In this
paper, LISA 2.0 based design flow is evaluated to ad-
dress these issues. We have used a manual approach
where custom instructions are identified by the user
after profiling. However, the readers are referred to a
more automated approach in [5]. In this automated
approach advanced profiling tools are used such that
custom instructions are not identified by the user but
generated automatically from the application code. For
Customized instructions implementation, [5] relies on
CorXpert (from Coware) tool. CorXpert is a graphical
tool for capturing CI (Customized Instructions) of con-
figurable processors. The use of CorXpert as a backend
makes the design flow quite generic, since it uses the
LISA as the specification formalism for the CI.

8 Conclusion

This paper evaluates LISA 2.0 based methodology
to design ASIPs for multimedia applications. We have
designed a processor architecture with an extended in-
struction set based on the profiling results. As far as
area overhead and speedup are concerned, our solution
is somewhere between pure software implementation
and full custom designed ASIPs. Our case study has
explored different types of ASIPs for Motion Estima-
tion algorithm in H264 encoding and JPEG algorithm.

A major disadvantage of our approach is the lack of
automation in identifying the customized instructions.
Design time can be significantly reduced to few hours
by making this process automatic. Future work may
be the modeling of further real world processor archi-
tectures while focusing on the evaluation of efficiency
of both the generated RTL code and the efficiency of
retargetable C compiler.

Acknowledgments.

This work was sponsored by Texas Instruments Inc.
The LISATek evaluation of the motion estimation sub-
algorithm was performed by Stephane Paris during his
internship at LabSoc.

References

[1] P. Ienne and R. Leupers. Customizable Embedded
Processors: Design Technologies and Applications
(Systems on Silicon). Morgan Kaufmann Publish-
ers Inc., San Francisco, CA, USA, 2006.

[2] F. Haddad, L. Apvrille, and R. Pacalet. Compara-
tive Study of Toolkits for the fast Design of ASICs
and ASIPs. (Septembre 2005).

[3] R. E. Gonzalez. Xtensa: A configurable and exten-
sible processor. IEEE Micro, 20(2):60–70, 2000.

[4] S. Kobayashi, K. Mita, Y. Takeuchi, and M. lmai.
Rapid prototyping of jpeg encoding using the asip
development system: PEAS-III. In Proceedings of
the IEEE International Conference on Acoustics,
Speech and Signal Processing, Hong Kong, April
2003.

[5] R. Leupers, K. Karuri, S. Kraemer, and
M. Pandey. A design flow for configurable em-
bedded processors based on optimized instruction
set extension synthesis. In DATE ’06:, pages 581–
586, 3001 Leuven, Belgium, 2006.

[6] A. Hoffmann, F. Fiedler, A. Nohl, and S. Paru-
palli. A methodology and tooling enabling appli-
cation specific processor design. In VLSID ’05,
pages 399–404, Washington, DC, USA, 2005.

[7] CoWare. LISATek Creation Manual, product ver-
sion v2005.2.1 edition, February 2006.

[8] CoWare. LISATek Methodology Guidelines for the
Processor Generator, product version v2005.2.1
edition, February 2006.

[9] CoWare. LISATek Processor Designer Manual,
product version v2005.2.1 edition, February 2006.

[10] CoWare. LISATek Profiler, product version
v2005.2.1 edition, February 2006.

[11] A. Halambi, P. Grun, V. Ganesh, A. Khare,
N. Dutt, and A. Nicolau. Expression: a lan-
guage for architecture exploration through com-
piler/simulator retargetability. In DATE ’99, page
100, New York, NY, USA, 1999.

[12] T. international Telegraphic and T. C. Commit-
tee. Information technology - digital compres-
sion and coding of continuous tone still images
- requirements and guidelines. Recommendation
T.81.

[13] T. Wiegand et al. Overview of the H.264/AVC
Video Coding Standard. In IEEE Trans. Circuits
and Systems for Video Technology, vol. 13, no. 7,
2003, pp. 560–576.

[14] A. Chattopadhyay, W. Ahmed, K. Karuri,
D. Kammler, R. Leupers, G. Ascheid, and
H. Meyr. Design space exploration of partially re-
configurable embedded processors. In DATE ’07,
pages 1–6, Apr. 2007.

[15] J. Fenlason and R. Stallman. The gnu profiler.

[16] I. J. group. www.ijg.org.

[17] A. Hoffmann, H. Meyr, and R. Leupers. Archi-
tecture Exploration for Embedded Processors with
Lisa. Kluwer Academic Publishers, 2002.

[18] T. Kempf, K. Karuri, S. Wallentowitz, G. Ascheid,
R. Leupers, and H. Meyr. A sw performance es-
timation framework for early system-level-design
using fine-grained instrumentation. In DATE ’06,
pages 468–473, 3001 Leuven, Belgium,2006.

[19] C. Leoffler, A. Ligtenberg, and G. Moschytz. Prac-
tical fast id dct algorithms with 11 multiplications.
In In Proc. IEEE ICASSP, pages 988–991, Feb
1989.

