
Application Analysis for Parallel Processing

Muhammad Rashid
Thomson Silicon Components,Rennes, France.

Université de Bretagne Occidentale,
CNRS, UMR 3192, Lab-STICC, Brest, France.

muhamad.rashid@thomson.net

Damien Picard and Bernard Pottier
Université de Bretagne Occidentale,

CNRS, UMR 3192, Lab-STICC, Brest, France.
{damien.picard, bernard.pottier}@univ-brest.fr

Abstract

Effective mapping of multimedia applications on mas-
sively parallel embedded systems is a challenging demand
in the domain of compiler design. The software implemen-
tations of emerging multimedia applications are often huge
and it is virtually impossible to analyze these applications
for parallel processing without generic automated tools.

This paper proposes a two step methodology for spec-
ifying multimedia applications (video applications in this
paper) in form of parallel process networks. In the first step
of the proposed methodology, an input program written in a
high-level language is translated into a trace tree represen-
tation by dynamic analysis. Operations are performed on
the trace tree representation of the application to get anal-
ysis results. In the second step, results obtained from ap-
plication analysis are exploited to re-formulate the applica-
tion in form of parallel process networks expressed in Avel
framework. A well known multimedia application MPEG-2
decoder serves as a case study. Experimental results show
the applicability of the proposed methodology.

1. Introduction

The performance gains in multi-core architectures de-
pend on effective application parallelization across cores
[1]. For uni-processors, languages like C, C++ were
portable, high performance, malleable and maintainable.
But for the era of multi-core processors, these languages
are not well suited because they assume a single instruction
stream and a monolithic memory [2]. The primary goal of
these high level source specifications is to provide a refer-
ence for verification of a particular functionality. An effi-
cient implementation of these high level specifications on
multi-core platforms raises two key challenges: The first
challenge is that parallel tasks must be identified and ex-
tracted from the sequential reference specification. The

second challenge is that there must be an excellent match
between the extracted tasks and the architecture resources.
Any significant mismatch results in performance loss and a
decrease of resource utilization.

In this paper we present a two step methodology for cap-
turing multimedia applications in form of parallel process
networks. The first step is application analysis that char-
acterizes source specification of the application at a higher
abstraction level without any architectural directives. The
input high level specification (written in Smalltalk) is trans-
formed into internal trace tree representation by dynamic
analysis of the source specification and analysis operations
are performed on trace tree representation. The output of
the first step is in form of analysis results. In the second
step, analysis results from the first step are used to describe
source specification inAvel framework. The objective is to
describe source specification of the application in form of
parallel process networks (stream graph representation) to
perform parallel and distributed computations.Avelis an ar-
chitecture independent stream language that exposes inher-
ent parallelism and communication topology of the applica-
tion enabling the compiler to perform many stream aware
optimizations. Avel Processes are abstract programmable
units implemented with behavioral code of Smalltalk.

This paper is organized as follows: Section 2 describes
state of the art in the domain of high level application anal-
ysis and stream programming languages. It also summa-
rizes the innovative points of the proposed methodology.
Section 3 describes a high level generic analysis frame-
work to extract important characteristics (analysis results)
of the application. It also describes experimental results
for MPEG2 decoder [3] algorithm (2D Inverse Discrete Co-
sine Transform, Huffman decoding) to illustrate the analysis
methodology. Section 4 summarizes salient features of the
Avel framework. Section 5 describes the implementation of
MPEG-2 decoder withAvel framework. We conclude the
paper in section 6.

2 Review of related work and contributions

We have divided our related work into two different parts
according to two different phases of the proposed methodol-
ogy. The first phase is to analyze the high level source spec-
ification to obtain analysis results and the second phase is
to exploit analysis results (obtained in the first phase) to de-
scribe the application in form of parallel process networks.

2.1 Application analysis

In [4], some state-of-the-art high-level application anal-
ysis approaches for multimedia system design have been
comprehensively reviewed including the academic and
commercial frameworks. We have further subdivided our
related work in this category into application analysis tech-
niques and spatial parallelism.

2.1.1 Application analysis techniques

It may be static analysis or dynamic analysis. Static anal-
ysis techniques yields bounds on run-time best and worst
cases [5]. The main drawback of these techniques is that
the processing complexity of multimedia algorithms heav-
ily depends on the input data statistics while static analysis
can only detect upper and lower bounds [6]. In dynamic
analysis , alternative solutions are available for tracinga
program behavior . It includes source code modification ,
byte code modification, instrumenting the virtual machine
and method wrappers [7][8].

2.1.2 Spatial parallelism

In [11], a profile based technique is presented to extract
parallelization from a sequential application. It transforms
source specification into a graph based representation to
identify parallelizable code. As it measures memory de-
pendencies between different functions of the application
so granularity of extracted parallelism is larger and may not
be well suited to extract fine grain parallelism. SPRINT
[12] tool automatically generates an executable concurrent
model in SystemC starting from sequential C code and user
defined directives. Again this tool only extracts functional
parallelism and leaves the extraction of data parallelism.
Commit research group from MIT presents a framework [2]
that exposes task, data and pipeline parallelism present in
an application written in StreamIt [13] (streaming program-
ming language). It further explains that it is not necessary
that all parallelism has equal benefits so it is critical to lever-
age right combination of task, data and pipeline parallelism.

2.2 Streaming languages

The idea of language dedicated to stream processing
is not new and has already been discussed in existing
literature[14]. The languages of recent interests are Cg[15],
Brook[16], Caravela[17], StreamIt[13], StreamC[19] &
Spidle[18]. Existing stream languages can be divided into
two categories.

The first type of languages are geared towards the
features of specific hardware platform such as Cg[15],
Brook[16], & Caravela[17]. All of these languages are ded-
icated to programming GPUs. The Cg[15] language is a
C-like language that extends and restricts C in certain ar-
eas to support the stream processing model. Brook[16] ab-
stracts the stream hardware as a coprocessor to the host sys-
tem. Kernel functions in Brook[16] are similar to Cg[15]
shaders. These two languages do not support the distributed
programming. Caravela[17] applies stream computing to
the distributed programming model.

The second type of languages are limited to introducing
a language for gluing components of stream library such
as StreamIt [13], Spidle[18], and StreamC[19]. StreamIt
[13] and Spidle[18] are stream languages with similar ob-
jectives. However, the former is more general purpose
while the latter is more domain specific. StreamIt[13] is
a Java extension that provides some constructs to assem-
ble stream components. However, a common problem with
StreamIt[13] is that each channel can only carry one type
of data. Spidle[18], on the other hand is domain specific
language for specifying streaming applications. It provides
high level and declarative constructs. [19] with a syntax
similar to C and is used to define high level control and data
flow in stream programs. The stream C compiler analyzes
stream program and applies knowledge of high level pro-
gram structure to stream hardware.

2.3 Contributions

The main innovations of our work versus state of the art
tool technology can be summarized as follows.

2.3.1 Generic application analysis

In most of the cases , analysis results are summa-
rized/restricted to only some special design metrics
[9][10][11]. The proposed analysis framework is generic
and can be extended to fulfill multiple requirements of de-
sign space exploration by simply defining new operations
on trace tree representation of source specification.

2.3.2 Parallel and distributed computations

TheAvelframework is proposed for both embedded parallel
processing units as well as distributed computations.Avelis

not biased towards the features of a specific hardware plat-
form. Avel framework has been developed in Smalltalk en-
vironment thus we can benefit from reflective properties of
the language .

3 Application analysis framework

Figure 1 shows the proposed framework which is divided
into two parts. The first part is related to transformation
of source specification of application (written in Smalltalk)
into a trace tree representation. The second part is relatedto
analysis of the trace tree to get analysis results.

Instrumentors Recorders

Handling Probing
Messages

Generate
Record Events

Trace Building

Record
Events

Visualizers

Binding Recorded
Event To Source Code

P
ro

bi
ng

 M
es

sa
ge

s

Analyzers

Operations

Visitor

T
ra

ce
 T

re
e

INPUT TEST SEQUENCE

ANALYSIS
RESULTS

Second Part

First Part

SOURCE SPECIFICATION

Compiling instrumented AST

Replacing Original Method

AST Instrumentation

Parsing

Vistor Based Analysis

Figure 1. Application analysis framework

3.1 Source specification transformation

The first part is to transform the application into trace
tree representation by dynamic analysis of application.
Trace tree contains information about execution of the ap-
plication at run time representing implementation indepen-
dent application characteristics.

3.1.1 Steps of transformation flow

First part of figure 1 summarizes the required steps of
source specification transformation into the trace tree.
These steps are [20]:

• Instrumentors generate probing messages for
recorders in four sub-steps. The first sub-step is
to parse the source specification and generate an
abstract syntax tree (AST). The second sub-step is
to instrument the AST to generate a new AST with
additional nodes. The output of this sub-step is an
instrumented AST. The third sub-step is to compile the
instrumented AST. The output of this sub-step is the
compiled source code. The fourth and last sub-step is
to replace the original source code with the compiled
source code.

• The output ofInstrumentorsis in form ofprobing mes-
sages. The Recorderanswers allprobing messages
and createsrecorded events. Theserecorded events
areRecordBlock, RecordItem, RecordMethod, Record-
VariableandRecordAssignment.

• Visualizersare responsible to bind eachrecorded event
(RecordBlock, RecordItem, RecordMethod, Record-
VariableandRecordAssignment) to original Smalltalk
source specification in the form of trace tree.

3.1.2 Trace tree representation

The output of the first part of the framework is a trace tree
which represents sequence of recorded events, in a tree-like
form. We perform analysis operations on the trace tree for
different types of analysis. There are several analysis oper-
ations that can be performed on the trace tree representation
of source specification. For example:

• Checking the value assigned to each variable in each
step of the program execution.

• In the context of code rewriting, operations are per-
formed for type-checking.

• To find application orientation in form of processing,
memory and control oriented operations.

• To find spatial parallelism at each hierarchical level of
the trace tree for every function in the application.

3.2 Spatial parallelism

Trace tree of a particular function or the complete ap-
plication shows inherited spatial parallelism among oper-
ations of the function or application. In other words, in-
herited spatial parallelism present in the application canbe

exploited. We represent the amount of average inherited
spatial parallelism for every function in the source specifi-
cation byP such that greater the value ofP, greater will be
the amount of inherited spatial parallelism and vice versa.
P enables the classification of application functions accord-
ing to their capability to exploit the inherited spatial paral-
lelism. The value ofP at any hierarchical level of a trace
tree is computed by dividing the total number of operations
(RecordItems in a trace tree) by itsCritical Path . TheCrit-
ical Pathat any hierarchical level of a trace tree is the num-
ber of longest sequential chain of operations (processing,
control, memory). When we compute the value ofP for a
hierarchical level in a trace tree, we assume that the parallel
execution of sub hierarchical levels is possible and the value
of P is given as the ratio between the sum of all operations
in the sub hierarchical levels of the node and the longest of
all the critical paths.

3.3 Experimental results

In this section analysis results of some parts of MPEG2
decoder application implemented in Smalltalk are presented
to illustrate proposed analysis methodology.

3.3.1 Inverse discrete cosine transform

Table 1 shows analysis results for different functions in 2D
IDCT. From a structural point of view, 2D IDCT is com-
posed of two identical and sequential 1D-DCT sub-blocks
(operating on rows and columns), so the corresponding
trace trees have same orientation values for both functions
as shown in table 1. The first observation is that the per-
centage of control operations is zero for all functions, since
it is composed of deterministic loops and does not contain
any test. Secondly we observe that computation percentage
(abbreviated as Comput. in table 1) for 2D IDCT functional
blocks are higher so it is computation oriented. The results
also show a good percentage of memory operations. We
can notice that at the lowest level of granularity (1D-DCT
sub-blocks operating on rows and columns), the value of P
is 1 indicating no fine grain spatial parallelism. It shows
that these sub blocks are sequential in nature and does not
contain any inherited parallelism. However, parallelism in-
creases at higher level of granularity (2D IDCT). The value
of P at this level is 24.14 indicating that a coarse grain par-
allelism is available.

3.3.2 Huffman decoding

Table 2 shows analysis results for representative functions
of Huffman Decoding. These functions have relatively high
percentages of control operations denoting heavily condi-
tioned dataflow. The percentage of computation operations
also indicates an important computation frequency. There

Table 1. Orientation results for 2D IDCT

Function Computation Memory Control P
idctCol 76.36 23.64 0 1
idctRow 76.36 23.64 0 1
2D IDCT 77.11 22.89 0 24.14

Table 2. Orientation results for huffman de-
coding

Function Computation Memory Control
ChroDCDct 49 2 49
CodedBP 52 5 43

LumaDCDct 60 2 38
MBAddrIncr 50 5 45
MBMode: 58.3 8.4 33.3

MotionDelta: 58.2 3 38.8
QScale: 75 0 25

Huff.Decod 60 7 33

are less number of memory operations as compared to com-
putations and control operations. It indicates that these
functions are control and computation oriented. We have
not shown the value of P in table 2 because the value of P
remains 1 at all hierarchical levels of trace tree.

4 Avel framework

The second step in the proposed methodology is to de-
scribe the source specification of the application inAvel
framework. The objective is to describe the application
in form of parallel process networks to perform distributed
computations. Processes are abstract programmable units
implemented with behavioral code of Smalltalk.

Avel framework specifies three kinds of processes which
are composed hierarchically. The first type is thePrimi-
tive Processwhich is the leaf of process network hierarchy
and implements an atomic behavior. The second type is the
Node Processwhich is a composition of other processes and
behaviors. It allows an hierarchical description of process
network. The third type is theAlias Processwhich is de-
clared outside the main process and is reused by another
process just by a link to its name. We useAlias Processto
factorize complex behaviors in the code.

4.1 Syntax of Avel Processes

The syntax to declare thePrimitive Processor theNode
Processis given as:

Process Name{Output Connections} [Behavior]

The graphical representation of thePrimitive Process
and theNode Processsyntax is shown in figure 2 and figure
3 respectively.

][}Connections{Identifier Identifier

Figure 2. Primitive process syntax

][}Connections{Identifier Processes

Figure 3. Node process syntax

The syntax to declare theAlias Processis given as:

Process Name (process name) [Output Connections]

The graphical representation of theAlias Processsyntax
is shown in figure 4.

[Identifier Identifier)(]Connections

Figure 4. Alias process syntax

TheProcess Nameis used as anidentifier in the process
network. To simplify connections between different nodes
of the process network, only theOutput Connectionsare
declared. A connection is specified by names of the nodes
and the two ports connected. The graphical representation
of theOutput Connectionsis shown in figure 5.

TheBehaviorof a process can be atomic or composite.
For thePrimitive Process, the atomic behavior is anidenti-
fier used to make a link with its corresponding function in
the Smalltalk specification. It enables the use of existing li-
brary code (written in Smalltalk) inAvelprocesses. For the
Node process, the composite behavior corresponds to a sub
network of processes. The first encapsulated process is con-
nected to the input ports of its hierarchy and the last process
is connected to the output ports.

For example, if the output of the process “ProcessA”
with behavior “BehaviorA” is connected to the process

Identifier @ Number

Figure 5. Output connections syntax

“ProcessB” at output port “1”, then it is specified as:

ProcessA{ProcessB@1} [BehaviorA]

4.2 Avel stream construct example

An Avelprogram (Example) with hierarchical composi-
tion of theAvelprocesses is shown below.

01. StrZ{}
02. [
03. Prim1{Prim2@1}[Prim1]
04. Prim2{}[Prim2]
05.]

06. Example{}
07. [
08. Split{StrA@1 StrB@1} [splitter]
09. StrA{StrZ}{Join@1}
10. StrB{StrC@1}
11. [
12. PrimA {PrimB@1}[prima]
13. PrimB{}[primb]
14.]
15. StrC{StrB}{Join@2 }
16. Join{}[joiner]
17.]

The graphical representation of theAvelprocess network
in Exampleis shown in figure 6.Example(line 6 in above
program) is anAvel process network that takes an input
stream and splits it into two other processesStrA & StrB
(line 8 in above program).

StrZ (line 01 in above program) is aNode Processbe-
cause its behavior contains otherPrimitive Processes Prim1
andPrim2 (line 03 and line 04 respectively in above pro-
gram). StrB(line 10 in above program) is aNode Pro-
cessbecause its behavior contains otherPrimitive Processes
PrimAandPrimB (line 12 and line 13 respectively in above
program).StrA(line 09 in above program) andStrC(line 15
in above program) areAlias Processesbecause their behav-
iors reuse predefined processesStrZ andStrB respectively.
Split (line 08 in above program) andJoin (line 16 in above
program) are twoPrimitive Processes: Former is responsi-
ble for distributing input stream between its outputs while

StrBStrA
Prim1 PrimA

Prim2 PrimB

SplitExample

StrC

PrimB

PrimA

Join

Figure 6. Graphical representation of the
AVEL program

the latter is responsible for merging an output stream from
its inputs.

4.3 Behavior of Avel process

We implementAvel processes with behavioral code of
Smalltalk. For example, we present the behavior ofsplit
process “splitter” as follows:

splitter
[

[true] whileTrue:
[

a := in receiveValue .
out1 sendValue : a .
out2 sendValue : a .

]
] fork

The “splitter” behavior splits input stream into two out-
put streams. We can notice that the behavior ofAvel pro-
cess is implemented in Smalltalk because the completeAvel
framework has been developed in Smalltalk environment to
benefit from the reflective properties of the language . In
other words, the standard Smalltalk code is reused inAvel
processes. We present another example of behavior ofAvel
process.

PrimA[in1] [out1](ST80)
{
01 tmp := in1 receiveValue.

02 res := tmp * 2 .
03 out1 sendValue : res.
}

We have directly used inputs and outputs names in the
code. An input value is read from the inputin1 (line 01 of
the behavioral code) and multiplied by 2 (line 02 of the be-
havioral code). Then, the result is sent on the outputout1
(line 03 of the behavioral code).ST80shows that the be-
havior is described in standard Smalltalk code.

5 MPEG-2 video decoder in Avel

MPEG-2 video decoding [3] is shown in figure 7.

Parser VLD

IQ IDCT

Inverse Scan

Frame Memory

O
bj

ec
t s

tr
ea

m

M
P

E
G

−
2

vi
de

o
bi

t−
st

re
am

R
ec

on
st

ru
ct

ed
 p

ic
tu

re
s

Motion Compensation

Figure 7. MPEG-2 video decoding process

The basic principle is to remove redundant information
from video bit stream at encoder prior to transformation and
re-inserting it at decoder. There are two types of redundan-
cies: Spatial Redundancyto remove correlation of pixels
with their neighboring pixels with in the same frame and
Temporal Redundancyto remove the correlation of pixels
with neighboring pixels across the frames. Each picture is
broken down into blocks of size 16x16 luminance samples,
called Macroblocks (MBs).

Figure 7 shows that MPEG-2 decoder computations are
divided into two parts: The first part is calledParser and
the objective of theParser is to parse the MPEG-2 video
bit stream into the MPEG-2 object stream . In the second
part of the MPEG-2 decoder, object stream generated by the
Parser is used for streaming computations. These stream-
ing computations consist ofInverse Transformationsand
Motion Compensation. Inverse Transformationsare due to
the Spatial Redundancyreduction and consist ofVariable
Length Decoding (VLD), Inverse Scan, Inverse Quantiza-
tion (IQ) and Inverse Discrete Cosine Transform (IDCT).
Motion Compensationis due to theTemporal Redundancy
reduction and performsMotion Compensationto recover
predictively coded MBs.

5.1 Avel descriptions for parser

The process of parsing the incoming MPEG-2 video bit-
stream consists of many layers of nested control flow. It
makes theParserunsuitable for streaming computations. It
has little in common with stream computations and much
in common with context-free grammars. AsAvel is in-
tended for streaming computations so parsing of MPEG-
2 bit stream into object stream is implemented in a higher
level language like Smalltalk rather thanAvel.

5.2 Avel descriptions for picture data

The transformation of MPEG-2 video bit-stream into ob-
ject stream ensures that all syntactic structures above MBs
have been treated. The followingAvelprogram shows slice
(collection of macro blocks) processing in MPEG-2 de-
coder . Figure 8 shows the graphical representation of the
ProcessSliceAvel Program.

MBAddr

MBMode

Split

NoMotionFieldMB FrameMB Pattern DMV

VLD

Inv. Scan

Inv. Q

Inv. DCT

IntraMB

Join

ProcessSlice

Figure 8. Graphical representation of Pro-
cessSlice Avel program

01. ProcessSlice {} [
02. MBAddr{MBMode@1}[mbaddr]
03. MBMode {Split@1}[mbmode]
04. Split {IntraMB@1
05. FieldMB@1
06. FrameMB@1
07. Pattern@1
08. DMV@1
09. NoMotion@1}[splitter]
10. IntraMB {join@1}
11. [
12. VLD{InverseScan@1}[vld]

13. InverseScan{InverseQuant@1}[is]
14. InverseQ{IDCT@1}[iq]
15. IDCT {}[idct]
16.]
17. FieldMB {} {Join@2}
18. FrameMB {} {Join@3}
19. Pattern {} {Join@4}
20. DMV {} {Join@5}
21. NoMotion{} {Join@6}
22. Join {} [joiner]
23.]

The slice processing (line 01 in above program) starts by
calculating MBs address increment (line 02 in above pro-
gram and shown asMBAddr in figure 8). It indicates the
difference between current MB address and previous MB
address. We have implemented it as aPrimitive Process
with behaviormbaddras shown in figure 8. The behavior
of this process contains inherent parallelism. We can im-
plement this process asNode Processwhich contains other
Primitive Processes. However, we have shown it as aPrim-
itive Processin figure 8 for simplicity.

After calculating MB address increment, MB mode
(shown asMBModein figure 8 and line 03 in above pro-
gram) is calculated which indicates the method of coding
and contents of the MBs according to tables defined in
MPEG-2 standard [3]. Each type of MB is treated differ-
ently. Again, we have implemented it as aPrimitive Pro-
cesswith behaviormbmode. However we can implement it
asNode Processcontaining otherPrimitive Processes. The
output ofMBModecan be given to any of the six processes
as shown in figure 8 (line 04 to line 09 in above program).
All of these processes (IntraMB, FieldMB, FrameMB, Pat-
tern, DMV, NoMotion) are Node Processesand consists
of otherPrimitive Processes. But for simplicity, we have
shown only IntraMB as Node Process(line 10 in above
program) and all of other processes are shown asPrimi-
tive Processesas shown in figure 8 (line 17 to line 21 in
above program).IntraMB further consists ofPrimitive Pro-
cesses. These processes areVLD, InverseScan, InverseQ
IDCT (line 12 to line 15 in above program). Again, we have
implemented all of these processes asPrimitive process. we
can implement these processes asNode Processwhich con-
tains otherPrimitive Processesdepending upon the amount
of spatial parallelism obtained from analysis framework.

6 Conclusions & Future work

This paper has presented a two step methodology to
specify streaming applications as parallel process networks.
In the first step, high level application in Smalltalk is trans-
formed into a trace tree representation by dynamic analysis.

Analysis operations are performed on the trace tree repre-
sentation to extract valuable information (analysis results)
about application. The second step in the proposed method-
ology is to model the source specification by using analysis
results from the first step inAvel framework. We have de-
scribed computational intensive part of MPEG-2 decoder
usingAvel framework.

The preliminary experiments of the proposed framework
encourage us to extend this work in several directions. It in-
cludes automatic transformation of high level source speci-
fication intoAvelprocess networks. The CDFG model can
be produced fromAveldescriptions that will be an input to
existing synthesis tools.

Acknowledgments

We acknowledge the contribution of Thierry Goubier for his
development in application analysis framework.

References

[1] Will Eatherton, “The push of network processing to
the top of the pyramid.”, InSymposium on Architec-
tures for Networking and Communications Systems,
NewJersey,USA, 2005.

[2] Michael I. Gordon, William Thies, and Saman Ama-
rasinghe, “Exploiting coarse grained task, data, and
pipeline parallelism in stream programs.”, InOper.
Syst., 151-162, 2006.

[3] Information technology - coding of moving pictures
and associated audio for digital storage media at up to
about 1.5 mbit/s.ISO/IEC 13818-3:International Or-
ganization for Standardization, 1999.

[4] Matthias Gries. “Methods for evaluating and covering
the design space during early design development.”, In
VLSI Journal, 38(2):131-183, 2004.

[5] P. Puschner and Ch. Koza., “Calculating the maxi-
mum, execution time of real-time programs.”, InReal-
Time Syst., 1(2):159-176, 1989.

[6] S. Mallat and F. Falzon., “Analysis of low bit rate
image transform coding.”, InIEEE Transactions on
Speech, and Signal Processing, 46(4):1027-1042,
1998.

[7] M.Denker, O.Greevy, and M.Lanza., “Higher abstrac-
tions for dynamic analysis.”, In(PCODA06)., IEEE,
2006.

[8] A. Hamou-Lhadj., “The concept of trace summariza-
tion.” , In (PCODA05), pages 43-47. IEEE, 2005.

[9] M. Ravasi and M. Mattavelli., “High abstraction level
complexity analysis and memory architecture simu-
lations of multimedia algorithms” InIEEE Transac-
tions on Circuits and Systems for Video Technology,
15(5):673-684, May 2005.

[10] Y.Moullec, Jean-P. Diguet, Nader B. Amor, T. Gour-
deaux, and Jean L. Philippe., “Algorithmic-level
specication and characterization of embedded multi-
media applications with design trotter.” InVLSI Signal
Process. Syst., 42(2):185-208, 2006.

[11] S.Rul, H.Vandierendonck, and K. D. Bosschere.,
“Function level parallelism driven by data dependen-
cies.”, InSIGARCH Comput. Archit. News, 35(1):55-
62, 2007.

[12] J.Cockx, K.Denolf, B.Vanhoof, and R.Stahl., “Sprint:
A tool to generate concurrent transaction-level models
from sequential code.”, InEURASIP Journal on Ad-
vances in Signal Processing, Article ID 75373, 2007

[13] M. Drake, H. Hoffmann, R. Rabbah, and S. Amaras-
inghe., “MPEG-2 decoding in a stream programming
language.”, InIPDPS 2006, April 2006.

[14] Robert Stephens., “A survey of stream processing.”, In
Acta Informatica, volume 34, number 7, pages 491-
541, 1997.

[15] R. Mark, R. Glanville, K. Akeley, and J. Kilgard.,
“Cg: a system for programming graphics hardware in
a c-like language.”, InACM SIGGRAPH 2003 Papers,
pages 896-907, New York, USA, 2003.

[16] Nolan Goodnight, Rui Wang, and Greg Humphreys.,
“Computation on programmable graphics hardware.”,
In IEEE Comput. Graph. Appl., 25(5):1215, 2005.

[17] S. Yamagiwa and L. Sousa., “Caravela: A novel
stream-based distributed computing environment.”, In
IEEE, Computer, Volume 40, Pages 70-77, 2007.

[18] C. Consel, H. Hamdi, L. Rveillre, L. Singaravelu, H.
Yu, and C. Pu., “Spidle: A dsl approach to specifying
streaming applications.”, Inproceedings of 2nd inter-
national conference on generative programming and
component engineering, pages 1-17, 2003.

[19] Abhishek Das, William J. Dally, and Peter Matt-
son., “Compiling for stream processing.”, InPACT 06,
pages 3342, New York, USA,2006.

[20] Muhammad Rashid and Thiery Goubier and Bernard
Pottier, “A high level generic application analysis
methodology for early design space exploration.”, In
DASIP ’07:, Grenoble, France, 2007.

