
A High Level Design based on Performance Estimation Methodology for
Reconfigurable Architectures

Muhammad Rashid
Thomson Silicon Components, Rennes, France

e-mail: muhamad.rashid@thomson.net

Abstract

This paper presents a high level design of multimedia ap-
plications based on performance estimation methodology for
heterogeneous reconfigurable architectures. We formulatethe
performance estimation of a multimedia application on a tar-
get architecture to propose a high level design. As a case
study, we propose a high level design for the H.264 encod-
ing application on the Delft workbench, which is an hetero-
geneous reconfigurable architecture.

1. INTRODUCTION
Partitioning an embedded application among software run-

ning on a microprocessor and reconfigurable hardware im-
proves the performance of embedded systems. However,
there is no generally accepted methodology to separate ap-
plications onto hardware and software execution [1]. In the
heterogeneous system context, this partitioning problem be-
comes more complicated due to the exponential growth of
VLSI (Very Large Scale Integration) technology [2].

At the same time multimedia standards become more and
more complex. It implies that the encoding process requires
much more computation powers than previous standards.
High level estimation of embedded systems allows rapid per-
formance evaluation of different design parameters, applica-
tion to processor mapping and hardware-software partition-
ing.

This paper present a high level design based on perfor-
mance estimation methodology for video encoding applica-
tions on heterogeneous reconfigurable architectures. We an-
alyze the application and presents an application paralleliza-
tion approach for the target platform. H.264 video encoding
application [3] serves as a case study and the target platform
in this paper is the Delft workbench [4] (an heterogeneous re-
configurable platform). H.264 is getting wider acceptance due
to its high-quality coding of video contents at very low bit-
rates than the previous standards such as, H.263 and MPEG-
4 [5]. The Delft Workbench supports integrated hardware-
software co-design starting from profiling and partitioning to
synthesis and compilation. It is a semiautomatic tool platform
targeting the Molen polymorphic organization and supporting
the Molen programming paradigm. Considering the commu-
nication architecture of the target architecture, we parallelize
the H.264 encoding algorithm at macroblock level.

The rest of this paper is organized as follows: Section 2
reviews the background information on the Delft workbench
and the H.264 encoding application. Section 3 presents the
proposed performance estimation methodology. Section 4 de-
scribes the H.264 application analysis. Section 5 presentsa
high level design for H.264 based on analysis and perfor-
mance estimation results. Section 6 concludes the paper.

2. BACKGROUND: ARCHITECTURE AND
APPLICATION

Before discussing our proposed performance estimation
methodology, we briefly summarize the Delft workbench and
the H.264 video encoding application.

2.1. Architecture: Delft Workbench
The Delft Workbench is based on Molen Programming

Paradigm. The Molen Paradigm is used to speedup an appli-
cations execution by implementing its most critical functions
as hardware accelerators, referred to as Custom Computing
Units (CCUs). The Molen machine organization that supports
the Molen Programming Paradigm is described in figure [4].

Main Memory

Processor
Core

Reconfigurable
Processor

MicroCode
Unit

CCU
HW

MemoryRegister
File

XREGs
File

Dat Fetch

Memory MUXArbiter

Instruction Fetch

Figure 1. The Molen machine organization

The main parts are the general purpose processor (Pow-
erPC in this case study), the reconfigurable co-processor (RP)
and the Arbiter. The GPPs Instruction Set Architecture (ISA)



is extended, in order to control the hardware accelerators (Re-
configurable Instructions - RI). The Arbiter fetches the appli-
cations instructions from the main memory. It partially de-
codes each one of them and checks whether it belongs to the
standard or to the extended ISA and arbitrates them to the
corresponding processor.

2.2. Application: H.264 Video Encoding
Block diagram of H.264 standard is shown in figure 2.

MC

Filter

T Q

Inv Q

Entropy

Encoder

ME

Inter

Dn NALX

Inv T

P

U F’n

Intra

Reference

F’(n−1)

Input

Fn

Reconstructed

F’n

IPChoose

IP

Reorder

D’n

Figure 2. Block diagram of the H.264 encoder

An input frameFn is presented for encoding. The frame is
processed in units of a macroblock (corresponding to 16x16
pixels in the original image). Each macroblock is encoded in
intra or inter mode. In either case, a prediction macroblockP
is formed based on a reconstructed frame. In Intra prediction
(IP) mode ,P is formed from samples in the current frame
n that have previously encoded, decoded and reconstructed.
In Inter mode,P is formed by motion-compensated (ME
and MC) prediction from one or more reference frame(s).
The predictionP is subtracted from the current macroblock
to produce a residual or difference macroblockDn. This is
transformed (T) and quantized (Q) to giveX: a set of quan-
tized transform coefficients. These coefficients are re-ordered
and entropy encoded. The entropy encoded coefficients, to-
gether with side information required to decode the mac-
roblock (such as the macroblock prediction mode, quantizer
step size, motion vector information etc) form the compressed
bit-stream. This is passed to a Network Abstraction Layer
(NAL) for transmission or storage.

3. PERFORMANCE ESTIMATION
METHODOLOGY

The main steps in our performance estimation methodol-
ogy for video encoding applications are shown in figure 3.
The details of each step is described in [6]

3.1. Decomposition of Source Code
The source code (.c source files) of a video encoding appli-

cation is analyzed. The objective of the application analysis is

Application
Analysis

Frame Data
Processing

MBs Data
Processing

Source Code (.c Source Files)

with Maximum Gain

Parallelization at MB Level

Performance Estimation Equation

Performance Estimation Equation

including MBs Dependency

MBs Dependancy Analysis

Performance Estimation Equation
including Slow Down Factors

Slow Down Factors

Decomposition of Source Code

Figure 3. Proposed performance estimation methodology

to divide the source code into two types of processing parts:
the frame data processing part and the macroblock (MB) data
processing part. The example of the frame data processing is
the parsing of video bit-stream into MBs. The example of the
MB processing is the motion estimation (ME) step in a video
encoder.

3.2. Parallelization at MB Level
The macroblock processing part is parallelized between

different processing elements of the target heterogeneous
reconfigurable architecture. The output of this step is the
maximum possible performance gain with parallel execution
(maximum parallelism).

3.3. Dependency Analysis of MBs
The performance gain obtained in second step is not true in

reality because of the data dependency between MBs. There
is a time duration during which maximum parallelism is not
achieved. Dependency analysis is performed to formulate the
sum of time duration before and after maximum parallelism.

3.4. Identification of Slow Down Factors
The performance gain obtained in third step is further re-

duced by some slow down factors for parallel execution.
These factors may be, for example, the non uniform execu-
tion time and the idle time for reconfigurable processor.

4. H.264 ENCODER ANALYSIS
X264 [7] is an open source H.264 encoding algorithm. The

profiling results of H.264 encoding with gprof [8] show that
computational intensive parts of the application are motion
prediction and estimation (Here after we call it as MB Anal-
ysis). The other computational intensive part is encoding of



macroblock (MB Encode). However, these profiling results
depend upon the frame size of the profiled video. If frame
size is larger, the portion of analysis and encoding of mac-
roblocks becomes higher.

If we summarize all of our analysis results, we can sketch
the x264 encoder as shown in figure 4. The first block isRead-
File which parses the incoming video bit-stream into mac-
roblocks. The processing in these blocks are at frame level.
The next two block areMB Analysis andMB Encode. The
processing in these blocks are at macroblock level. Again, at
the end, the two blocksCABAC andWriteFile contain pro-
cessing at frame level.

MB Analysis
Intra / Inter

MB Encode 
DCT, Quantization

N

END OF FRAME ?

Y

CABAC

WriteFile

ReadFile

Macroblocks Processing

Figure 4. H.264 encoder division between frame data pro-
cessing and macroblock data processing

5. HIGH LEVEL DESIGN FOR H264 EN-
CODER

On the basis of application analysis and performance esti-
mation, we propose a high level design for H.264 encoder as
shown in figure 5. Thevideo parsing block takes input video
and generates macroblocks (MBs).

Entropy Encoder

Write Output File

GetPredictionResidual

ComputeCost

For 16x16

ComputeCost

GetPredictionResidual

For 4x4

Video ParsingInput Video

T Q

IQIT

MacroBlock Encode lock MacroBlock Analysis Block 

H264 Encoded Bit Stream

Figure 5. A high level design for H.264 encoder based on
application analysis and performance estimation

The output of thevideo parsing block goes to theMB
Analysis block. It knows the available boundary pixels based

on the location of the MB in the frame. It starts MB Anal-
ysis (In the figure only two modes 16x16 and 4x4 predic-
tion are shown for simplicity) on the current MB. It has two
sub-blocks. One sub-block is for 4X4 prediction and other
sub-block is for 16x16 prediction. Both of these sub-blocks
are further subdivided into two modules. These modules are
named asGetPridictionResidual andComputeCost. TheGet-
PridictionResidual calculates the predicted block and then the
prediction residual, based on an input mode. TheCompute-
Cost module uses this prediction residual to calculate the cost
of that prediction mode. Finally both sub-blocks (one for 4X4
prediction and other for 16x16 prediction) returns their best
residual toMB Analysis block. ThenMB Analysis block picks
the prediction mode and sends appropriate prediction residual
throughDiscrete Cosine Transform (shown as T in figure 5)
andquantization blocks (shown as Q in figure 5) for eventual
entropy encoding, and backs through the inverse path to use
for predicting the next MB.

5.1. Control and Data Parts
The functionality ofMB Analysis block can be divided into

the control and the data parts. The control part is in charge
of iterating through all the possible prediction methods to
choose the best one. The data manipulation part includes cre-
ating the prediction block and computing the cost associated
with that block.

5.2. Determination of Boundary Pixels
The main control forMB Analysis block is to keep track

of where the current MB is located in the frame. This is par-
ticularly important for determining what pixels are available
for prediction. The input to theMB Analysis block is a single
MB, so it must store all the data involved with its processing.
In addition to keeping track of the location, theMB analy-
sis block must also have all of the necessary boundary pixels
from reconstructed MBs available. The left boundary of the
current MB is taken from the MB that just finished the pre-
diction process, so its pixels can easily be saved in a 16-entry
register. The boundary pixels above the current MB, however,
were predicted several macroblocks ago. Therefore, a register
file of 16-entry vectors is required to store all of the bound-
ary pixels needed by MBs later in the frame. The size of the
register file is directly proportional to the width of the frame.

5.3. Generation of Residual
Once theMB Analysis block takes an input MB, determines

which boundary pixels are available, and determines which
pixels to extract from the register file, it sends a request tothe
16x16 and 4x4 predictor via their input FIFOs and waits for
their response. These blocks respond with their best predic-
tion mode(s) and the associated cost from using that mode.
After both sub blocks have this information ready, the MB



Analysis block makes a mode decision. The residual is then
sent through the reconstruction chain for output and recon-
struction. When the reconstructed data comes back to theMB
Analysis block, the pixels that will be used for future predic-
tion are saved in the register file andMB Analysis block is
ready to process a new MB.

6. RELATED WORK
There are several approaches to parallelize the video en-

coding algorithms. The most popular choices are based on
the GOP (group of pictures) level [9] , frame or slice level
[10], combination of GOP and frame level [11] or at motion
estimation level [12].

GOP level [9] encodes simultaneously several groups of
consecutive frames. Frame level [10] encodes several slices
of one frame in parallel. GOP parallelism gives good speed-
up but imposes very high latency, on the other side frame par-
allelism gets less efficiency but low latency. Combining both
approaches a compromise between speed-up and latency and
then a broader spectrum of applications can be covered [11].

Parallelization at the frame level, however, does not fit for
an heterogeneous platform like Delft workbench due to the
space limitation of the Exchange Registers. Also dynamic
allocation of data buffer in the Reconfigurable Processor of
Delft Workbench is needed if the frame size is changed,
which is not a good programming model for our target plat-
form. Parallel execution at motion estimation level is the most
popular technique for hardware implementation. If we use the
same parallel execution on the Delft Workbench, we have to
pay huge overhead of data transfer between the Reconfig-
urable Processor and the main memory. Therefore, we par-
allelize the algorithm at the MB level. Since the MB size is
constant (16x16 for luminance and 8x8 for chrominance), we
can allocate the data buffers statically. Hence, the exchange
registers of a Reconfigurable Processor can accommodate all
the required data and the code.

7. CONCLUSIONS
In this paper, we have proposed a performance estima-

tion methodology for H.264 video encoding algorithm on the
Delft workbench. Considering the communication architec-
ture of the Delft workbench, we parallelized the H.264 encod-
ing algorithm at macroblock level. On the basis of application
analysis and performance estimation, a high level design for
H.264 encoder was proposed.

Acknowledgments.
This work is sponsored by hArtes Project(IST-035143)

supported by the sixth Framework Programme of the Euro-
pean Community under the thematic area ”Embedded Sys-
tems”. .

REFERENCES
[1] K Sigdel, R. J. Meeuws, K.L.M. Bertels, “A Profiling

Framework for Design Space Exploration in Heteroge-
neous System Context.” InProceeding of Prorisc Con-
ference, Veldhoven, The Netherlands, November 2007.

[2] H. J. Stolberg, S. Moch, L. Friebe, A. Dehnhardt, M.
Kulaczewski, M. Berekovic, and P. Pirsch, “An Soc with
two Multimedia DSPs and a RISC Core for Video Com-
pression Applications.” InISSCC., 2004, pp. 330–531.

[3] “ITU-T Rec. H.264 — ISO/IEC 14496-10 AVC, Docu-
ment JVT-D157”, Austria, July 2002.

[4] S. Vassiliadis, S. Wong, G. N. Gaydadjiev, K.L.M.
Bertels, G.K. Kuzmanov, E. Moscu Panainte, “The
Molen Polymorphic Processor.”, InIEEE Transactions
on Computers, 2004, Vol. 53, pp. 1363–1375...

[5] “International Standard Organization, Information
Technology, Part2—Visual, ISO/IEC 14496-2”.

[6] Muhammad Rashid, Jean-Christophe Le-Lann and
Koen Bertels. “Video Encoding analysis for Parallel Ex-
ecution on Reconfigurable Architectures” InSummer
Computer Simulation Conference: DASD Track, Edin-
burgh, UK, 2008

[7] X264, http://www.videolan.org/developers/x264.html.

[8] J. Fenlason and R. Stallman. “The GNU profiler.”

[9] J.C. Fernndez and M. P. Malumbres, “A Parallel Imple-
mentation of H.264 Video Encoder.”, InProceedings of
EuroPar 2002, Padderborn, pp. 830–833.

[10] A. Rodriguez, A. Gonzlez and M.P. Malumbres, “Per-
formance Evaluation of Parallel MPEG-4 Video Cod-
ing Algorithms on Clusters of Workstations.”, InCon-
ference on Parallel Computing in Elect. Engg., 2004.

[11] A. Rodriguez, A. Gonzalez, M.P. Malumbres, “Hier-
archical Parallelization of an H.264/AVC Video En-
coder.”, InProceedings of the PARELEC06, pp. 363-368

[12] Chuan.Y.C, Shiang-Y., J. Shung Wang, “An Embedded
Merging Scheme for H.264/AVC Motion Estimation.”,
In International Conf. on Image Processing, 2003.


