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ABSTRACT
Dendrites of reconstructed hippocampal neurons were analyzed for morphometric,

topologic, and fractal parameters (n 5 32 quantities) to investigate neuronal groupings and
growth characteristics with a common set of assumptions. The structures studied included
CA1 and CA3 pyramidal cells, interneurons, and granule cells from young animals (71 cells in
total). Most of the cells showed no characteristic fractal dimension; rather, the scaling relation
could be well represented by a two-parameter fit, of which one parameter showed a significant
difference between cell classes. Other significant quantities that differentiated cell classes
were related to the complexity of the dendritic tree (number of branch points and maximal
terminal branch order) and the cell’s electrical properties such as the mean attenuation
between the soma and terminals. Principal components analysis produced combined mea-
sures of only slightly greater discriminative power than the best individual measures,
indicating that the elementary quantities capture most of the structural variation between
hippocampal cell groups. Another finding was that for all cells the mean segment length
increased with dendritic branch order, which is consistent with decreasing branching
probability as a function of the path distance from the soma. Analysis of another set of CA1
pyramidal neurons from aged animals (n 5 15; 22–24 months) showed only a few significant
differences than those from young animals (n 5 11; a subset of n 5 71) of which the most
important was a straightening of the paths between terminals and the soma. The quantities
analyzed in these reconstructed hippocampal neurons may reflect both intrinsic neuronal
characteristics and extrinsic influences. Hippocampal cell groupings (i.e., pyramidal cells as
opposed to dentate granule cells and interneurons) were significantly differentiated by most
parameters. These differences and parameter values may be critical for understanding and
generating synthetic neuronal populations for modelling studies. J. Comp. Neurol. 413:619–
633, 1999. r 1999 Wiley-Liss, Inc.

Indexing terms: morphology; three-dimensional reconstruction; fractals; morphometric analysis;

hippocampus

The three-dimensional structure of neurons is of inter-
est in understanding neuronal development and matura-
tion, as a means of cell classification, and for understand-
ing the complex influence of dendrites on passive and
active neuronal properties (Alcantara et al., 1998; Carnev-
ale et al., 1997; Ishizuka et al., 1995; Major et al., 1994;
Mainen et al., 1996; Spruston et al., 1994; Uylings et al.,
1986; Van Pelt et al., 1997). The structure of neurons is
probably determined in part by inherent or genetic tenden-
cies, such as neuronal position after migration, which is
expressed early in development, and in part by later
modifications resulting from a variety of environmental

factors, including synaptic inputs and molecular cues such
as reelin and growth factors (Alcantara et al., 1998; Nedivi
et al., 1998; Zafirov et al., 1994). Whereas cell location may
be determined completely by migration patterns, the resul-
tant location of the soma and subsequent gradients of
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growth factors determine the direction and extent of
dendritic projections.

The growth of dendrites has been simulated in a number
of topologic (pattern of branching) and metric (length and
position of branches) approaches. These approaches have
the common aims of understanding and predicting some of
the mechanisms and rules underlying branching patterns
and of simulating neurons with realistic structure (Car-
riquiry et al., 1991; Ireland et al., 1985; Kliemann, 1987;
Tamori, 1993; Uemura et al., 1995; Van Pelt and Verwer,
1985; Woldenberg et al., 1993). Various studies of den-
drites (Li et al., 1994; Migliore et al., 1995; Pyapali and
Turner, 1994, 1996; Pyapali et al., 1998b; Woldenberg et
al., 1993) have also examined the variation of structure
within neuronal populations under different conditions, in
the hopes of determining differences that may correlate
with observed single-cell and network behavior and plastic-
ity in response to the neuronal environment. For example,
dendritic plasticity after denervation or with development
and senescence may indicate the neuronal response to
these perturbations (Pyapali and Turner, 1994, 1996;
Woldenberg et al., 1993). Realistic neuronal structures
have also been used in modeling studies of single-cell
behavior (Bower and Beeman, 1994; Carnevale et al.,
1997; Henze et al., 1996; Migliore et al., 1995; Spruston et
al., 1993; Turner, 1984a,b; Turner et al., 1991; Zador et al.,
1995), and it has been shown that understanding some
features of neuronal behavior demands a detailed quanti-
tative description of a neuron’s dendritic arborization. The
use of such detailed information is particularly important
for understanding integrative properties and electrical
functioning of dendrites (Yuste and Tank, 1996).

The goal of this analysis is to quantitatively differentiate
structural and functional characteristics of hippocampal
neurons. Previous efforts to differentiate and contrast
more than one cell type have been limited to either
comparative electrotonic properties of hippocampal neu-
rons (Carnevale et al., 1997; Turner, 1984a) or morphologic
features of pyramidal cells (Ishizuka et al., 1995). How-
ever, there are many more characteristics that may be
used to identify either similarities or differences between
the classes of hippocampal neurons. For example, Van Pelt
et al. (1997) hypothesized that the difference between
more complex pyramidal neurons and less complex cells is
that branching probabilities may decrease with distance
from the soma more rapidly in the simpler cells than in
more complex cells. Such dendrite ‘‘growing rules’’ may
capture some characteristics of dendritic development and
growth and allow simulations of dendritic development to
be fairly realistic in the hope of creating accurate ‘‘syn-
thetic’’ neurons.

The present analysis is based on three-dimensional
reconstructions of 71 young hippocampal cells obtained
from either in vivo (intact) or in vitro (slice) preparations
and of 15 aged CA1 pyramidal cells, all of which are now
publicly available in a worldwide web database (http://
www.neuro.soton.ac.uk; Cannon et al., 1998). The neurons
were all reconstructed after intracellular staining with
biocytin and digitization with a Neurolucida reconstruc-
tion system (Mott et al., 1997; Pyapali and Turner, 1996;
Pyapali et al., 1998a,b; Turner et al., 1995; Microbright-
field, Colchester, VT). For each of these cells, topologic,
morphologic, and electrical measures have been computed.
The raw data are presented, and the method of principal
components analysis is used to assess which measures and

combinations best correlate with known cell types. For
quantities that can meaningfully be defined within a
structure, such as asymmetry or branching angles, single
valued measures may miss internal systematic variation.
Two particular examples are considered: the branching
probability and a ‘‘straightness’’ coefficient defined as the
ratio of the physical distance of a point in the structure
from the soma to its distance measured along the struc-
ture. The results support the conclusions of Van Pelt et al.
(1997) that the probability of a dendrite splitting again
decreases with branch order and suggest that aging may
reduce the number of indirect branches in favor of those
following straighter paths.

CELL STAINING AND RECONSTRUCTION
METHODS

In vitro neuronal labeling

Male Fischer 344 rats, ages 22–24 months old, were
killed with an overdose of halothane, as previously re-
ported (Mott et al., 1997; Pyapali and Turner, 1996). After
breathing ceased, the brain was rapidly removed and
placed into cooled artificial cerebrospinal fluid [ACSF;
containing (in mM) NaCl, 124; KCl, 3.25; NaHC03, 26;
NaH2PO4, 1.25; MgSO4, 2.0; CaCl2, 2.4; and glucose, 10].
The hippocampi were dissected out from the whole brain
and sliced in a plane transverse to the long (septotempo-
ral) axis of the hippocampus at a thickness of 500 µm on a
manual tissue chopper. Slices were maintained in ACSF in
a holding chamber for approximately 2 hours and then
were placed in a surface recording chamber maintained at
35°C.

All animal experiments were carried out in accordance
with the NIH guidelines for the care and use of laboratory
animals and were approved by the Duke University Ani-
mal Care Use Committee. All efforts were made to mini-
mize animal suffering, to reduce the number of animals
used to a minimum, and to use alternatives to in vivo
techniques, including the use of in vitro slices.

Intracellular recording electrodes (1-mm thin-walled
capillary glass; 90–150 MV) were filled with 2–4% neuro-
biotin (Vector Laboratories, Burlingame, CA) dissolved in
1 M potassium acetate buffer (pH 7.4). CA1 pyramidal cells
and interneurons were impaled within their respective
cells layer by using a hydraulic microdrive. Characteristics
for a healthy impalement included a minimal resting
potential of 255 mV and repetitive action potential firing
in response to intracellular depolarizing pulses. The neuro-
nal input resistance was estimated from voltage responses
following the injection of hyperpolarizing current pulses
100-msec long and 0.1–0.5 nA in amplitude. After this
assessment, the cells were intracellularly labeled with
neurobiotin by using intracellular current stimulation
(4-Hz depolarizing pulses, 150 msec in duration, 2–5 nA),
with superimposed hyperpolarization (20.2 nA) to prevent
electrode blocking. Single cells near the middle of the
depth of the slice were recorded to enhance the three-
dimensional reconstructions (Pyapali and Turner, 1996).

In vivo neuronal labeling

Adult Sprague-Dawley rats (2–8 months old, 200–350 g,
either sex) were anesthetized with urethane (1.3–1.5 g/kg,
i.p.) and positioned in a stereotaxic apparatus, as previ-
ously reported (Pyapali et al., 1998a,b; Turner et al., 1995).
The body temperature of the rat was kept constant by a
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small-animal thermoregulation device. The scalp was re-
moved, and a small (1.2 3 0.8 mm) bone window was
drilled above the hippocampus [anteromedial edge at
anteroposterior (AP) 5 23.3 mm from bregma and lateral
(L) 5 2.2 mm] for intracellular recordings. The cisterna
magna was opened, and the cerebrospinal fluid was drained
to decrease pulsation of the brain. A pair of stimulating
electrodes (100 µm each, with 0.5-mm tip separation) was
inserted into the right fimbria-fornix [coordinates of
AP 5 21.3 mm, L 5 1.0 mm, vertical (V) 5 4.1 mm] to
stimulate the commissural inputs. After the intracellular
recording electrode was inserted into the brain, the bone
window was covered by a mixture of paraffin and paraffin
oil to prevent drying of the brain and to decrease pulsa-
tions.

Micropipettes for intracellular recordings were pulled
from 2.0-mm-diameter capillary glass filled with 1 M
potassium acetate in 50 mM Tris buffer (pH 7.4) also
containing 3% biocytin for intracellular labeling. In vivo
electrode impedances varied from 60 to 100 MV. Once
stable intracellular recordings were obtained (Axoclamp
2B), evoked and passive physiologic properties of the cell
were determined. Biocytin was then injected through a
bridge circuit (Axoclamp 2B), with a 50% duty cycle of
500-msec depolarizing pulses at 0.8–2 nA for 5–60 minutes
(Li et al., 1994). Postinjection survival times ranged from 2
to 18 hours.

Tissue processing of in vitro slices

Slices containing the neurobiotin-labeled cells were left
in the recording chamber for 1 hour to allow active
transport and diffusion of the label throughout the den-
drites. The slices were then fixed overnight in 4% parafor-
maldehyde containing 0.1% glutaraldehyde in 0.1 M phos-
phate buffered saline (PBS; pH 7.4). The fixed slices were
sectioned at 100 µm (nominal) on a Vibratome and col-
lected in PBS. The 100-µm slices were found to be opti-
mum to balance penetration of the staining reagents with
a sufficiently thick section width for three-dimensional
reconstructions. After three 10-minute washes in PBS and
Tris buffer (TBS; pH 8.0), the sections were incubated in
1% hydrogen peroxide (H2O2) for 30 minutes to eliminate
the endogenous peroxidase activity. After incubation, the
sections were rinsed in PBS (three times, 10 minutes) and
incubated overnight in avidin–biotin–horseradish peroxi-
dase complex (ABC; Vector Laboratories) diluted in 1:200
in 1% Triton X-100 dissolved in PBS. A brown reaction
product was developed after incubation of the sections in
38-3, diaminobenzidine tetrahydrochloride (DAB; 0.03% in
TBS, pH 8.0) and 0.001% H2O2 containing 1% nickel
ammonium sulfate for intensification. The sections were
air dried, dehydrated, cleared in xylene, and coverslipped
(Pyapali and Turner, 1996).

Tissue processing following
in vivo recordings

After 2–12-hour survival times after the intracellular
labeling, the animals were given a urethane overdose and
then perfused intracardially with 100 ml physiological
saline followed by 400 ml of 4% paraformaldehyde, 0.1%
glutaraldehyde, and 15% saturated picric acid dissolved in
0.1 M phosphate buffer (PB; pH 7.3). The brains were then
removed and stored in the fixative solution overnight.
Sixty- or eighty-micrometer-thick coronal sections were
cut on a Vibratome and processed according to a electron

microscopic protocol (EM; Pyapali et al., 1998b). Sections
were washed several times in 0.1 M PB, immersed in
cryoprotective solution (25% sucrose, 10% glycerol in 0.01
M PB), freeze–thawed in liquid nitrogen, and washed
again in several changes of 0.1 M PB before being incu-
bated in ABC solution (2 hours to overnight). They were
treated with 1% OsO4 for 1 hour, dehydrated in ethanol
and propylene oxide, counterstained with uranyl-acetate,
and embedded in Durcupan (Pyapali et al., 1998b).

Shrinkage correction of neurons
labeled in vitro

Cells that were incomplete, showed a weak peroxidase
reaction, or demonstrated clearly truncated dendritic
branches were excluded, usually because of the obvious
loss of a critical section with the processing. Shrinkage
was estimated by microscopic measurements of the overall
slice dimensions along the axis parallel to the cell body
layer (X axis) and the axis perpendicular to the cell body
layer (to the hippocampal fissure; Y axis) while still in the
chamber and then after fixation and dehydration. The
section thickness (in the septotemporal direction; Z axis)
was noted before and after processing by measuring the
focal depth of the tissue sections after mounting and the
distance from the slide to the bottom of the coverslip.
Approximately 11% shrinkage was observed in each of the
X and Y axes, whereas there was considerable shrinkage in
the Z axis because of dehydration after mounting (e.g., in
the Z direction, a 100-µm-thick section averaged 25.4 µm
after fixation and dehydration). The correction factors for
this shrinkage were defined to be 1.11 in each of the X and
Y axes and 4.0 in the Z axis (Pyapali and Turner, 1996;
Pyapali et al., 1998b).

Shrinkage correction of neurons
labeled in vivo

To assess the degree of shrinkage in the X and Y
dimensions in vivo, four penetrations into the brain were
made by a 100-µm-diameter tungsten microelectrode (2 3 2
mm in the lateral and anteroposterior directions) by using
stereotaxic coordinates. The rat was then perfused, and
the sections were treated as described above. The middle of
the tracks at the same depth in the hippocampus was
determined, and the distances were measured. Before
histological processing, the brain shrank 10% in all direc-
tions.After histologic processing, an additional 10% shrink-
age was observed in the each axis. Overall, a 20% total
shrinkage was assumed in each axis. The correction factor
to correct for this shrinkage applied to all dimensions was
1.25.

Selection and reconstruction
of labeled neurons

Complete and optimally labeled CA1 and CA3 pyrami-
dal neurons and dentate granule (DG) cells fulfilled the
initial requirements that processes should extend to the
hippocampal fissure, and dendrites were sufficiently
densely labeled so that all visible processes, including
dendritic spines, could be followed at high magnification.
Only a single cell was filled in a hemisphere or a slice.
Neuronal processes were reconstructed across all sections
containing processes by using a 1003 oil-immersion lens
(numerical aperture 5 1.25) and a computer-based neuro-
nal reconstruction system that included an automated
stage and high-resolution monitor viewed through the
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microscope drawing tube (Neurolucida; Microbrightfield).
This system allowed accurate tracing of the cell processes
in all three dimensions and the frequent verification and
recording of dendritic diameters with a circular cursor.
Each field of processes was traced with a bitpad cursor
while viewing the cell and the computer monitor simulta-
neously; branches were followed sequentially, one micro-
scope field at a time. Focusing to maintain processes in
clear view was performed with a joystick controller, and
these changes in the depth were continuously recorded by
the computer program, together with the X–Y location.
Dendritic branches that continued into the next section
were marked as ‘‘incomplete endings.’’ The adjacent sec-
tion was then superimposed over the computer overlay
viewed on the monitor (the tracing of the previous section),
and the incomplete dendritic branches were aligned with
appropriate processes in this new section and the tracing
was continued. The full digitized representation of the
neuron in three dimensions could be viewed or edited to
ensure accuracy.

DENDRITIC ANALYSIS METHODS

Branching measures

The structure may be expressed as a set of points p. With
each point there is associated a radius r(p), three coordi-
nates x(p), y(p), and z(p), and a set of neighboring (‘‘sib-
ling’’) points S(p) to which p is connected. It is convenient
to define one of the points p* as being the center of the
structure, biologically in the soma, and defined here
conveniently as the point of maximal radius. The parent
P(p) of point p can then be defined as the element of S(p) on
a direct line between p and p* and of its daughters D(p) as
the rest of the elements of S(p).

A number of quantities may be defined with no reference
to the positions of the points. In particular, the branch
order B(p) can be defined by:

B(p*) 5 0

B(q), q [ D(p) 5 5 B(p) if N(D(p)) 5 1

B(p) 1 1 otherwise
(1)

where the operator N(S) gives the number of elements in
the set S. The number of terminals T(p) downstream of p
satisfies

T(p) 5 o
q[D(p)

T(q) (2)

and the asymmetry A(p) is given by

A(p) 5 5 0 if t1 5 t2

t1 2 t2/(t1 1 t2 2 2) if t1 Þ t2
(3)

where t1 5 T(d1), t2 5 T(d2), and d1 and d2 are the two
elements of D(P(p)) in the case that it has two elements.
For more than two daughters, the asymmetry ratio is
undefined. The mean asymmetry is then

A0 5
1

T(p*) o
p[B

A(p) (4)

where B is the set of branch points. A weighted mean of
A(p) serves to quantify the variation of asymmetry with
branch order

A1 5

o
p[B

A(p) B(p)

o
p[B

B(p)
. (5)

A number of other quantities used in the morphological
analysis defined in terms only of B(p), T(p) and A(p) are
listed in Table 1.

‘‘Fractal’’ dimension

The fractal properties of neurons were assessed by the
calliper method, which consists of measuring the apparent
length L(l) when the structure is viewed at various
resolutions, defined as different values for l for the short-
est resolvable section. In practice, this amounts to measur-
ing off sections as if with callipers and ignoring features
smaller than l. Although normally only applied to curves,
the extension to branching structures can easily be made
by cutting off the minor branch at each branch point and
treating it as the beginning of a separate tree. For a
fractal, these quantities show a power law relation

L(l) ~ l12f (6)

where the quantity f in the exponent is termed the fractal
dimension. As illustrated in the discussion, this is not the
case for the neurons considered here. They do, however,
follow a relation of the form

log L 5 log L0 2 exp (a(log l 2 b)). (7)

The quantities a and b were found by least squares fitting.

Electrotonic properties

To calculate passive electrical properties from the mor-
phology of a neuron, it is necessary to know the specific
cytoplasmic resistivity Ri, the membrane resistance Rm,
and capacitance Cm. Following Spruston et al. (1994), the

TABLE 1. Measures of Dendritic Morphology1

0branch order 0 1 Maximal branch order
7terminal order8 1 Average branch order of terminals
Nbp 1 Total number of branch points (or terminals)
V, L, A Total volume, length, area
0Dp 0 Maximum terminal path distance from the soma
0Ds 0 Maximum terminal straight line distance from the

soma
7Dp,term8, 7Ds,term8 Average path and straight line distances of termi-

nals
7Rd/Rp8 Mean radius ratio of daughter to parent branches
Apical–basal asymmetry 3 Asymmetry of apical and, where present, basal

arborizations
Asymmetric ratio 3 Ratio of apical to basal asymmetries, if defined
Weighted asymmetry 5 Mean asymmetry weighted by branch order
vm1, etc. Moments of the mass distribution about the prin-

cipal axes
Asphericity Ratio of the smallest to largest moments
Cm,x, Cmxy Center of mass along and perpendicular to the prin-

cipal axis
sm,x, smxy As above, for the standard deviation
Fractala, fractalb 7 Parameters in the least squares fit to the ‘‘fractal’’

scaling relation
Fs2t,v, Ft2s,v 14 Average soma–terminal and terminal–soma attenu-

ation at angular frequency v

1Summary of all the scalar valued measures employed, corresponding to the data in
Table 2 and Figure 1.
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values Rm 5 30 KVcm2, Cm 5 1 µFcm22, and Ri 5 200 Vcm
are used throughout.

Given the structure as defined from the database, the
frequency-dependent admittance (Carnevale et al., 1997;
Turner, 1984a; Zador et al., 1995) of the arborization
beginning at p with p, q as its first section, q [ S(p), is

Y (p, q) 5
p(r(p) 1 r(q))3/2q

2ÎRmRi

sinh (jX) 1 Yt cosh (jX)

cosh (jX) 1 Yt sinh (jX)
(8)

with

X 5 2lÎ Ri

(r(p) 1 r(q)) Rm
, (9)

j 5 Î1 1 iv, (10)

and

Yt 5 o
s[D(q),sÞp

Y(q, s), (11)

where v is the angular frequency for the signal and l is the
length of the section p 2 q. The attenuation if an alternat-
ing potential of angular frequency v over the section p, q is
then

=(p, q, v) 5 0cosh (qX) 1Yt sinh (qX) 021. (12)

Having evaluated all the attenuations, two quantities
can be defined on the structure that captures most of the
commonly used measures of passive electrotonic proper-
ties: the centripetal and centrifugal attenuations at fre-
quency v, =cp, and =cf. In terms of the single segment
attenuation,

=cp,v(p) 5 5 1 if p 5 p*

=cp,v(P(p)) =(p, P(p), v) otherwise

=cf,v (p) 5 5 1 if p 5 p*

=cf,v(P(p)) =(P(p), p, v) otherwise.
(13)

These quantities have been extensively described and
illustrated elsewhere (Carnevale et al., 1997; Henze et al.,
1996; Mainen et al., 1996; Major et al., 1994; Spruston et
al., 1994; Turner, 1984a,b; Turner et al., 1991; Zador et al.,
1995). Many of the useful whole-cell measures arise from
the combination of attenuation with the branch distribu-
tion, as described below, but the topology alone allows
construction of, for example, the mean soma to terminal
attenuation,

Fs2t,v 5
1

T(p*) o
p[T

=cp,v(p) (14)

where T is the set of terminal points. This attenuation
measure and the corresponding quantity for the attenua-
tion of sinusoidal potentials applied at the terminals and
measured at the soma are both functions of the angular
frequency v. For the analysis, these functions are sampled

at two points, v 5 10 and v 5 1000, corresponding to
frequencies of about 1.6 and 160 Hz.

Branch distribution

The spatial distribution of branches is computed with
the aid of a cumulative weighting function W(p), defined in
terms of a local weight w(p) by

W(p) 5 w(p) 1 o
q[D(p)

W (d), (15)

the mean direction of an arborization can then be ex-
pressed as

X(p) 5 o
d[D(p)

W (d) X (d) 1 w(p) V (p, d) (16)

where V(p, d) is the vector from p to d. For a neuron having
opposing apical and basal dendrites, the main axis can be
computed by as a vector sum of the mean directions of the
arborizations at the soma, in which the signs of the
components are selected to maximize the modulus of the
sum. Natural choices for the weighting W(p) are the length
and the volume of the section from P(p) to p. The segment
length is used in the present calculations.

RESULTS

The nontrivial single valued measures employed are
summarized in Table 1, and their distributions for the
main cell types in the sample are shown in Figure 1. The
cells are grouped as granule cells, interneurons, CA3
pyramidal cells, and CA1 pyramidal cells. Aged neurons,
those subject to kainic acid lesions, and minor cell groups
(#10 cells per group) present in the original dataset
(Cannon et al., 1998) have been excluded. The average
properties of the various groups are shown in Table 2 with
the results of an analysis of variance (ANOVA) test for
significant difference in the mean. Although there is
considerable overlap between types, the ANOVA test indi-
cates that for all measures the populations are neverthe-
less not identical.

Perhaps the most direct message from Figure 1 and
Table 2 is that most of the measures show a broad spread
for each cell type, with a substantial overlap between
types. Parameters with less overlap between cell classes
are the simpler ones: for example, all the pyramidal cells
have more branch points than the most densely branching
granule cells or interneurons, and all the cells with
maximal branch orders in excess of 10 are pyramidal. CA1
and CA3 pyramidal cells separate to some extent in that
the upper half of the branch order scale (20–40) is popu-
lated exclusively by CA1 cells, although there remains
some overlap with CA3 cells in the range 10–20. The
granule cells and interneurons are partly separated by the
latter having in general a lower volume-to-area ratio and
also a greater mean soma-to-terminal attenuation. It
should be noted that the attenuation scale is logarithmic,
so the only cells that can be described as electrically
compact are the interneurons. Indeed, the soma-to-
terminal attenuation at v 5 100 shows no overlap at all
between the interneurons and either the CA1 pyramidal
cells or the granule cells.

The results of pairwise Kolmogorov–Smirnov (K-S) test
on the four main cell groupings are shown in the right-
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hand column of Figure 1. This test, which uses only the
relative ordering of the points and therefore is scale
independent, indicates the likelihood of finding two such
samples from the same underlying distribution. Small
probabilities (darker shading in the figure) indicate greater
differences between the groups. From these data it can be

seen that the most discriminative measures—those with
the most pairwise tests significant at the 1% level—are the
number of branch points, total length and area, and the
electrotonic attenuation, which are in effect only different
ways of quantifying the size of the structure. The second
term in the fit of the scaling properties, analogous to the

Fig. 1. Raw measurement data grouped according to cell type:
granule cells, interneurons, CA3 pyramidal cells, and CA1 pyramidal
cells. For each quantity there are four bars for these cell types in that
order, from the top. The shading shows the variation of each measure
in the population. Light shading covers the area between the 5 and 95
percentiles; darker shading shows the 25–75% range, and the vertical
bar shows the mean of the data. All the scales are linear. For each

quantity the lower and upper limits are shown at the left and right,
respectively. The four groups of cells give rise to six distinct pairs of
groups. The results of the Kolmogorov–Smirnov (K-S) test for each
pairs are shown at the far right (see the key at the bottom for pair
labeling). For each pair the shading indicates the probability P that
the two groups came from the same population; small p indicates a
significant difference in the distributions.
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fractal dimension, also shows significant differences be-
tween the main cell types. It is related to the size of the
structure in that from equation 7 it sets the length scale at
which the scaling relation changes slope.

Eight of the measures which show the greatest separa-
tion between these four cell types are plotted pairwise in
the first four panels of Figure 2, although no significance is
attached to the choice of pairs. The standard deviation of
the mass moment along the principal axis, sm,x is included
mainly for its clear separation of the granule cells when
plotted against the center of mass along that axis. From
Figure 2 it is clear that the interneurons and granule cells
separate readily from each other and from the pyramidal
cells. Only in the maximum branch order and soma–
terminal attenuation do the CA1 and CA3 populations
separate appreciably, and even then there remains a
considerable overlap.

Although no single measure reliably discriminates be-
tween the CA1 and CA3 pyramidal cells, it is conceivable
that some linear combination of the scalar measures may
do so. One approach to finding such combinations is
principal components analysis. Given a population of m
objects and measures xi,j for the ith measure evaluated on
object j, the covariance matrix,

Ci,j 5
1

m o
k

xi,kxj,k, (17)

indicates how the measures interrelate across the popula-
tion. Uncorrelated measures give zero entries in the
matrix, whereas highly correlated or anticorrelated mea-
sures show large positive or negative covariances. The
matrix can be transformed into a space in which the
covariances of any measure with any other except itself is

zero by mapping it onto its eigenvectors. All the eigenval-
ues and the first four eigenvectors are shown in Figure 3.

Figure 2E, F shows the positions of the cells on the first
three principal components. They show a separation of the
main cell types comparable to, but not substantially better
than, the best individual measures. This suggests that not
much more can be gained from the single valued statistics
than is already present in the direct comparisons of the
raw data. The fourth and higher order principal compo-
nents show no significant correlation with cell type.

Vector measures

The foregoing analysis has focused on single quantities
that may be derived to summarize some feature of the
dendritic arborization. Although many of these quantities
do show consistent difference between cell types, they are
necessarily rather coarse measures. This averaging pro-
cess may lose important characteristics of different cell
types that relate to the variation of some quantity within
the structure. The next level of detail concerns vector
valued quantities, which may be expressed as a function of
position in the dendritic tree, where the latter could be
taken as the branch order, distance from the soma along
the structure, the true spatial location, or any of a number
of other functions. Clearly there are far too many possibili-
ties for an exhaustive examination. Instead, attention is
restricted to two hypotheses concerning the relation of the
probability of branching with distance from the soma and
with the age of the cell. Van Pelt (1997) suggested that
segment length may increase as a function of distance
from the soma and, conversely, that the probability of
branching may decrease. This hypothesis suggests that in
the more distal dendritic areas there are somewhat longer
branches and fewer branch points. Pyapali and Turner

TABLE 2. Mean Morphologic Properties by Cell Type1

CA1 pyramidal in vivo CA3 pyramidal in vivo Granule cell in vivo Interneuron in vitro

Type Young Young Young Young
n cells 23 15 19 13
0branch order 0 21.7 6 5.9 12.9 6 3.7 6.53 6 1.2 6.69 6 1.8 **
7terminal order8 9.64 6 1.8 7.69 6 1.5 4.34 6 0.59 4.25 6 0.97 **
Nbp 82.7 6 22 80.5 6 28 17.3 6 5.4 18.5 6 6 **
V (µm3) 8700 6 6300 19100 6 10000 2540 6 1200 6080 6 3300 **
A (µm2) 36100 6 17000 50400 6 24000 9010 6 2800 8620 6 2900 **
L (µm) 17400 6 6200 18100 6 8600 4000 6 940 2660 6 960 **
V/A (µm) 0.229 6 0.059 0.375 6 0.067 0.271 6 0.073 0.678 6 0.19 **
A/L (µm) 2.06 6 0.46 2.85 6 0.55 2.25 6 0.52 3.4 6 0.76 **
0Dp 0 (µm) 1330 6 450 1120 6 460 479 6 54 440 6 110 **
0Ds 0 (µm) 746 6 140 561 6 150 386 6 38 354 6 95 **
7Dp,term8 (µm) 504 6 150 457 6 130 351 6 46 245 6 70 **
7Ds,term8 (µm) 294 6 66 238 6 48 285 6 39 187 6 60 **
7Rd/Rp8 0.787 6 0.053 0.74 6 0.084 0.81 6 0.065 0.761 6 0.045 *
Apical asymmetry 0.588 6 0.048 0.489 6 0.075 0.436 6 0.1 0.427 6 0.15 **
Basal asymmetry 0.444 6 0.069 0.44 6 0.079 6 0.506 6 0.19 **
Asymmetric ratio 0.758 6 0.11 0.842 6 0.12 0.436 6 0.1 0.592 6 0.27 **
Weighted asymmetry 0.533 6 0.058 0.446 6 0.071 0.397 6 0.11 0.38 6 0.1 **
vm1 (µm2) 49000 6 23000 18800 6 10000 11600 6 2400 5030 6 1800 **
vm2 (µm2) 5150 6 5800 3700 6 1700 2580 6 1200 1810 6 870 *
vm3 (µm2) 1780 6 1400 964 6 480 859 6 680 38 6 32 **
Asphericity 0.0691 6 0.043 0.163 6 0.11 0.149 6 0.065 0.189 6 0.081 **
Cm,x (µm) 150 6 48 67 6 57 191 6 24 33.8 6 35 **
Cm,yz (µm) 118 6 60 104 6 23 70 6 14 91.8 6 28 *
sm,x (µm) 230 6 45 171 6 57 87 6 8.9 122 6 50 **
sm, yz (µm) 78.2 6 42 65.1 6 19 42.5 6 7.2 61.8 6 17 *
Fractala 0.833 6 0.045 0.885 6 0.12 0.846 6 0.092 0.991 6 0.11 **
Fractalb 4.78 6 0.27 4.53 6 0.32 5.4 6 0.35 4.94 6 0.26 **
Log(Fs2t,10) 22.25 6 0.72 21.43 6 0.68 21.2 6 0.25 20.488 6 0.36 **
Log(Fs2t,1,000) 219.9 6 5.6 215.9 6 4.9 214.6 6 2.1 28.21 6 3 **
Log(Ft2s,10) 25.41 6 0.71 25.08 6 0.97 23.39 6 0.35 22.52 6 0.78 **
Log(Ft2s,1,000) 223.9 6 5.7 220.4 6 5.3 217.6 6 2.1 211.9 6 3.4 **

1Mean topologic, morpholigic, and electrical properties of the four main cell groups. Values shown are the mean6standard deviation. The last column shows the results of an
analysis of variance test for significant difference in the mean among the four groups, showing significance at the 5% (*) and 0.1% (**) levels, against the null hypothesis that they are
four random samples from the same population. The quantities used are summarized in Table 1.
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(1996) found increased branching with aging, suggestive of
dendritic sprouting.

Branching probability

Figure 4 shows the variation of mean distance from the
soma with branch point order for representative cells from
each group. For those cells that have a clear apical–basal
separation, two relations are shown. The graphs show the
mean somatic distance D(n) for all branch points of order n
in the structure. In most cases D(n) increases with n,
although exceptions are possible, as when a cell has some
long branches of low order and short bushy branches. The
mean distance will be high for the terminal points of the
long branches but lower for points of higher order, when
the long ones no longer enter the average. For most cases,
the relation is almost linear, with a slight upward curva-
ture, and D(n) can be well represented as a quadratic in n.
Because D(n) measures the average distance along the

structure to a branch point of order n, its reciprocal gives
the rate of increase of branch order with distance, which is
also the branching probability per unit length:

Pbr 5
dn

dD
5 1dD

dn 2
21

. (18)

Thus, the branching probability is inversely related to the
slope of the D(n) curve. An upward curve on D(n) corre-
sponds to a decreasing branching probability with branch
order. The slope dD/dn for apical and basal arborizations
for all the CA1 an CA3 cells are shown in Figure 4B. The
slope and curvature d2D/dn2 are shown for all cells in
Figure 4C.

No significant correlation is apparent between the apical
and basal gradients, but there is a tendency for the second
derivative to be positive for the apical arborizations.

Fig. 2. A–F: The most discriminative measures for the four main cell types: granule cells, interneu-
rons, CA1 pyramidal, cells and CA3 pyramidal cells. The measures have been plotted pairwise for clarity,
but no significance is attached to the particular choice of pairings. E and F show the second and third
principal components, respectively, against the first principal component.
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Because of their lower branch orders, the data are too
noisy for basal arborizations to give a reliable curvature.
The tendency to positive napical supports the suggestion of
Uemura et al. (1995) that the main departure from a
uniform branching probability necessary to match real
neurons is that the branching probability should fall
slightly with increasing branch order.

Age dependence

It has been suggested (Woldenberg et al., 1993) that the
structure of young neurons is consistent with relatively
simple growth rules, such as a uniform branching probabil-
ity, whereas aged neurons have been modified more by
their environment and therefore deviate from such growth
rules. The present sample contains 11 young CA1 pyrami-
dal cells. The main archive also contains 15 cells from
animals 22–24 months old that were studied and labeled
in vitro, having undergone behavioral testing.

The differences between these populations for selected
measures are shown in Figure 5 in the same style as that
in Figure 1. The upper lines indicate aged cells, the lower
ones the young cells. The only measure that is significantly
different on a K-S test at 0.1% is the mean straight line
distance from the soma to the terminals, 7Ds,term8, which is
significantly greater for the aged cells. At the 5% level, the
second parameter of the fractal fit is also significant.

The first and second derivatives of the path length–
branch order relation for these neurons are shown in
Figure 6. None of these distributions is significantly
different on a K-S test between the young and aged
neurons. The relative difference between the path distance
and straight line distance to terminals can be better seen
in Figure 6C,D, which shows the ration ds/dp for all branch
points in the structures. All values must be less than one,
but the aged neurons show a significant population of
points between 0.7 and 1 that are almost completely
absent, except for points fairly near the soma, in the young
neurons. Thus, the paths between the soma and dendrites
have become less convoluted because of age-related den-
dritic remodeling.

DISCUSSION

Topologic, scaling, and electrotonic analyses show that
multiple parameters relating to structural complexity and
branching patterns can differentiate neurons, by using the
dendritic structure, into the major classes of hippocampal
neurons, which are recognized from neuroanatomy. Al-
though some measures show a stronger prediction for this
class separation than others, all of the parameters we
present appear to be important in understanding morpho-
logic and functional differences between these different
cell types. These parameters may also be helpful in
understanding dendritic developmental principles and
functional alterations with lesions and senescence.

Measurement of dendritic structures

Many statistics have been employed in studies of den-
dritic structure with a view to classifying neurons on
morphologic criteria and to deriving rules that are obeyed
during their development (Henze et al., 1996; Ishizuka et
al., 1995; Uylings et al., 1986; Van Pelt et al., 1997). Some
of these, such as Sholl (1953) branching analysis, are
primarily of interest for image data where a fully con-
nected branching structure has not been extracted. Be-
cause a two-dimensional image can easily be constructed
from a three-dimensional structure, no methods derived
specifically for image data were employed in the present
study. Anything that can be measured with a two-
dimensional projection and subsequent pixelation can
presumably be measured more cleanly and reliably from
the original three-dimensional data. For this reason, all
the measures employed here are defined directly on three-
dimensional structures. It is important, however, to con-
struct a sufficient breadth of statistics on such structures
to ensure capturing a superset of the information available
from image-based methods that have already demon-
strated their worth as statistics for morphologic classifica-
tion.

‘‘Fractal’’ dimension

Several researchers have addressed the problem of
computing the fractal dimension of a neuron from image
data alone (Caserta et al., 1995; Jelinek and Fernandez,
1998; Smith et al., 1996). Although three-dimensional
image stacks from confocal microscopy have the advantage
of being free from any artifacts of the tracing process, it is
often unclear exactly how the structure is connected. In
the case of two-dimensional image data, there is the other
problem of a failure to distinguish branchings from coinci-
dental crossings and superimposition when no connection

Fig. 3. Principal components of the raw data presented in Figure 1.
All the eigenvalues of the covariance matrix are shown on the right,
with the first four principal components (1–4). Each principal compo-
nent is a vector representing a linear combination of the raw mea-
sures. The elements of the vectors are shown as bars, where the nth
bar corresponds to the nth measure as ordered in Figure 1 and Table 2.
The first three eigenvalues are above the trend of the remainder and
represent significant components of the data.
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actually exists. Although algorithms have been presented
to extract a value for the ‘‘fractal dimension’’ from an image
of a cell, it is often not clear how this value relates to the
conventional understanding of fractal dimension (Jelinek

and Fernandez, 1998; Smith et al., 1996). Availability of
the full three-dimensional structure makes more conven-
tional methods accessible for studying fractal properties.
The calliper method used for measuring fractal dimension
is illustrated in Figure 7 for a real neuron and for two
partial fractals generated by a simple recurrence stopping
when the new sections would be less than some lower
limit, set at 1.0 µm in Figure 7, where the fractals are
scaled to be the same size as the neuron.

Both partial fractals show a linear relation in log L
against log l, spanning almost two orders of magnitude.
The neuron, however, shows a continuous variation of
gradient in the log–log plot, with no characteristic slope,
and hence it does not, properly speaking, have a single
fractal dimension. This result is similar to the neuronal
examples shown in Smith et al. (1996; Fig. 7), although in
that report the resolution is lower and a straight line is put
through the points in spite of the apparent curve. The
flattening of the relation at small scales is due to the
limited resolution of the data with light microscopic recon-

Fig. 4. The relation between distance from the soma and branch
order for branch points. A: Example relations for the same six
representative neurons. For each branch order, the mean 6 standard
deviation of its distance from the soma is shown separately for apical
and, if present, basal dendrites. The means are fitted by a quadratic
function d 5 µx 1 nx2 for the distance d in terms of the branch order x.

Each example fit is labeled with the corresponding µ and n. B: Slopes of
the distance–branch order relation for apical and basal arborizations
of CA1 (open circles) and CA3 (filled circles) pyramidal cells. C: Slope µ
and curvature n of the apical arborizations of all cells grouped
according to the main types: CA1 and CA3 pyramidal cells as in C,
granule cells (filled triangles) and interneurons (open triangles).

Fig. 5. Raw measurement data for selected parameters for aged
(upper lines) and young (lower lines) CA1 pyramidal neurons. The
symbols and shading are the same as those in Figure 1.
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structions and to the steepening at large scales to the finite
size of the structure. Comparison with the partial fractals
in Figure 7 shows that even between these limits the
structure is more subtle than a fractal. The nonlinearity of
the log l–log L relation does not, however, mean that the
calculation is useless: indeed it has rather more informa-
tion than would be the case if it were a simple power law.
The next simplest functional form to try as a representa-
tion of this curve should have two parameters. Examina-
tion of curves for a number of neurons suggests the
two-parameter fit given in equation 7. Least squares fits of
a and b for five typical neurons covering the main cell
types studied are shown in Figure 8.

In a few cases, such as cell l51 at the top of Figure 8,
there is a fairly straight section of the scaling relation. In
this case, it extends for almost two e-foldings centered on a
scale of about 20 µm. This is also one of the most complex
structures considered, suggesting that in a few cases a

conventional fractal dimension may be appropriate for the
range 10–100 µm. However, because the large majority of
the cells shows a much better fit to equation 7, the two
fitted quantities a and b have been used throughout to
characterize the scaling relation.

Electrotonic properties

In the attenuation calculations, only one set of values for
the specific cytoplasmic resistivity Ri and the membrane
resistance Rm have been used. However, there is some
evidence that these quantities vary consistently between
groups of neurons, but it would be useless to employ
different values in this analysis according to neuronal type
and then try to relate the results back to the very
classification that was assumed in the first place. Clearly,
electrical properties such as membrane resistance and,
even more so, channel populations are very powerful
discriminators of neuronal type, but they lie beyond the

Fig. 6. Branch distribution of young and aged CA1 pyramidal cells.
A: Slope and curvature of the apical distance–branch order relation.
Most cells show a positive curvature, indicating a decreasing branch-
ing probability, but there are no significant differences between the
two sets. B: As in A but for the basal dendrites. The difference between
the two populations is not significant. C: Straightness index, ds/dp
against ds, for young (left) and aged (right) cells, where ds is the

straight line distance of a point from the soma and dp is its distance
measured along the neuron. The quantity ds/dp is always less than one.
Values nearer one indicate that the paths are closer to being straight
lines. Paths in the aged cells are significantly straighter, as indicated
by the cumulative distributions (D), which differ by the Kolmogorov-
Smirnoff test at the 1% level.
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scope of the current study, which focuses on the use of
morphology for classifying neurons. Although there is no
simple relation connecting resistances with the derived
attenuations, the nonlinearities are small. Changes in Rm
and Ri over plausible ranges change the magnitudes of the
attenuation but not the relative ordering of cells by their
electrical compactness. Changing their values up or down
by a factor of two produces results very little different from
that of the last four rows in Figure 1 and leave the
conclusions about the statistical separation of cell types
unchanged.

Class separation among
hippocampal neurons

There are large differences between the cell types we
have studied, generally following the differentiation of
traditional hippocampal cell classes. The characteristic
differences include particularly branch order, polarity and
center of mass, and one of the fractal or scaling param-
eters, suggesting a large difference in dendritic complexity
among the different classes. Pyramidal cells can be differ-
entiated on several grounds from dentate granule cells and

from interneurons. In almost all the individual measures
employed, the different cell groups show statistically dis-
tinct means but a considerable overlap of the population.
The overlap is particularly large for the smaller differences
between CA1 and CA3 pyramidal cells in most param-
eters, as compared with the other two smaller cell types.
Interneurons are ectopic in comparison with the tightly
clustered principal cell classes, so location may be very
important for their multipolar differentiation. From this
argument alone, however, the lack of basilar dendrites in
granule cells may either be a function of location (and,
hence, inhibition of growth of basilar dendrites by the
hilus) or an intrinsic tendency of the cells to only grow in
one direction, together with cues for pointing out the
desired direction. Interestingly, the scaling between cells
does not necessarily imply increased complexity because
the much smaller CA1 pyramidal neurons, compared with
the large CA3 pyramidal cells, show much more complex
structure, particularly in levels of branch orders. Thus,
various morphological parameters may show dissociation
from functional and size estimates.

Fig. 7. ‘‘Fractal’’ dimensions of two partial fractals and a neuron.
The partial fractals (A,C) generated by a recurrence relation show a
linear relation in the log (measured length) against log (resolvable
scale) plot (D), whereas there is no linear section for the neuron (B).
The length shown for a particular resolvable scale (abscissa in D) is as

would be measured with callipers of that separation. Below the
physically imposed resolution of the data, all the curves flatten off
because there is no more structure to be seen by reexamining it at a
smaller scale.
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Dendritic growth models
of hippocampal neurons

Clear differentiation of intrinsic and extrinsic growth
factors that contribute to the mature dendritic appearance
of hippocampal neurons is not possible from this type of
analysis, but several other types of experiments have
demonstrated some of these characteristics. For example,
primary hippocampal tissue cultures, in which neurons
are missing many of the external trophic and environmen-
tal constraints (or they are diffuse rather than focal due to
the lack of extracellular tissue), show persistent pyramidal
shapes, although they are somewhat more multipolar
(Shetty et al., 1994; Uemura et al., 1995). Hippocampal
stem cells also show some aspects of pyramidal neuronal
shapes after partial differentiation with growth factors
(Shetty and Turner, 1998), and neurons derived from
ectopic fetal hippocampal grafts show much less oriented
structure than in the organized hippocampus in vivo but
remain pyramidal in many instances (Pyapali et al., 1994).
Even though the soma is ectopic and in a naive environ-
ment, some branching characteristics are preserved, but
much of the final dendritic configuration is shaped by the
environment. This has been further confirmed in a study of
granule cells deprived of innervation from entorhinal
cortex, in which dendrites within the molecular layer fail
to mature in the dentate gyrus (Zafirov et al., 1994). There

are also mutants such as the reeler mutant (Stanfield and
Cowan, 1979) that show a failure of dentate granule cells
to migrate appropriately, with failure of a confined granule
cell layer to form. It lacks reelin protein, which appears to
function in multiple roles for neuronal migration and axon
guidance (Alcantara et al., 1998).

These studies define in part the necessary conditions for
normal dendritic maturation (Turner et al., 1998). First,
migration to the appropriate cell layer appears critical
because ectopic location may preclude normal afferent
ingrowth. Proteins such as reelin may determine such
appropriate migration in the hippocampus and neocortex
(Alcantara et al., 1998), and neural grafts are inherently
ectopic unless neuronal migration occurs in the grafted cell
population (Pyapali et al., 1994; Shetty et al., 1994). After
migration, inherent neuronal shape formation may occur,
such as a bipolar or monopolar configuration, determined
by anchoring provided by radial glia and larger cortical
structures such as ventricles and pia. Second, normal
ingrowth of afferents combined with appropriate receptiv-
ity of dendrites determines the extent of dendritic matura-
tion. Thus, in the absence of important afferent fibers,
dendrites may not mature in terms of complexity (Pyapali
et al., 1994; Zafirov et al., 1994). This second stage
suggests that activity-driven dendritic growth may be
critical for full development of complex arborizations medi-

Fig. 8. Least squares fit to the length–scale relations for typical
neurons of each of the main cell types. These are, from the top, large
and small CA1 pyramidal cells, a CA3 pyramidal cell, a granule cell,
and an interneuron. The scaling relation for each cell is shown

alongside. The solid line is a least squares fit of the function log l(l) 5
log l(0) 2 exp (a(log l 2 b)), where l is the resolvable scale, and l(l) is
the length measured at that resolution. The values of a and b are
shown beside each line.
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ated by both specific proteins and likely additional growth
factors (Nedivi et al., 1998; Van Ooyen et al., 1983). In the
mature neurons studied in the present report, we cannot
differentiate the relative effects of these two influences.

Dendritic growth is further defined by the likelihood of
branching as a function of either branch order or distance
from the soma. As suggested by Van Pelt et al. (1997), there
is a tendency for a decreasing probability of branching as a
function of distance from the soma (Fig. 6). After dendritic
maturation, neurons must constantly remodel in response
to both routine and exceptional events. For example, after
denervation dendrites must alter to accept new sprouting
afferents, such as occurs in a kainic acid lesion resulting in
denervation of CA1 pyramidal neurons (Pyapali and
Turner, 1994). The robust dendritic sprouting response of
CA1 pyramids to this lesion suggests a highly plastic state
for this particular type of neuron. Likewise, during the
lifespan of cortical neurons there is likely to be constant,
dynamic remodeling, which often results in dendritic
elongation (Pyapali and Turner, 1996). Such elongation
results in a straightening of dendritic paths with regrowth
(Fig. 6).

Functional implications

Although neurons are routinely studied physiologically,
there remain many uncertainties in the relation between
cellular function and structure. These include at the most
basic level the passive electrotonic structure of the cell,
which is determined by its geometric structure and specific
membrane properties (Carnevale et al., 1997; Mainen et
al., 1996; Major et al., 1994; Spruston et al., 1994; Turner,
1984a). Our present data confirm that there are large
differences in dendritic electrotonic attenuation, consid-
ered both as signals propagating from the soma to the
terminals and from terminals to the soma. The significant
asymmetry of the signal transfer in the two directions
points to the cellular processing and integration of synap-
tic and threshold electrical events, which differ consider-
ably between the hippocampal cell classes. The most
common physiologic signal for propagation into dendritic
branches from the soma is an action potential, the pres-
ence or absence of which may critically influence dendritic
synaptic function due to the enhanced depolarization
(Yuste and Tank, 1996). However, the poor propagation of
synaptic dendritic signals to the soma in pyramidal neu-
rons suggests that dendritic integration is biased away
from single synapses but instead requires the convergence
of multiple synapses for threshold-level depolarization to
occur (Turner, 1984b). However, other features of dendritic
signal processing, particularly the presence of spines and
voltage-gated channels, which are beyond the scope of the
present study, must be included to understand better the
interplay of geometry and membrane properties.
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