
DAW: Duplicate-AWare Federated Query
Processing over the Web of Data

Muhammad Saleem1?, Axel-Cyrille Ngonga Ngomo1, Josiane Xavier Parreira2,
Helena F. Deus2, and Manfred Hauswirth2

1 Universität Leipzig, IFI/AKSW, PO 100920, D-04009 Leipzig
lastname@informatik.uni-leipzig.de

2 Digital Enterprise Research Institute, National University of Ireland, Galway
{firstname.lastname}@deri.org

Abstract. Over the last years the Web of Data has developed into
a large compendium of interlinked data sets from multiple domains.
Due to the decentralised architecture of this compendium, several of
these datasets contain duplicated data. Yet, so far, only little attention
has been paid to the effect of duplicated data on federated querying.
This work presents DAW, a novel duplicate-aware approach to feder-
ated querying over the Web of Data. DAW is based on a combination
of min-wise independent permutations and compact data summaries. It
can be directly combined with existing federated query engines in or-
der to achieve the same query recall values while querying fewer data
sources. We extend three well-known federated query processing engines
– DARQ, SPLENDID, and FedX – with DAW and compare our exten-
sions with the original approaches. The comparison shows that DAW
can greatly reduce the number of queries sent to the endpoints, while
keeping high query recall values. Therefore, it can significantly improve
the performance of federated query processing engines. Moreover, DAW
provides a source selection mechanism that maximises the query recall,
when the query processing is limited to a subset of the sources.

Keywords: federated query processing, SPARQL, min-wise indepen-
dent permutations, Web of Data

1 Introduction

The emergence of the Web of Data has resulted in a large compendium of inter-
linked datasets from multiple domains available on the Web. The central princi-
ples underlying the architecture of these datasets include the decentralized pro-
vision of data, the reuse of URIs and vocabularies, as well as the linking of knowl-
edge bases [2]. As a result, certain queries can only be answered by retrieving in-
formation from several data sources. This type of queries, called federated queries,
are becoming increasingly popular within the Web of Data [1,3,8,9,12,14,21,22].

? This work was carried out while the author was a research assistant in DERI.

2

Recently, the W3C released the SPARQL 1.1 specification which directly ad-
dresses federated queries 3. Due to the independence of the data sources, certain
pieces of information (i.e., RDF triples) can be found in multiple data sources.
For example, all triples from the DrugBank4 and Neurocommons5 datasets can
also be found in the DERI health Care and Life Sciences Knowledge Base6. We
call triples that can be found in several knowledge bases duplicates.

While the importance of federated queries over the Web of Data has been
stressed in previous work, the impact of duplicates has not yet received much
attention. Recently, the work in [11] presented a benefit-based source selection
strategy, where the benefit of a source is inversely proportional to the over-
lap between the source’s data and the results already retrieved. The overlap is
computed by comparing data summaries represented as Bloom filters [5]. The
approach follows an “index-free” paradigm, and all the information about the
sources is obtained at query time, for each triple pattern in the query.

In this paper we present DAW, a duplicate-aware approach for federated
query processing over the Web of Data. Similar to [11] our approach uses sketches
to estimate the overlap among sources. However, we adopt an “index-assisted”
approach, where compact summaries of the sources are pre-computed and stored.
DAW uses a combination of min-wise independent permutations (MIPs) [6] and
triple selectivity information to estimate the overlap between the results of dif-
ferent sources. This information is used to rank the data sources, based on how
many new query results are expected to be found. Sources that fall below a
predefined threshold are discarded and not queried.

We extend three well-known federated query engines – DARQ [21], SPLEN-
DID [8], and FedX [22] – with DAW, and compare these extensions with the
original frameworks. The comparison shows that DAW requires fewer sources
for each of the query’s triple pattern, therefore improving query execution times.
The impact on the query recall due to the overlap estimation was minimal, and
in most cases the recall was not affected. Moreover, DAW provides a source se-
lection mechanism that maximises the query recall when the query processing is
limited to a subset of the sources.

The rest of this paper is organized as follows: Section 2 describes the state-of-
the-art in federated query processing and different statistical synopsis approaches
that can be used for approximating duplicate-free result sets. Section 3 describes
our novel duplicate-aware federated query processing approach. An evaluation of
DAW against existing federated query approaches is given in Section 4. Finally,
Section 5 concludes our paper and presents directions for future work.

2 Related Work

In recent years, many approaches have been proposed for federated query pro-
cessing for the Web of Data. Quilitz and Leser [21] propose an index-assisted

3 http://www.w3.org/TR/sparql11-federated-query/
4 http://datahub.io/dataset/fu-berlin-drugbank
5 http://neurocommons.org/page/RDF_distribution
6 http://hcls.deri.org:8080/openrdf-sesame/repositories/hclskb

http://www.w3.org/TR/sparql11-federated-query/
http://datahub.io/dataset/fu-berlin-drugbank
http://neurocommons.org/page/RDF_distribution
http://hcls.deri.org:8080/openrdf-sesame/repositories/hclskb

3

federated query engine named DARQ for remote RDF data sources. DARQ
combines service descriptions, query rewriting mechanisms and a cost-based op-
timisation approach to reduce the query processing time and the bandwidth
usage. Langegger et al. [13] describe a solution similar to DARQ that relies on a
mediator to keep its service descriptions up-to-date. SPLENDID [8] uses VOID7

descriptions for data source selection along with SPARQL ASK queries. All of
the approaches described above can be considered to be index-assisted, since
they all rely in some sort of local index to guide the source selection process.
Index-free approaches include FedX [22] and the Avalanche system [3]. In FedX,
the source selection is performed by using ASK queries, while Avalanche gath-
ers endpoints dataset statistics and bandwidth availability on the fly before the
query federation. Ludwig and Tran [12] propose a hybrid query engine that as-
sumes some incomplete knowledge about the sources to select and discover new
sources at run time. A symmetric hash join is used to incrementally produce an-
swers. Acosta et al. [1] present ANAPSID, a query engine that adapts the query
execution schedulers to the SPARQL endpoints’ data availability and run-time
conditions.

Overlap estimation among data sources have been used in a number of ap-
proaches in the area of distributed and P2P information retrieval [4,10,15,18,23,24].
COSCO [10] gathers statistics about coverage and overlap from past queries and
uses them to determine in which order the overlapping collections should be
accessed to retrieve the most new results in the least number of collections. Ben-
der et al. [4] describes a novelty estimator that uses Bloom filters [5] to estimate
the overlap between P2P data sources. Bloom filters are also used in the BBQ
strategy for benefit-based query routing over federated sources [11].

Statistical synopsis such as Min-Wise Independent Permutations (MIPs) [6],
Bloom filters [5], Hash sketches [19], XSKETCH [20], fractional XSKETCH [7],
and compressed Bloom filters [16] have been extensively used in the literature to
provide a compacted representation of data sets. MIPs have been shown to be the
provide a good tradeoff between estimation error and space requirements [15,6].
In addition, MIPs of different lengths can be compared, which can be beneficial
for datasets of different sizes.

3 Duplicate-aware Federated Query Processing

In this section we present our DAW approach. DAW can be used in combination
with existing federated query processing systems to enable a duplicate-aware
query execution.

Given a SPARQL query q, the first step is to perform a triple pattern-wise
source selection, i.e., to identify the set of data sources that contain relevant
results for each of the triple patterns of the query. This is done by the underlying
federated system. For a given triple pattern, the relevant sources are also called
capable sources. The idea of DAW federated query processing is, for each triple

7 http://www.w3.org/TR/void/

http://www.w3.org/TR/void/

4

SELECT ?uri ?label ?symb
WHERE
{
 ?uri rdfs:label ?label.
 ?uri diseasome:bio2rdfSymbol ?symb.

}

Triple pattern-wise source selection and skipping

s1 Ds1 s2 s3 s1 Ds2 s2 s4

 100 50 0 100 50 5

Min. new triples = 10
Total triple pattern-wise selected sources = 6
Total triple pattern-wise skipped sources = 2

 New triples

 Total triples 100 50 70 100 50 60

Fig. 1: Triple pattern-wise source selection and skipping example

pattern and its set of capable sources, to (i) rank the sources based on how
much they can contribute with new query results, and (ii) skip sources which
are ranked below a predefined threshold. We call these two steps triple pattern-
wise source ranking and triple-pattern wise source skipping. After that, the query
and the list of not skipped sources are forwarded to the underlying federated
query engine. The engine generates the subqueries that are sent to the relevant
SPARQL endpoints. The results of each subquery execution are then joined to
generate the result set of q.

To better illustrate this, consider the example given in Figure 1, which shows
a query with two triple patterns (tp1 and tp2), and the lists of capable sources
for both patterns. For each source we show the total number of triples containing
the same predicate of the triple pattern and the estimated number of new triples,
i.e. triples that do not overlap with the previous sources in the list. The triple
pattern-wise source ranking step orders the sources based on their contribution.
As we see in the example, for the triple pattern tp1, source S1 is ranked first, since
it is estimated to produce 100 results. S1 is followed by S2, which can contribute
with 40 new results, considering the overlap between the two sets. S3 is ranked
last, despite having more triples than S2. This is because our duplicated-aware
estimation could not find any triple in S3 which is not in either S1 or S2. In
the triple-pattern wise source skipping step, S3 will be discarded, and tp1 will
not be sent to S3 during query execution. We can also set a threshold on the
minimum number of results. For instance, by setting the threshold to 10 results,
source S4 will be skipped, since it can only contribute with 5 new results for tp2.
By applying our duplicate-aware approach – which would select S1 and S2 both
for tp1 and tp2 and would skip S3 and S4 – we would only send subqueries to
two endpoints instead of four.

Both steps are performed prior to the query execution, by using only infor-
mation contained in the DAW index. The main innovation behind DAW is to
avoid querying sources which would lead to duplicated results. We achieve this
by extending the idea of min-wise independent permutations (MIPs) [6], which
are explained in the next section.

3.1 Min-Wise Independent Permutations (MIPs)

The main rationale behind MIPs is to enable the representation of large sets
as vectors of smaller magnitude and to allow the estimation of a number of set

5

48 24 36 18 8 20

21 3 12 24 8 77

9 21 15 24 46 40

21 18 45 30 33 9

h1 = (7x + 3) mod 51

h2 = (5x + 6) mod 51

hN = (3x + 9) mod 51

8

9

9

Apply Permutations to all ID’s

 ID set

Create MIP
Vector from
Minima of
Permutations

8

9

30

24

36

9

8

24

20

48

36

13

MIPs estimated operations

h(concat(s,o))

T4(s,p,o)

T5(s,p,o)

T6(s,p,o)

T1(s,p,o)

T2(s,p,o)

T3(s,p,o)

 Triples

 VA VB

8

9

20

24

36

9

 Union (VA , VB)

 Resemblance (VA , VB) = 2/6 => 0.33

 Overlap (VA , VB) =
 0.33*(6+6) / (1+0.33) => 3

Fig. 2: Min-Wise Independent Permutations

operations, such as overlap and union, without having to compare the original
sets directly. The basic assumption behind MIPs is that each element of an
ordered set S has the same probability of becoming the minimum element under
a random permutation. MIPs assumes an ordered set S as input and computes
N random permutations of the elements. Each permutation uses a linear hash
function of the form hi(x) : = ai*x + bi mod U where U is a big prime number,
x is a set element, and ai, bi are fixed random numbers. By ordering the set of
resulting hash values, we obtain a random permutation of the elements of S. For
each of the N permutations, the MIPs technique determines the minimum hash
value and stores it in an N -dimensional vector, thus capturing the minimum set
element under each of these random permutations. The technique is illustrated
in Figure 2.

Let VA = [a1, a2, . . . , aN] and VB = [b1, b2, . . . , bN] be the two MIPs vectors
representing two ordered ID’s sets SA, SB , respectively. An unbiased estimate of
the pair-wise resemblance between the two sets, i.e. the fraction of elements that
both sets share with each other, is obtained by counting the number of positions
in which the two MIPs vectors have the same number and dividing this by the
number of permutations N as shown in Equation 1. It can be shown that the
expected error in the estimation O(1/

√
N) [6]. Given the resemblance and the

sizes of the two set, their overlap can be estimated as shown in Equation 2. A
MIPs vector representing the union of the two sets, SA and SB , can be created
directly from the individuals MIPs vectors, VA and VB , by comparing the pair-
wise entries, and storing the minimum of the two values in the resulting union
vector (see Figure 2). A nice property of MIPs is that unions can be computed
even if the two MIPs vectors have different sizes, as long as they use the same
sequence of hash functions for creating their permutations. In general, if two
MIPs have different sizes, we can always use the smaller number of permutations
as a common denominator. This incurs in a loss of accuracy in the result MIPs,
but still yields to a more flexible setting, where the different collections do not
have to agree on a predefined MIPs size [15].

Resemblance(SA, SB) =
|SA ∩ SB |
|SA ∪ SB |

≈ |VA ∩ VB |
N

(1)

6

Overlap(SA, SB) ≈ Resemblance(VA, VB)× (|SA|+ |SB |)
(Resemblance(VA, VB) + 1)

(2)

In the DAW index, MIPs are used as follow: For a distinct predicate p be-
longing to a data source S, we define T (p, S) as the set of all triples in S with
predicate p. A MIPs vector is then created for every T (p, S). First an ID set
is generated by mapping each triple in T (p, Sr) to an integer value. A triple is
given in the form of subject, predicate and object tuples, i.e. < s, p, o >. Since all
triples in T (p, S) share the same predicate by definition, the mapping is done by
concatenating the subject (s) and object (o) of the triple, and applying a hash
function to it (Figure 2). Then, the MIPs vector is created by computing the N
random permutations of each element in the ID set and storing their minimum
value. Finally, the MIPs vector is stored and mapped to each capability of the
service description, as explained in the next section.

3.2 DAW Index

In order to detect duplicate-free subqueries, DAW relies on an index which con-
tains the following information for every distinct predicate p in a source S:

1. The total number of triples nS(p) with the predicate p in S.
2. The MIPs vector MIPsS(p) for the predicate p in S, as described in the

previous section.
3. The average subject selectivity of p in S, avgSbjSelS(p).
4. The average object selectivity of p in S, avgObjSelS(p).

The average subject and object selectivities are defined as the inverse of
the number of distinct subjects and objects which appears with predicate p,
respectively. For example, given the following set of triples:

S = {< s1, p, o1 >,< s1, p, o2 >,< s2, p, o1 >,< s3, p, o2 >} (3)

the avgSbjSelS(p) is equal to 1
3 and the avgObjSelS(p) is 1

2 . These two
values are used in combination with the MIPs vector to address the expressivity
of SPARQL queries as explained below.

Suppose that in a given triple pattern, neither the subject nor the predicate
are bound. That means the pattern is of the form <?s, p, ?o >, where the question
mark denotes a variable. In this case, the MIPs vectors in the DAW index can be
used directly to estimate the overlap among the data sources that can provide
results for the pattern. This is because the MIPs vectors are created by grouping
triples according to their predicate. However, if any of the subject or object is
bound (for example, < s1, p, ?o >), the selectivity of the pattern becomes much
higher and the MIPs vectors alone are unable to address this. As a result, overlap
will be overestimated. To address this issue the modify Equation 2 to account
for the subject and object selectivities as follows:

Overlaptp(SA, SB) ≈ Resemblance(VA, VB)× (|S′A|+ |S′B |)
(Resemblance(VA, VB) + 1)

(4)

7

Listing 1.1: DAW index example

[] a sd : Se rv i c e ;
sd : endpointUrl <http :// l o c a l h o s t :8890/ sparql> ;
sd : c apab i l i t y [
sd : p r ed i ca t e diseasome : name ;
sd : t o t a lT r i p l e s 147 ;
sd : avgSbjSe l ‘ ‘ 0 . 0068 ’ ’ ;
sd : avgObjSel ‘ ‘ 0 . 0069 ’ ’ ;
sd :MIPs ‘ ‘−6908232 −7090543 −6892373 −7064247 . . . ’ ’ ;] ;

sd : c apab i l i t y [
sd : p r ed i ca t e diseasome : chromosomalLocation ;
sd : t o t a lT t r i p l e s 160 ;
sd : avgSbjSe l ‘ ‘ 0 . 0062 ’ ’ ;
sd : avgObjSel ‘ ‘ 0 . 0072 ’ ’ ;
sd :MIPs ‘ ‘−7056448 −7056410 −6845713 −6966021 . . . ’ ’ ;] ;

where the original size of a set Si is replaced by a value |S′
i| which is given

by the following equation:

|S′
i| =


|Si| if neither subject nor object are bound,

|Si| × avgSbjSelS(p) if subject is bound,

|Si| × avgObjSelS(p) if object is bound.

We call the set CS(p) = {p, nS(p), avgSbjselS(p), avgObjSelS(p),MIPsS(p)}
a capability of the data source. The total number of capabilities of a data source
is equal to the number of distinct predicates in it.

It is crucial to keep the index size small to minimise the pre-processing time.
On the other hand, this index must also contain sufficient information to en-
able an accurate source selection and duplicate-free subquery generation. Some
federated query approaches such as DARQ and SPLENDID already provide the
total number of triples, as well as the average selectivity values. Therefore, the
storage overhead create by the DAW index depends mostly on the size of the
MIPs vectors which can be adjusted to any length. In general, MIPs can provide
a good estimation of the overlap between sets with a few integer in length. An
example of a DAW index is given in Listing 1.1.

3.3 DAW Federated Query Processing

As explained earlier, given a SPARQL query, DAW performs the triple pattern-
wise source ranking and skipping steps in order to rank the sources based on
how much they can contribute with new query results, and skip sources which
are below a given threshold. In this section we describe these two steps in detail.

Triple Pattern-wise Source Ranking: Given the heterogeneity and inde-
pendence of data sources, it is expected that each source contributed differently
in answering a given triple pattern, and the same result might be returned by
multiple sources. Our goal is to provide a rank of the sources, according to the
estimated number of new results it can contribute. By new results we mean
with respect to the results already retrieved from sources ranked higher. The

8

source ranking step works as follows: First, as no source has been ranked yet,
the algorithm chooses the largest source, as it will likely to contribute with more
results. To select the next source we use the DAW index to compute the esti-
mated overlap between the already selected source and every remaining source.
The remaining source with the least amount of overlap is then chosen and ranked
second. Before selecting the next source in the rank, we first need to estimate the
union of the already selected sources. This is needed since we want to find out
how much a source can contribute with results are not in the sources selected
so far. The union can be easily estimated by applying a vector operator on the
original MIPs, as explained in Section 3.1. The new union MIPs can be further
combined with other MIPs to get the estimation of the union among several sets.
The source ranking step continues until no more sources are left to be ranked.

Triple Pattern-wise Source Skipping: Given the rank of capable sources,
the next step is to prune the rank, but skipping sources which cannot contribute
with a minimum number of new results. This is done by setting a threshold,
and pruning every source which falls below it. Since the total number of results
depends on the triple pattern, the threshold is chosen in terms of the minimum
percentage of new results a source can contribute. For instance, if the threshold
is set to zero, DAW will aim at retrieving as much results as possible, while still
skipping sources which cannot contribute with new results. Alternatively, the
threshold can be set to higher values, in cases where the tradeoff between recall
and number of sources queries is more important.

The pseudo code of the triple pattern-wise source ranking and skipping is
given in Algorithm 1. It takes a triple pattern tpi(s, p, o), its list of capable
sources Si, and the predefined threshold value as input and returned a ranked
list of a subset of the capable source set Ri, Ri ⊆ Si as output. The ranked
list and the MPIs with the union of the selected sources are initialised with the
largest source. Lines 8-14 adjust the size of the dataset to reflect the subject or
object selectivities, depending on the query. Lines 15-16 estimate the overlap and
number of new triples. The source with the highest amount of new triples is then
selected (Lines 17-19). The triple pattern-wise source skipping is done in Line
23 and sources ranked higher than the threshold are added to the final ranked
list (Line 24). The union MIPs is then updated (Line 26) and the algorithm
continues until no more sources are left.

Before we present our experimental analysis of DAW it is important to note
the difference between the number of triple pattern-wise sources and the number
of sources (e.g. SPARQL endpoints). The total number of triple pattern-wise
selected sources for a query is calculate as follow: Let NSi ∈ {1 . . .M} be the
number of sources capable of answering a triple pattern tpi where M is the
number of available (physical) sources. Then, for a query q with n triple patterns,
{tp1, tp2, . . . tpn }, the total number of triple pattern-wise sources is the sum of
the sources for individual triple patterns, i.e.

∑n
j=1 NSj . In the example from

Figure 1, the number of sources is 4 (s1, s2, s3, s4) but the number of triple
pattern-wise sources is equal to 6.

9

Algorithm 1 Triple pattern source-wise ranking and skipping

Require: tpi(s,p,o) ∈ T; Si; thresholdVal //triple pattern tpi, capable data sources
of tpi; Threshold Value

1: rank1Source = getMaxSizeSource(Si, tpi) ; rnkNo = 1
2: unionMIPs = getMIPs(rank1Source, tpi) //get MIP vector for a tp of a source
3: Ri[rnkNo] = selectedSource
4: Si = Si - {selectedSource}
5: rnkNo = rnkNo+1
6: while Si 6= ∅ do
7: selectedSource = null; maxNewTriples =0
8: for each Si ∈ Si do
9: MIPs = getMIPs(Si, tpi)

10: if s is bound in tpi then
11: MIPsSetSize =MIPsSetSize*getAvgSbjSel(Si,tpi)
12: else if o is bound in tpi then
13: MIPsSetSize =MIPsSetSize*getAvgObjSel(Si,tpi)
14: end if
15: overlapSize = Overlap(unionMIPs,MIPs)
16: newTriples = MIPsSetSize - overlapSize
17: if newTriples > maxNewTriples then
18: selectedSource = Si

19: maxNewTriples = newTriples
20: end if
21: end for
22: curThresholdVal = maxNewTriples / unionMIPsSetSize
23: if curThresholdVal > thresholdVal then
24: Ri[rnkNo] = selectedSource
25: selectedMIPs = getMIPs(selectedSource, tpi)
26: unionMIPs = Union(unionMIPs,selectedMIPs)
27: rnkNo = rnkNo+1
28: end if
29: Si = Si - {selectedSource}
30: end while
31: return Ri //ranked list of capable sources for tpi

4 Experimental Evaluation

In this section we present an experimental evaluation of the DAW approach. We
first describe the experimental setup, followed by the evaluation results. All data
used in this evaluation can be found at the project web page.8

4.1 Experimental Setup

Datasets: For our experiments, we used four different datasets. The Diseasome
dataset contains diseases and disease genes linked by disease-gene associations.

8 https://sites.google.com/site/DAWfederation/

https://sites.google.com/site/DAWfederation/

10

Dataset Number Dataset Index Index. Gen. Discrepancy No. Duplicated Duplicate
Triples Size (MB) Size (MB) Time (sec) Slices Slice ID

Diseasome 91,122 18.6 0.17 4 1,500 1 10
Publication 234,405 39.0 0.24 6 2,500 1 10
Geo 1,900,006 274.1 1.63 133 50,000 2 5,8
Movie 3,579,616 448.9 1.66 201 100,000 1 2

Table 1: Overview of the datasets used in the experiments

EP CPU(GHz) RAM Hard Disk
1 2.2, i3 4GB 300 GB
2 2.9, i7 16 GB 256 GB SSD
3 2.6, i5 4 GB 150 GB
4 2.53, i5 4 GB 300 GB
5 2.3, i5 4 GB 500 GB
6 2.53, i5 4 GB 300 GB
7 2.9, i7 8 GB 450 GB
8 2.6, i5 8 GB 400 GB
9 2.6, i5 8 GB 400 GB
10 2.9, i7 16 GB 500 GB

Table 2: SPARQL endpoints specifica-

tion

Dataset STP S-1 S-2 P-1 P-2 P-3 Total
Diseasome 5 5 5 4 5 2 26
Geo 5 5 5 - - - 15
Movie 5 - - - - - 5
Publication 5 5 5 7 7 4 33
Total 20 15 15 11 12 6 79

Table 3: Distribution of query types

across datasets

The Publication dataset is the Semantic Web Dog Food dataset and contains
information on publications, venues and authors of publications. The Geo dataset
resulted from retrieving the portion of triples from DBpedia that maps resources
to their geo-coordinates. Finally, the Movie dataset is the RDF version of IMDB
and contains amongst others a large number of actors, movies and directors. To
simulate a federated scenario with fragmented datasets distributed across several
sources, we partitioned each dataset in 10 slices and distributed the slices across
10 data sources (one slice per data source). Each data source is a Virtuoso-2012-
08-02 SPARQL endpoint with the specifications given in Table 2.

To distribute the data across our 10 endpoints we defined a discrepancy
factor, which controls the maximal size difference between the different slices.

discrepancy = max
1≤i≤M

|Li| − min
1≤j≤M

|Lj |, (5)

where Li stands for the ith slice. The data is first partitioned randomly among
the slices in a way that

∑
i

|Li| = D and ∀i∀j i 6= j → ||Li|−|Lj || ≤ discrepancy.

None of the existing benchmarks for federated query processing addresses the
data duplication issue. Therefore, in order to add duplicates among slices, we
randomly selected a number of slices and duplicated their contents across all
remaining slices. For the DAW index, we use MIPs vectors of different sizes to
better reflect the number of triples per predicate in each source. The sizes were
chosen in a way that the overall index size is kept small. Table 1 presents an
overview of the datasets, including the total number of triples and total size, the
size of the DAW index, the index generation time, the discrepancy value among
the 10 slices, the number of slices that were duplicated and their corresponding
ID.

11

Queries: We used three types of queries in our experiments: Single triple pat-
terns queries (STP), star-shaped queries (S-1, S-2), and path-shaped queries
(P-1, P-2, P-3). Single triple pattern (STP) queries consist of exactly one triple
pattern in the query. Star-shaped and path-shaped queries are defined as in [9].
A S-k star-shaped query has one variable as subject and k joins, i.e., (k+1) triple
patterns. An example of a S-1 star-shaped query is given in Figure 1. A P-k path-
shaped query is generated by using the object of one triple pattern as subject
in the next triple pattern, and it also contains (k+1) triple patterns. Previous
work has shown that these query shapes are the most common shapes found
in real-world RDF queries [17]. Our benchmark data consisted of 79 queries as
shown in Table 3. Some query shapes could not be used on certain datasets due
to the topology of the underlying ontology. For example, P-1 queries could not
be sent to the Geo dataset since it only contained object properties. Each type a
query was executed we used a random resource as subject or object, depending
on the query type. The predicates of all queries are fixed.

Federated Query Engines: We implemented our DAW approach on top of
three different federated query engines: DARQ [21], SPLENDID [8], and FedX [22].
Both DARQ and SPLENDID already provide an index with some of the statis-
tics needed in DAW. Therefore, we only needed to extend this index. For FedX,
which is index-free, we added an index similar to the one in DARQ with our
DAW extension. The underlying query execution mechanism remained the same.

Metrics: We compared the three federated approaches against their DAW ex-
tensions. For each query type we measured (i) the average number of triple
pattern-wise sources that were skipped, (ii) the average recall, and (iii) the aver-
age query execution time. We did not consider the number of endpoints requests,
as it depends on a number of factors, such as join type, block and buffer size,
that vary across the different federated query processors. The threshold was ini-
tially set to zero, in order to maximise recall while querying fewer sources. All
experiments were carried out in a machine with a 2.53GHz i5 processor, 4 GB
RAM, and 500 GB hard disk. Experiments were carried out in a local network,
so the network costs were negligible. After the first warm up run, each query
type was executed 10 times and results were averaged.

4.2 Experimental Results

Triple Pattern-Wise Source Skipping: Table 4 shows the number of capable
triple pattern-wise sources that were skipped by our approach, for each query
type, as well as the recall. The total number of triple pattern-wise sources se-
lected by the original systems is shown in brackets. The threshold was set to
zero, which means that only sources that were estimated to returned no new
results were pruned. We can see that DAW can effectively reduce the total triple
pattern-wise selected sources, thus enable fewer subqueries federation. The high-
est gain was in the Diseasome dataset, where 214 sources were skipped in the
DARQ approach, without affecting the recall. This corresponds to a decrease on

12

Listing 1.2: A Single Triple Pattern (STP) query example

SELECT ? t i t l e WHERE
{ www2008−paper :103 pub : t i t l e ? t i t l e . }

Dataset STP S-1 S-2 P-1 P-2 P-3 Total Recall
Diseasome 14(35) 30(77) 40(107) 35(65) 65(125) 30(50) 214(459) 100%
Geo 22(40) 23(55) 37(101) - - - 82(196) 99.99%
Movie 22(38) - - - - - 22(38) 100%
Publication 9(30) 10(37) 15(86) 14(60) 21(120) 32(102) 101(435) 100%
Total 67(143) 63(169) 92(294) 49(125) 86(245) 62(152) 419(1128) -

(a) DARQ

Dataset STP S-1 S-2 P-1 P-2 P-3 Total Recall
Diseasome 7(28) 30(77) 40(107) 35(65) 65(125) 30(50) 207(452) 100%
Geo 19(37) 23(55) 37(101) - - - 79(193) 99.99%
Movie 15(31) - - - - - 15(31) 100%
Publication 3(24) 10(37) 15(86) 14(60) 21(120) 32(102) 95(429) 100%
Total 44(120) 63(169) 92(294) 49(125) 86(245) 62(152) 396(1105) -

(b) FedX and SPLENDID

Table 4: Distribution of the triple pattern-wise source skipped by DAW exten-
sions for threshold value 0

the number of queried sources from 459 to 245. In other words, a full recall was
achieved by querying only 53% of the available triple pattern-wise sources. In
all cases except in the Geo dataset, the recall was not affected and all relevant
results were retrieved. In the Geo dataset, the DAW index incorrectly pruned a
small number of relevant sources, but the recall was still 99.99%. That means
that DAW can deliver the same query results while querying much fewer sources.
The source selection methods from FedX and SPLENDID return the same set of
sources, therefore the number of skipped sources was the same for both. More-
over, they both use SPARQL ASK queries in the selection mechanisms, which
leads to a better performance for STP queries. For example, consider the STP
query given in Listing 1.2 where both the subject and predicate are bound. It is
likely that a WWW2008 paper with id 103 is found in only one data source but
the property pub:title may be found in every source. As a result, FedX and
SPLENDID will only select a single capable source while DARQ will select all
sources containing that predicate.

Query Execution Time: For each dataset and query type, we measured the
average query execution time in each of the federated query approaches and
also in their DAW extension. Again, the threshold was set to zero and the av-
erage was over 10 queries. Figures 3, 4, and 5 show the results. We can see that
DAW improves the query performance for most of the cases. For three of the
datasets, Diseasome, Geo and Movie, DAW improved the query execution times
of all federated systems tested, for all query types. The query performance in the
Diseasome dataset showed the highest improvements. This is due to the large
number of triple pattern-wise sources that were pruned. We can also see that

13

0

5

10

15

20

25

30

35

40

STP S-1 S-2 P-1 P-2 P-3 STP S-1 S-2 P-1 P-2 P-3 STP S-1 S-2 STP

Diseasome Publication Geo Movie

Ex
e

cu
ti

o
n

 t
im

e
 (

se
c)

DARQ

DAW

Fig. 3: Query execution time of DARQ and its DAW extension

0

1

2

3

4

5

6

7

8

9

10

STP S-1 S-2 P-1 P-2 P-3 STP S-1 S-2 P-1 P-2 P-3 STP S-1 S-2 STP

Diseasome Publication Geo Movie

Ex
e

cu
ti

o
n

 t
im

e
 (

se
c)

SPLENDID

DAW

Fig. 4: Query execution time of SPLENDID and its DAW extension

if the number of skipped sources is low – as for the Publication dataset – the
overhead in computing the sources overlap can be higher than the execution time
saved by querying fewer sources, so the overall query execution time is worse.
The overall performance is summarised in Table 5. We were able to improve
the query execution time in DARQ by 16.46%, the SPLENDID by 11.11%, and
FedX by 9.76%. For the Diseasome dataset, the improvement for the DARQ
approach was 23.34%. These are averaged values across all datasets and query
types. DAW led to a performance gain for most of the settings. We expect that
in a setup with larger datasets and higher overlap, DAW can lead to even better
improvements.

Number of Queried Sources vs. Query Recall: The evaluation presented
so far focused on achieving full recall, and only discarded sources that the DAW
index estimated to contribute with no new results. We have shown that the
estimation given by our algorithm is quite accurate, as only 0.01% of the results
in one dataset were missing. There might be cases, however, where full recall
is not crucial and the query processing budget is limited. Here, the goal is to
retrieve as many results as possible by querying only a subset of capable sources.
Standard federated query processing approaches are only able to identify the

14

0

1

2

3

4

5

6

STP S-1 S-2 P-1 P-2 P-3 STP S-1 S-2 P-1 P-2 P-3 STP S-1 S-2 STP

Diseasome Publication Geo Data Movie

Ex
e

cu
ti

o
n

 t
im

e
 (

se
c)

FedX

DAW

Fig. 5: Query execution time of FedX and its DAW extension
Diseasome Publication Geo Data Movie Overall

Exe.time Gain Exe.time Gain Exe.time Gain Exe.time Gain Exe.time Gain
DARQ 8.27 5.26 23.44 1.96 9.59
DAW 6.34 23.34 4.94 6.14 19.62 16.31 1.68 13.88 8.01 16.46

SPLENDID 3.78 2.18 7.27 1.90 3.71
DAW 3.04 19.48 2.38 -8.94 6.22 14.40 1.68 11.16 3.30 11.11
FedX 2.44 1.48 4.60 1.74 2.44
DAW 1.98 18.79 1.67 -12.38 3.92 14.71 1.61 7.59 2.20 9.76

Table 5: Overall performance evaluation. Exe.time is the average execution time
in seconds. Gain is the percentage in the performance improvement

set of capable sources. They are not able to compare the contribution of the
sources in order to identify which subset yields to a better recall. With DAW, an
approximation of this contribution is provided by the ranking step. For any given
threshold, DAW is able to provide the subset of capable sources that will deliver
the best recall for that number of sources. To demonstrate this, we computed the
query recall for different threshold values for the DAW DARQ extension. We ran
each of the STP queries 10 times on the Diseasome and Publication datasets and
averaged the results. We varied the threshold value in order to limit the query to a
fixed number of endpoints and we computed the query recall based on the DAW
source selection. We compared it with the optimal duplicate-aware approach,
where sources were manually selected to maximise the recall. The results are
show in Figure 6. We can see that, in both cases, the source selection given by
DAW is very close to the optimal case. Moreover, our experiment demonstrates
the great potential in using source ranking for federated query processing. For
the Diseasome dataset, by querying only 3 out of the 10 endpoints, DAW is
able to retrieve 80% of the query results. A full recall is achieved with only 6
endpoints. This naturally depends on the degree of overlap, but nevertheless it
shows promising results that should be further explored.

5 Conclusion and Future Work

In this paper we presented DAW, an approach for duplicate-aware federated
query over the Web of Data. DAW combines min-wise independent permuta-

15

0"

20"

40"

60"

80"

100"

120"

1" 2" 3" 4" 5" 6" 7" 8" 9" 10"

Re
ca
ll&
in
&%
&

Number&of&Endpoits&Queried&

Op.mal" DAW"

(a) Diseasome

0"

20"

40"

60"

80"

100"

120"

1" 2" 3" 4" 5" 6" 7" 8" 9" 10"

Re
ca
ll&
in
&%
&

Number&of&Endpoints&Queried&

Op.mal" DAW"

(b) Publication

Fig. 6: Recall for varied number of endpoints queried

tions with selectivity values to estimate the number of duplicate-free results.
This estimation is used to first rank triple pattern-wise sources, based on their
contribution, and to skip sources that contribute with little or no new results.
DAW can be directly combined with existing index-assisted federated query pro-
cessing systems, in order to improve the query execution. We evaluated our
approach against DARQ, SPLENDID and FedX – three well known federated
systems. The evaluation shows that by using the DAW extension the query ex-
ecution times were improved in most of the cases, while recall was marginally
affected. Moreover, DAW is suitable for maximising the recall for a fixed number
of queried sources.

We will look at extending our index to further reduce the query execution
time, for instance, by pre-computing some of the overlap statistics, based on
query logs. The effect of different MIPs sizes and threshold values to find the
optimal trade-off between execution time and recall will also explored, as well
as different data partition methods.

6 Acknowledgments

This work has been supported by the European Commission under Contract No.
FP720117287661 (GAMBAS), FP7-Granatum: RE7098, FP7-GeoKnow Grant
No. 318159, by Science Foundation Ireland under Grant No. SFI/08/CE/I1380
(Lion-II) and Grant No. SFI/12/RC/2289 (INSIGHT).

References

1. M. Acosta, M. Vidal, T. Lampo, J. Castillo, and E. Ruckhaus. Anapsid: an adaptive
query processing engine for sparql endpoints. In ISWC, pages 18–34, 2011.

2. S. Auer, J. Lehmann, and A.-C. Ngonga Ngomo. Introduction to linked data and
its lifecycle on the web. In RW, pages 1–75, 2011.

3. C. Basca and A. Bernstein. Avalanche: putting the spirit of the web back into
semantic web querying. In SSWS, pages 64–79, November 2010.

16

4. M. Bender, S. Michel, P. Triantafillou, G. Weikum, and C. Zimmer. Improving
collection selection with overlap awareness in p2p search engines. In SIGIR, pages
67–74, 2005.

5. B. H. Bloom. Space/time trade-offs in hash coding with allowable errors. Commun.
ACM, 13(7):422–426, July 1970.

6. A. Z. Broder, M. Charikar, A. M. Frieze, and M. Mitzenmacher. Min-wise inde-
pendent permutations. IJCSS, 60:327–336, 1998.

7. N. Drukh, N. Polyzotis, and Y. Matias. Fractional xsketch synopses for xml
databases. In XSym, pages 189–203, 2004.

8. O. Görlitz and S. Staab. Splendid: Sparql endpoint federation exploiting void
descriptions. In COLD, ISWC, 2011.

9. A. Harth, K. Hose, M. Karnstedt, A. Polleres, K.-U. Sattler, and J. Umbrich. Data
summaries for on-demand queries over linked data. In WWW, pages 411–420, 2010.

10. T. Hernandez and S. Kambhampati. Improving text collection selection with cov-
erage and overlap statistics. In WWW (Special interest tracks and posters), pages
1128–1129, 2005.

11. K. Hose and R. Schenkel. Towards benefit-based rdf source selection for sparql
queries. In SWIM, page 2, 2012.

12. G. Ladwig and T. Tran. Linked data query processing strategies. In ISWC, pages
453–469, 2010.

13. A. Langegger, W. Wöß, and M. Blöchl. A semantic web middleware for virtual
data integration on the web. In ESWC, pages 493–507, 2008.

14. Y. Li and J. Heflin. Using reformulation trees to optimize queries over distributed
heterogeneous sources. In ISWC, pages 502–517, 2010.

15. S. Michel, M. Bender, P. Triantafillou, and G. Weikum. Iqn routing: Integrating
quality and novelty in p2p querying and ranking. In EDBT, pages 149–166, 2006.

16. M. Mitzenmacher. Compressed bloom filters. IEEE/ACM Trans. Netw., 10(5):604–
612, Oct. 2002.

17. M. Morsey, J. Lehmann, S. Auer, and A.-C. N. Ngomo. Dbpedia sparql benchmark:
performance assessment with real queries on real data. In ISWC, pages 454–469,
2011.

18. Z. Nie, S. Kambhampati, and T. Hernandez. Bibfinder/statminer: Effectively min-
ing and using coverage and overlap statistics in data integration. In VLDB, pages
1097–1100, 2003.

19. N. Ntarmos, P. Triantafillou, and G. Weikum. Distributed hash sketches: Scalable,
efficient, and accurate cardinality estimation for distributed multisets. ACM Trans.
Comput. Syst., 27, 2009.

20. N. Polyzotis and M. Garofalakis. Statistical synopses for graph-structured xml
databases. In SIGMOD, pages 358–369, 2002.

21. B. Quilitz and U. Leser. Querying distributed rdf data sources with sparql. In
ESWC, pages 524–538, 2008.

22. A. Schwarte, P. Haase, K. Hose, R. Schenkel, and M. Schmidt. Fedx: Optimization
techniques for federated query processing on linked data. In ISWC, Lecture Notes
in Computer Science, pages 601–616. 2011.

23. M. Shokouhi and J. Zobel. Federated text retrieval from uncooperative overlapped
collections. In SIGIR, pages 495–502, 2007.

24. L. Si and J. P. Callan. Relevant document distribution estimation method for
resource selection. In SIGIR, pages 298–305, 2003.

	DAW: Duplicate-AWare Federated Query Processing over the Web of Data

