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ABSTRACT
The Cancer Genome Atlas (TCGA) is a multidisciplinary,
multi-institutional pilot project to create an atlas of genetic
mutations responsible for cancer. One of the aims of this
project is to develop an infrastructure for making the cancer
related data publicly accessible, to enable cancer researchers
anywhere around the world to make and validate important
discoveries. However, data in the cancer genome atlas1 are
organized as text archives in a set of directories. Devising
bioinformatics applications to analyse such data is still chal-
lenging, as it requires downloading very large archives and
parsing the relevant text files in order to collect the critical
co-variates necessary for analysis. Furthermore, the various
types of experimental results are not connected biologically,
i.e. in order to truly exploit the data in the genome-wide
context in which the TCGA project was devised, the data
needs to be converted into a structured representation and
made publicly available for remote querying and virtual inte-
gration. In this work, we address these issues by RDFizing
data from TCGA and linking its elements to the Linked
Open Data (LOD) Cloud. The outcome is the largest LOD
data source (to the best of our knowledge) comprising of
over 30 billion triples. This data source can be exploited
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this work for personal or classroom use is granted without fee
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and the full citation on the first page. To copy otherwise,
to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
1https://tcga-data.nci.nih.gov/tcga/

through publicly available SPARQL endpoints, thus provid-
ing an easy-to-use, time-efficient, and scalable solution to
accessing the Cancer Genome Atlas. We also describe show-
cases which are enabled by the new linked data representa-
tion of the Cancer Genome Atlas presented in this paper.

Categories and Subject Descriptors
H.3.5 [Information storage and retrieval]: On-line In-
formation Services—data sharing, web-based service; H.2.4
[Database Management]: Systems—Distributed databases,
query processing
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1. INTRODUCTION
The Cancer Genome Atlas (TCGA)2 is an effort led by the
National Cancer Institute3 and aims to characterize and se-
quence 33 cancer types from 9000 patients at the molecular
level. The ultimate goal of the project is to collect and make
publicly available the data necessary to produce an Atlas of
the genomic alterations responsible for the initiation and
progression of cancer. TCGA offers data categorized into
three data levels: raw data (level 1), normalized data (level
2) and processed data (level 3). To date, a total of 21 types
of data have been collected for each patient, making up a to-
tal of 147,645 raw data files, of which 53,694 contain level 3
(processed) data, summing up to a total of 12.7 terabytes of
data. According to information in the TCGA portal, this is
only 46% of the expected data with new data being submit-
ted every day. In this paper, only level 3 data is of interest
as it is the data upon which analytics is performed.

TCGA is a valuable resource for hypothesis-driven transla-
tional research as all of its data results from direct exper-
imental evidence. Analysis of such evidence within cancer
research has led in recent years to clinically relevant find-
ings in the genetic mark-ups of different cancers and was
2https://tcga-data.nci.nih.gov/tcga/
3http://www.cancer.gov
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at the forefront of a coordinated worldwide effort towards
making more molecular results from cancer analysis pub-
licly available [5]. Other big data cancer research initia-
tives such as the international cancer genomics consortia,
the 1000genomes4 and the One Million Genomes projects5,
the $10 million genome prize6 and the remarkable drop in
the cost of genome sequencing7 will soon mean that the cur-
rent paradigm in which data researchers download all the
data, extract the interesting pieces and remove the rest, will
no longer be feasible [7, 1]. Advances in statistical meth-
ods for analysing cancer genomics [13, 6] further emphasizes
the need to enable smooth online data collection and aggre-
gation. As pointed out in [2] “Large-scale genome charac-
terization efforts involve the generation and interpretation
of data at an unprecedented scale, which has brought into
sharp focus the need for improved information technology
infrastructure and new computational tools to render the
data suitable for meaningful analyses.”

TCGA data has been widely used in the literature (over 350
publications8), but mostly in its raw form and without in-
tegration beyond a single type of molecular information [10,
12, 14, 8, 4]. Deus et al. [3] developed an infrastructure us-
ing Simple Sloppy Semantic Database (S3DB) management
model to expose clinical, demographic and molecular data
elements generated by TCGA as a SPARQL endpoint. More
recently, Robbins et. al [11] developed an engine to contin-
uously index and annotate the TCGA files using JavaScript
in conjunction with RDF, and the SPARQL query language.
However, both [3] and Robbins et. al [11] provide only file
level provenance annotations without providing structured
access to actual contents of the files.

A scalable and robust solution is therefore a critical require-
ment, whereby researchers can obtain the slice of the big
data they are interested in by submitting a structured query
to a federated service. In addition to the very large semi-
structured experimental results datasets available through
TCGA and related projects, there is a significant amount
of unstructured and structured biomedical data available on
the web, which is critical towards annotating and integrat-
ing those experimental results. Remote query processing
and virtual data integration, i.e. transparent on-the-fly-view
creation for the end user, can provide a scalable solution to
both challenges. Currently, due to the majority of data be-
ing available in text form, it is impossible to query the con-
tents of a particular file or to enable virtual data integration
from TCGA data sources. Indeed, the growth of TCGA ini-
tiative should also be considered for a scalable solution9. We
addressed this problem by applying Semantic Web technolo-
gies to semi-structured level 3 TCGA data. We converted
this data into resource description framework (RDF) data
and linked it to the Linked Open Data Cloud so as to make it
easy to query. The data can be accessed freely via SPARQL

4http://www.1000genomes.org/
5http://www.genomics.cn/en/navigation/show_
navigation?nid=5658
6http://in.reuters.com/article/2012/07/24/
us-science-genome-prize-idINBRE86M02G20120724
7http://www.genome.gov/sequencingcosts/
8TCGAPublications:http://cancergenome.nih.gov/
researchhighlights/leadershipupdate/ZhangTCGAStats
9http://tcga.github.io/Roadmap
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Figure 1: TCGA text to RDF conversion process

endpoints.

2. TCGA RDFIZATION AND LINKING
In this section, we explain the text to RDF conversion pro-
cess and the linking of the resulting RDF files to the LOD
Cloud.

TCGA RDFization
The TCGA text to RDF conversion process is shown in Fig-
ure 1. Given a TCGA text file, the Data Refiner selects
the specific fields10 necessary for traditional molecular anal-
ysis algorithms. This step is necessary to restrict the size of
the resulting RDF according to what we expect will be the
most useful results. Finally, the refined text file is send to
the RDFizer which generates the resulting RDF file in N3
format so that it can be loaded into any triple store, such as
Virtuoso or Sesame.

As an example of the efficient space consumption feature
of our RDFization, it is worth noting that original text size
(20.63 GB) from the TCGA lung tumour (LUSC) is reduced
to 5.75 GB after passing through the Data Refiner and the
final RDF files, after passing through RDFizer, only take
20.5 GB to represent 927 million triples. After uploading
these files to a virtuoso SPARQL endpoint, the total space
consumption is 54 GB. The increase in size (approx. double)
is caused by the different indexes created by the virtuoso
server for fast data retrieval.

The statistics of the RDFization of the top 10 tumours with
the smallest data files is given in Table 1. Given that we have
produced a total of 7.34 billion triples for these tumours, we
can estimate that entire TCGA level 3 data will result in
over 30 billion triples. Our Linked representation of TCGA
(to the best of our knowledge) thus promises to be the largest
dataset available on the LOD cloud11.

Linking TCGA to the Linked Open Data Cloud
The fourth design principle behind Linked Data is the provi-
sion of links to other data sources. By these means, central

10https://code.google.com/p/topfed/wiki/
SelectedFields

11http://lod-cloud.net/state/
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Tumor Type Original Size(GB) Refined Size (GB) RDFized Size (GB) Triples (Million)
Cervical (CESC) 8.75 2.44 8.86 400.19
Rectal adenocarcinoma (READ) 8.07 2.25 9.04 413.31
Papillary Kidney (KIRP) 10.40 2.90 10.4 469.65
Bladder cancer (BLCA) 12.16 3.39 12.3 556.38
Acute Myeloid Leukemia (LAML) 14.85 4.14 15.1 684.05
Lower Grade Glioma (LGG) 17.08 4.76 17.1 778.82
Prostate adenocarcinoma (PRAD) 18.05 5.03 18.1 821.01
Lung squamous carcinoma (LUSC) 20.63 5.75 20.5 927.08
Cutaneous melanoma (SKCM) 23.22 6.47 23.2 1050.94
Head and neck squamous cell(HNSC) 27.6 7.69 27.5 1245.37

Table 1: Top 10 small (size) TCGA tumours statistics

Result Target Class # links
Methylation HGNC Chromosomes 97,530
Methylation OMIM Chromosomes 14,407,269

Gene expression HGNC Chromosomes 86,052
Gene expression OMIM Chromosomes 12,535,829

Table 2: Links for the methylation of a single patient

Source Target Class # links
DNA27 HGNC Genes 23,181
DNA27 Homologene Genes 27,654
DNA27 OMIM Genes 15,171
DNA450 Homologene Genes 489,643
DNA450 OMIM Genes 212,284
DNA27 HGNC Chromosomes 108,662
DNA27 OMIM Chromosomes 16,039,535

Table 3: Links for the lookup files of TCGA

tasks such as cross-ontology question answering, data inte-
gration and data analytics can be facilitated. Yet, the sheer
size of bio-medical knowledge available on the Linked Data
Cloud and of TCGA knowledge base itself makes it impossi-
ble to use manual linking to provide such cross-knowledge-
base links from TCGA to other data sources. We made
use of the LIMES framework12 to compute links between
TCGA and knowledge bases. LIMES [9] is a framework for
link discovery that provides time-efficient implementations
of several string and numeric similarity and distance mea-
sures. All the TCGA experimental results are reported with
regards to a gene or a chromosome. Given that genes and
chromosomes have dedicated IDs that are used across several
knowledge bases; we used LIMES exactMatch measure for
linking. As such, we focused this work on linking patient
data from TCGA (and its reported genetic results) with
knowledge bases which describe genes and chromosomes. In
particular, we linked TCGA to HGNC13, OMIM14 and Ho-
mologene15. Tables 2 and 3 provides an excerpt of the links
generated for the TCGA dataset while Listing 1 provides an
excerpt of the specifications used for linking.

12http://limes.sf.net
13http://hgnc.bio2rdf.org/sparql
14http://omim.bio2rdf.org/sparql
15http://homologene.bio2rdf.org/sparql

Listing 1: Excerpt of the LIMES link specification
for linking TCGA and Homologene

1 <SOURCE >
2 <ID>TCGA</ID>
3 <ENDPOINT >dna_methylation450_Lookup.nt</

ENDPOINT >
4 <VAR>?x</VAR>
5 <PAGESIZE >-1</PAGESIZE >
6 <RESTRICTION >?x rdf:type tcga -

schema:dna_methylation450_lookup </
RESTRICTION >

7 <PROPERTY >tcga -schema:Gene_Symbol AS
lowercase </PROPERTY >

8 <TYPE>N-TRIPLE </TYPE>
9 </SOURCE >

10 <TARGET >
11 <ID>homologene </ID>
12 <ENDPOINT >http:// homologene.bio2rdf.org/

sparql </ENDPOINT >
13 <VAR>?y</VAR>
14 <PAGESIZE >10000</PAGESIZE >
15 <RESTRICTION >?y a

homologene:HomoloGene_Group </
RESTRICTION >

16 <PROPERTY >homologene:has_gene_symbol AS
lowercase </PROPERTY >

17 </TARGET >
18 <METRIC >exactmatch(x.tcga -

schema:Gene_Symbol ,
19 y.homologene:has_gene_symbol)</METRIC >
20 <ACCEPTANCE >
21 <THRESHOLD >1</THRESHOLD >
22 <FILE>dna_450_homologene_accepted.nt</

FILE>
23 <RELATION >tcga -schema:Homologene </

RELATION >
24 </ACCEPTANCE >

TCGA Data Workflow
TCGA data can be organized as a three-layer architecture
in which layer 1 contains patient data, layer 2 consists of
clinical information and layer 3 contains results for different
samples of a patient. Each type of data was assigned to a
different class in the RDFized version as depicted in the di-
agram in Figure 2. In the next section we will describe some
use cases where this data is applicable and illustrate the ad-
vantages of its RDFization as compared to raw experimental
result text files.

3. CANCER TREATMENT- USE CASES
In Figure 3, we outline our final goal of linked TCGA At-
las i.e. on-the-fly data collection, analyse it and use rele-

http://limes.sf.net
http://hgnc.bio2rdf.org/sparql
http://omim.bio2rdf.org/sparql
http://homologene.bio2rdf.org/sparql


Figure 3: An overview of the pipeline for personalised cancer treatment
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Figure 2: TCGA class diagram of RDFized results

vant data for patient treatment. Stakeholders involved in
this process include patients (the primary data providers),
physicians, bioinformatics experts and statisticians. Several
steps are included in this process:

1. Diagnostic and sample collection: Cancer patients around
the world are asked for consent towards donating sam-
ples for the project.

2. Data collection: Each of the samples is analysed us-
ing several molecular techniques for detecting common
molecular events in cancer.

3. Analysis: Each type of data needs to be analysed sep-
arately according to the platform used. For some of
the analysis (e.g. gene expression), batches of patients
must be analysed together to enable normalization.

4. Decision: Once the results are analysed for each batch,
they are integrated with other data such as known
gene/drug interaction.

Currently this process is performed manually and is thus
inefficient and error-prone, forcing bioinformatics experts

to regularly check for new patient data or new files with
data, download the data from multiple endpoints, rerun
the analysis and submit the result somewhere where the
physician can access and associate it with the patient di-
agnostic information. Due to such manual process, two
critical issues occur: 1) the linking between the patient
and his/her genome is lost because the clinical informa-
tion cannot be made public and 2) statisticians are not en-
couraged to maintain provenance of models and parameters
used to analyse the data, leading often to serious, and ex-
pensive mistakes. Hereafter, we describe use cases where
automated pipelines will help researchers in improved and
backtracked for reproducibility of results. Further, the link-
ing of TCGA with LOD datasets will enable us to further
explore the use case outcomes (e.g drugs) in the existing
LOD datasets such as HGNC, OMIM, Drugbank and NCBI.
The demo of the use cases discussed below is available at
http://hcls.deri.org/tcga/CancerTreatment.html.

3.1 Targeted Cancer Treatment
The main question addressed in this use case is whether a
specific drug can be used to treat a tumour given the ge-
nomic data of those tumour patients. An example for this
use case can be seen in Breast Cancer, patients having muta-
tions in BRCA1 and BRCA2 genes are highly susceptible to
Breast Cancer and have varying treatment compared to pa-
tients without mutations in these genes. Another example in
Breast Cancer is HER2-positive breast cancer, which war-
rants different treatment from HER2-negative breast can-
cers. Many such studies have been done to find clinical sub-
types of different cancers for targeted treatment.

Given that these genetic mutations only occur in a handful
of cases, in order for these kinds of studies to have strong
statistical predictability, there is need for a very large sam-
ple size of cancer patients data - much more than what a
single hospital can produce. The TCGA project aimed at
assembling this very large cancer cohort but, to the best of
our knowledge, the lack of a structured representation of the
data proposed in the report prevented these large correla-
tions to be derived. Given the integration of respective can-
cer omics data one can use different bioinformatics methods
to find relevant genomic profiles in particular tumour type

http://hcls.deri.org/tcga/CancerTreatment.html


 

Figure 4: Screenshot of the Targeted Cancer Treat-
ment

 

Figure 5: Screenshot of the effective drug for
Targeted Cancer Treatment taken from DrugBank
SPARQL endpoint http://wifo5-04.informatik.

uni-mannheim.de/drugbank/page/drugs/DB00398

having specific drug effect as clinical variable of interest.

As an example, we present in Listing 2 a query that retrieves
all patients having breast tumour, together with information
about their treatment and relapse. The results of this query
will be further analysed using statistical tools to find alter-
nation in HER2 and ER genes in patients. It can be seen in
Figure 4 that a patient is selected for targeted cancer treat-
ment where list of drugs that are specific for such type of
cancer are displayed as results. The output of this use case
is based on strong correlation between the genomic data of
the selected input patient and previously collected patients
of same cancer. The patient clusters show the number of
clinical subtypes of cancer that can be found in the collected
patients genomic data. It can also be seen to which cluster
(pink in this example) does the input patient belong. Based
on this information specific drug (i.e Sorafenib) is suggested
for that patient’s treatment. The information about the se-
lected drug can further be explored by using the LOD data
sets such as DrugBank as shown in Figure 4.

3.2 Mechanism-based Treatment
The main question addressed in this use case is whether a
combination of drugs can be applied to treat a specific tu-
mour effectively. Cancer can be regarded as a series of abber-
ant genetic events leading to an uncontrollable cell growth.

Listing 2: Use case 1,2 SPARQL query
Select ? pat i en t ?mean

where
{
? u r i tcga : tumour type ”BRCA” .
? u r i tcga : b c r pa t i en t ba r c ode ? pat i en t .
? pat i en t rd f : type tcga : e x p r e s s i o n g e n e r e s u l t s .
? pat i en t tcga : gene symbol ”HER2” , ”ER” .
? pat i en t tcga : s c a l e d e s t ima t e ?mean
}

Listing 3: Querying LOD DrugBank
SELECT ?drugname
WHERE {

? pat i en t rd f : type tcga : e x p r e s s i o n g e n e r e s u l t s .
? pat i en t tcga : gene symbol ”HER2” , ”ER” .
? pat i en t tcga : s c a l e d e s t ima t e ?mean .
f i l t e r (?mean > Threshold )
?drug drugbank : t a rge t ? ta rge t .
?drug drugbank : genericName ?drugname .
? ta rge t drugbank : synonym ? targetname .
f i l t e r regex (? targetname , ”HER2| e s t r ogen r e c ep to r ” , ” i ”)
}

As mentioned in section 3.1, there are drugs specific for cer-
tain genetic events, which can be prescribed to patients dif-
ferentially, making their treatment personalized. Further-
more, it is often the case that patients on one drug often re-
lapse (because the cancer has become resistant to that drug).
Thus, a combination of drugs - either prescribed together or
in sequence - might be necessary for effective treatment of
cancer. The patient list from statistical analysis of use case
1 results can be used to detect which patients are sensitive
to the drug Transtuzumab (which targets the HER2 gene)
and intercept with patients that are sensitive to the drug
Tamoxifen (which targets the gene estrogen receptor) us-
ing the information from other LOD sources targeting drugs
such as DrugBank as shown in Listing 3. The threshold
in Listing 3 is obtained from the statistical analysis of use
case 1 results. To explore such areas, integration of cancer
omics data such as provided here was of great importance
to produce statistically significant results.

3.3 Survival Outcome
The main question addressed in this use case is whether a
mathematical model can be built on the patients tumour
omics and clinical data in order to detect signs of tumour
given the genomic profile of a future patient. It is well known
that the treatment of early stage tumours has a much higher
success rate than that of late-stage tumours. The classifi-
cation of tumour patients based on the genetic biomarkers
along with patients cancer omics and clinical data can be
a powerful predictive tool with increasing tumour patients
sample size. For this use case, the query given in Listing 4

Listing 4: Use case 3 SPARQL query
Select ? pat i en t ?mean

where
{
? u r i tcga : tumour type ”BRCA” .
? u r i tcga : b c r pa t i en t ba r c ode ? pat i en t .
? pat i en t rd f : type tcga : c l i n i c a l .
? pat i en t tcga : tumour stage ? tumour stage .
? pat i en t tcga : a g e a t i n i t i a l p a t a l o g i c a l d i a g n o s i s ? age .
? pat i en t tcga : r e l evant b iomarke r ”BRCA1” , ”CDKN2A” , ”CDH1” .
? pat i en t tcga : be ta va lue ?mean
}

http://wifo5-04.informatik.uni-mannheim.de/drugbank/page/drugs/DB00398
http://wifo5-04.informatik.uni-mannheim.de/drugbank/page/drugs/DB00398


 

Figure 6: Screenshot of the Survival Outcome

 
Figure 7: Screenshot of the clinical TCGA related
patient breast cancer data

selects patients with available tumour stage along with rel-
evant clinical variables and selects methylation biomarkers
which are correlated to the tumour stage.

The results from the Listing 4 are further sent for analysis
tools to classify the patients in to relevant clinical clusters
based on the tumour stage. The need for integrating the
tumour patients’ data for this use case is fulfilled by this
project. It can be seen in Figure 6 that patients are divided
in to clusters based on statistical modelling of gene expres-
sion data to patient survival time. Different clusters indicate
for different survival times and patients in a certain cluster
have more or less similar tumour stage. The output of this
use case will be predicting the survival rates for the given
input patient based on the patient’s gene expression data.
The chance of survival depends upon the cluster the input
patient belongs; with red cluster has the lowest and purple
has the highest chance of survival. In the demo screen shot,
the input patient belongs to red cluster indicating that it has
lowest chance of survival. Furthermore, patients who belong
to the same category of lower survival rates are shown and
the clinical data of these patients can be seen in Figure 7
which has details of patients cancer type, drugs used, date
of admission and so on.
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