
A model for the beta-cell stimulus-secretion cou-
pling, postulating a central role for cyclic adenosine
5′ diphosphate ribose (cADPR) in glucose stimulated
increase in cytoplasmic, free Ca2+ concentration
([Ca2+]i) has been proposed by Dr. Okamoto and col-
leagues. The origin of this model dates back to 1993
when the first report [1] and accompanying editorial
in Science [2] depicted it as a significant advancement
in our understanding of Ca2+-signalling in these cells.
In this model, cADPR releases Ca2+ from endoplas-
mic reticulum (ER) by activating the ryanodine re-
ceptor (Ry) and Ca2+ released from ER plays an im-
portant role in stimulating insulin secretion. Further-
more Dr. Okamoto maintains that beta cells do not
possess a mechanism for Ca2+ release by inosi-
tol(1,4,5)trisphosphate (Ins(1,4,5)P3) [1]. Through a
series of studies the authors have produced evidence
for a messenger role of cADPR and importance of
Ry in glucose-stimulated increase in [Ca2+]i [3]. Oka-
moto et al's interest in the NAD metabolite cADPR
appears to stem from their earlier works where they
demonstrate a crucial role for the cellular level of
NAD in mediating diverse processes such as beta
cell damage and beta cell tumour formation [4].

Background

Lee et al. [5] identified the structure of an active meta-
bolite, i. e. cADPR responsible for the Ca2+-releasing

effect of b -NAD+ in sea urchin eggs. It has since
been demonstrated that cADPR also releases Ca2+

from intracellular non-mitochondrial stores in many
mammalian cells [6]. These studies suggest that
cADPR activates an intracellular Ca2+ channel hav-
ing the pharmacological properties of Ry [7]. Early
reactions to the discovery of cADPR was that this
molecule is the endogenous ligand for Ry just as
Ins(1,4,5)P3 is the natural ligand for its receptor [8].
The enzymatic mechanisms for synthesis and degra-
dation of cADPR have been characterized and the
enzymes are known to be present in many cells. De-
spite this remarkable progress, some uncomfortable
controversies have emerged regarding the physiologi-
cal role of cADPR and even its Ca2+-mobilizing ef-
fect. From this point of view, the case of the pancrea-
tic beta cell is noteworthy because it was the first cell
type where a physiological role for cADPR in med-
iating stimulus-secretion coupling was claimed [1]. In
this commentary, we shall analyse the controversial
aspects of cADPR in beta cells and attempt to identi-
fy possible reasons for such differences.

Does cADPR release Ca2+ from intracellular stores in
insulin-secreting cells?

The claim that cADPR and not Ins(1,4,5)P3 releases
Ca2+ from intracellular stores in beta cells [1] was im-
mediately questioned [9]. This controversy promoted
other studies. To date, three groups have examined
the role of cADPR in a range of insulin-secreting
cells, e.g. RINm5F cells, ob/ob mouse beta cells [9],
the glucose-responsive cell line INS-1 and rat islet
cells [10±12]. The methods used in these studies for
detecting Ca2+-release by cADPR include use of per-
meabilized cells and measurements of [Ca2+] by
Ca2+-selective electrodes, or fluo-3 [9, 10], measure-
ments of Ca2+-activated K+ current by patch-clamp
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technique [9] and use of the microinjection technique
[12]. Despite use of a variety of insulin-secreting cells,
an array of sensitive methods, and different experi-
mental approaches, neither a Ca2+-releasing effect
nor any other role of cADPR has been revealed in
these studies.

Thus, to date, demonstration of Ca2+-release by
cADPR in insulin-secreting cells is limited to the stu-
dies carried out by Okamoto et al. In their experi-
ments Ca2+ release by cADPR is highly reproducible.
The reasons for such differences between results re-
ported by Okamoto et al. and those reported by oth-
ers have remained unclear. It is however obvious
that the conditions of experiments where cADPR is
reported to release Ca2+ are markedly different from
those of experiments where it does not. Thus, Takasa-
wa et al. [1] obtain Ca2+ release by cADPR when they
use islet microsomes and an incubation buffer of high
salt concentration. It is possible that in beta cells Ca2+

release by cADPR is demonstrable only from islet
microsomes and only under particular incubation
conditions. Studies that question Ca2+-release by
cADPR have not attempted to exactly duplicate the
study of Takasawa et al. [1]. There seems, however,
little incentive to do so. Such studies would require
large numbers of islets which cannot be readily ob-
tained. Moreover, the methods used in collection of
large numbers of rat islets and preparation of micro-
somes from them, make it inevitable that significant
contamination from alpha and delta cells, endothelial
cells, fibroblasts, acinar cells and even lymph nodes,
vessels and ducts may occur [13]. These latter cells
may contain Ry in abundance (compared to low level
of the receptor in beta cells) which may complicate
interpretation of results obtained from islet micro-
some studies.

Other experimental conditions could also affect
Ca2+ release by cADPR in different cells. Thus, Ca2+

release by cADPR characteristically requires calmo-
dulin which may be diluted under conditions of ex-
periments that do not obtain a release by the cyclic
nucleotide [14]. Because of the uncertainty as to whe-
ther such critical conditions for cADPR action were
perturbed in experiments with permeabilized cells
and patch-clamp experiments, Webb et al. [12] direct-
ly examined the effect of cADPR under more physio-
logical conditions using intact beta cells and the mi-
croinjection technique. It was still not possible to de-
tect a rise in [Ca2+]i by microinjected cADPR. Fur-
thermore, microinjection of a cADPR-antagonist
did not block a glucose-induced rise in [Ca2+]i [12].
Essentially similar results have been reported by
Willmott et al. [11] in rat beta cells.

Rutter et al. [10] reported a small increase in ambi-
ent [Ca2+] after addition of cADPR and this they at-
tributed entirely to contamination of cADPR with
Ca2+. Investigators working with other cell types
have also been concerned with the possibility of

contamination of cADPR with Ca2+ and this promp-
ted them to conduct a series of control experiments
to rule this out [15].

Ins(1,4,5)P3 as Ca2+-mobilizing second messenger in
beta cells

According to the studies of Takasawa et al. [1],
Ins(1,4,5)P3 is not a calcium-mobilizing second mes-
senger in beta cells. This view is clearly at odds with
the standard view. According to the authors, early stu-
dies demonstrated Ca2+ release by Ins(1,4,5)P3 from
microsomes or permeabilized cells because those stu-
dies used transformed cells. Some support for this
view is available from immunocytochemical studies
of beta cells [16] and experiments that directly com-
pared the Ins(1,4,5)P3-induced Ca2+ release in tumour-
al and native beta cells [10]. The latter experiments
confirm that Ins(1,4,5)P3 releases much less Ca2+ from
native beta cells as compared to the tumoural ones
[10]. In spite of these, the notion that beta cells entirely
lack mechanisms for Ca2+ release by Ins(1,4,5)P3, is in-
consistent with numerous studies demonstrating for-
mation of Ins(1,4,5)P3 on stimulation of phosphoinosi-
tide-specific phospholipase C-linked receptors and re-
lease of Ca2+ from intracellular stores by the inositol
trisphosphate in permeabilized cells [17±20].

Ryanodine receptor in insulin-secreting cells

The mechanism of Ca2+ release by cADPR in any cell
involves an indirect effect of the cyclic nucleotide on
Ry. However, convincing evidence to support the
view that Rys play significant role in Ca2+-signalling
in beta cells, is still lacking. In intact or permeabilized
insulin-secreting cells, caffeine, an agonist of Ry, re-
leases little or no Ca2+ from intracellular stores [9,
10, 17]. Activating concentrations of ryanodine or its
b -alanyl analogue also do not yield a detectable in-
crease in [Ca2+]i in beta cells [21, 22]. Gromada et al.
[23] demonstrated evidence for involvement of Ry in
glucagon-like peptide-I-induced increase in [Ca2+]i in
insulin-secreting cells, while others have presented
conflicting evidence [24]. Nevertheless, there are bits
and pieces of data suggesting the presence of a Ry-
like channel in insulin-secreting cells, albeit at a low
level [18, 22, 25]. Islet from ob/ob mice, insulin-se-
creting b -TC3 cells and RINm5F cells express
mRNA for Ry [26, 27]. Moreover, this Ry appears to
be type 2, a type that according to some reports, is
sensitive to cADPR [27, 28]. It is possible that low
and perhaps labile expression of Ry in beta cells toge-
ther with subtle differences in the experimental con-
ditions used by different investigators accounts for
different conclusions drawn regarding the existence
of Rys and their importance in beta cells.
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cADPR-binding protein/receptor

A recent claim that FKBP12.6 may be the intracellu-
lar receptor for cADPR is a novel one [29]. However,
we need to see whether this finding can be repro-
duced. It may be noted that earlier studies that identi-
fied cADPR-binding proteins by photoaffinity label-
ling did not detect any protein with a molecular
weight of FKBP12.6 [30].

cADPR level in glucose-stimulated beta cells

Does glucose stimulation increase cADPR level in
beta cells? According to Takasawa et al. [1], it does.
The authors prepared extracts from beta cells treated
in high glucose conditions and demonstrated that
these extracts released more Ca2+ from islet micro-
somes compared with that released by extracts pre-
pared from low glucose-treated cells. Although this
was the only way to address the question at a time
when no other suitable method was available for
cADPR measurement, we do not believe that any
meaningful conclusion can be drawn from such ex-
periments. This is because extracts prepared from
high glucose-treated cells, are likely to contain not
only high levels of Ca2+ to start with but also other
Ca2+-mobilizing agents such as Ins(1,4,5)P3 and ara-
chidonic acid. Recent studies that have measured
cADPR in beta cells by radioimmunoassay have not
been able to demonstrate a detectable rise in cADPR
level on stimulation by glucose [31].

Role of intracellular Ca2+ stores in glucose-stimulated
insulin secretion

Ca2+ entry through voltage-gated Ca2+ channels ap-
pears to be essential for increasing [Ca2+]i after stimu-
lation by glucose [19]. Against this background, the
role of glucose in releasing Ca2+ from intracellular
stores and thereby stimulating secretion appears
quantitatively less important. Thus, although Ca2+-
mobilizing signalling molecules such as Ins(1,4,5)P3

and arachidonic acid are generated on stimulation
by glucose [20, 32], it has seldom been possible to de-
monstrate directly that glucose stimulation causes net
release of Ca2+ from intracellular stores. Numerous
studies have demonstrated that when [Ca2+]i is raised
solely by release of the ion from intracellular stores,
there is only a small and transient stimulation of insu-
lin secretion [33, 34]. Furthermore, depletion of intra-
cellular Ca2+ stores by thapsigargin appears to have
little effect on glucose-stimulated Ca2+-oscillation or
insulin secretion [35]. This does not rule out the possi-
bility that Ca2+ entering through the voltage-gated
Ca2+ channels is amplified by Ca2+-induced Ca2+ re-
lease (CICR) [18], a process that could be modulated

by Ins(1,4,5)P3 or cADPR. To what extent such am-
plification occurs and the quantitative importance of
different Ca2+ release channels in mediating CICR
remain to be carefully studied.

cADPR-metabolizing enzymes in beta cells

Beta cells express two bifunctional enzymes CD38
and bone marrow stromal antigen 1 (BST-1) involved
in synthesis and degradation of cADPR [36]. CD38
catalyses at its extracellular domain the synthesis of
cADPR from b -NAD+ as well as hydrolysis of
cADPR to ADP ribose. Transgenic mice, overexpres-
sing CD38 in beta cells manifest increased insulin se-
cretion in response to glucose [3]. This has been at-
tributed to increased formation of cADPR by CD38
and consequent increased release of Ca2+ from intra-
cellular stores. CD38, however, appears to be in-
volved in many physiological functions and other me-
chanisms by which it might affect secretion may need
to be considered. For instance, CD38 can possibly act
as an ADP-ribosylating enzyme and may induce insu-
lin secretion by ADP-ribosylation of proteins includ-
ing G-proteins [37, 38]. Whether in transgenic mice,
CD38 overexpression may enhance insulin secretion
by subtle effects on development and growth of beta
cells also needs to be explored.

Difficulties in demonstrating Ca2+-release by cADPR
in other cells

The controversy regarding the Ca2+-mobilizing effect
of cADPR and its significance is not unique to beta
cells. In the heart, it has been demonstrated that
cADPR releases Ca2+ from isolated sarcoplasmic re-
ticulum vesicles and activates Ry incorporated in the
planar lipid bilayer [28]. However, the results could
not be reproduced by others [39, 40]. Liver cells do
not seem to express mRNA of any of the known
Rys, but cADPR has still been reported to release
Ca2+ from nuclear envelops of these cells [41]. On
the other hand Lilly and Gollan [42] demonstrate
that cADPR does not release Ca2+ from hepatic mi-
crosomes. The list could be longer.

Conclusions

Dr. Okamoto's hypothesis that cADPR is a signalling
molecule coupling glucose metabolism to increase in
[Ca2+]i in beta cells is interesting. The doubts derive
from a failure by other investigators to reproduce
their main finding, i. e. Ca2+-release by cADPR in
beta cells. Even if it is accepted that cADPR might re-
lease Ca2+ from intracellular stores in beta cells, the
stand taken by Dr. Okamoto seems exaggerated
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when he regards this mechanism as one of primary im-
portance. However, the intriguing observations made
in studies with transgenic mice, may point to some
modulatory role of cADPR in insulin secretion. Whe-
ther cADPR and CD38 may affect secretion in beta
cells by mechanisms unrelated to the postulated
Ca2+-mobilizing effect needs to be explored. At pre-
sent Ca2+ release by cADPR and its role as a messen-
ger molecule, remain controversial even in cells
where Rys are expressed in plentiful numbers. Such
controversies should provide incentives for future stu-
dies directed at molecular characterization of intra-
cellular Ca2+ channels and elucidation of their quanti-
tative importance in mediating CICR in beta cells.
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