Atomoxetine increases salivary cortisol in healthy volunteers
Samuel R. Chamberlain, Ulrich Müller, Sarah Cleary, Trevor W. Robbins and Barbara J. Sahakian
J Psychopharmacol 2007; 21; 545 originally published online Apr 19, 2007;
DOI: 10.1177/0269881106075274

The online version of this article can be found at:
http://jop.sagepub.com/cgi/content/abstract/21/5/545

Published by:
SAGE
http://www.sagepublications.com

On behalf of:
British Association for Psychopharmacology

Additional services and information for Journal of Psychopharmacology can be found at:

Email Alerts: http://jop.sagepub.com/cgi/alerts

Subscriptions: http://jop.sagepub.com/subscriptions

Reprints: http://www.sagepub.com/journalsReprints.nav

Permissions: http://www.sagepub.co.uk/journalsPermissions.nav

Citations http://jop.sagepub.com/cgi/content/refs/21/5/545
It has been proposed that acute hypothalamo-pituitary-adrenal (HPA) axis challenge using noradrenergic drugs may be of utility in assessing the functional integrity of central noradrenaline pathways. Atomoxetine (formerly toloxetine) is a highly selective noradrenaline reuptake inhibitor, which has recently been licensed for the treatment of attention deficit hyperactivity disorder (ADHD).

The aim of this study was to assess the effects of acute atomoxetine on salivary cortisol levels for the first time. A total of 60 healthy male volunteers received 60mg atomoxetine, 30mg citalopram, or placebo per os in a double-blind parallel groups design (n=20 per group). Salivary cortisol, blood pressure and pulse rates were recorded at baseline and at +1.0, +1.5, +2.5 and +3.5 hours after capsule administration.

60mg atomoxetine led to highly significant increases in salivary cortisol and a moderate increase in pulse rate, in the absence of significant effects on blood pressure. 30mg citalopram had no significant effects on cortisol or cardiovascular parameters.

These data support the utility of atomoxetine neuroendocrine challenge for evaluating central noradrenaline pathways, which may be of future use in neuropsychiatric patient studies. Furthermore, the effects of atomoxetine on HPA axis function may have clinical implications given the use of this agent in the treatment of ADHD.

Keywords
ADHD, hyperactivity, impulsivity, neuroendocrine, HPA, noradrenaline, depression
Atomoxetine has recently been licensed for the treatment of ADHD (Stahl, 2003; Biederman et al., 2004; Thomason and Michelson, 2004; Farace et al., 2005), and represents the most selective reuptake inhibitor for the noradrenaline transporter currently available for human use. The present study examined the effects of acute atomoxetine on salivary cortisol levels in healthy male participants. We also quantified the effects of acute citalopram (a selective serotonin reuptake inhibitor), as serotonin has also been implicated in HPA axis regulation (Nadeem et al., 2004). It was hypothesized that noradrenergic potentiation with atomoxetine would increase salivary cortisol levels.

Methods

Subjects

Sixty healthy male volunteers (mean age [+/– SD] = 25.73 [4.70] years; range 20–35 years) were recruited using adverts in the local community, and were entered into the study on the basis of meeting inclusion criteria and providing written informed consent. Criteria for inclusion were no significant history of psychiatric or medical illnesses or recreational drug dependency (for full description of criteria please see online supplementary section for Chamberlain et al., 2006).

Procedure

Prior to enrolment, medical screening was undertaken by a psychiatrist to ensure there were no contraindications. Participants were asked to have breakfast as usual on the day of the study but to abstain from caffeine and alcohol. Written informed consent was obtained, and volunteers ingested a single capsule (containing 60 mg atomoxetine, 30 mg citalopram or placebo) with water in a between-subjects double-blind parallel groups design. These doses were selected to be clinically significant, i.e. towards the upper end of the usual daily dosing range for psychiatric illnesses in the United Kingdom (British National Formulary guidance). Larger doses were avoided due to their association with increased risk of discomfort and adverse events in volunteers (see e.g. Lile et al., 2006). After dosing, volunteers then spent 1.5 hours relaxing (watching TV or reading) in a quiet waiting area, followed by neuropsychological assessment (neuropsychological data reported previously, see Chamberlain et al., 2006). Blood pressure was recorded by nursing staff using electronic apparatus, and participants provided salivary samples, at baseline and at +1.0, +1.5, +2.5 and +3.5 hours after capsule ingestion.

Salivary analysis

Saliva samples were taken from volunteers using the Sarstedt Salivette™ System, centrifuged, and stored at –20 degrees Celsius prior to analysis. Analysis was conducted by the Department of Anatomy, University of Cambridge, using established procedures (Harris et al., 2000) (full description of the assay procedure is available from the authors on request).

Statistical analyses

Data for cardiovascular and cortisol measures were analysed using repeated-measures ANOVAs. Where significant group by time interactions or significant effects of group were found, these were investigated using one-way ANOVAs at each time point, and follow-up pairwise least significant difference (LSD) tests as appropriate (atomoxetine-treated group versus placebo group; citalopram-treated group versus placebo group). Total area under the concentration–time curve minus baseline (AUC) and the largest change in cortisol since baseline readings (delta cortisol max) were also recorded for each volunteer. These indices were subjected to one-way ANOVA. Significance was set at *p*<0.05.

Results

The three groups were well matched for age, education levels, verbal IQ estimates (National Adult Reading Test, Nelson, 1982), and depressive mood scores (Beck Depression Inventory, Beck and Beamesderfer, 1974) (data reported in Chamberlain et al., 2006, supplementary online section). The groups did not differ significantly in terms of the time of capsule administration (mean time of capsule dosing [+/– SD mins], atomoxetine 9.46 AM [46], citalopram 9.50 AM [57], placebo 10.21 AM [86] (ANOVA (2,57)=1.374, *p*=0.26).

Atomoxetine and citalopram were in general very well tolerated by participants. One volunteer became transiently nauseous approximately 0.5 hours after capsule, but this resolved with a glass of orange juice and the participant was happy to complete the study. The volunteer reported that he had not taken his usual breakfast prior to attending. Code break after the study had been completed (i.e. after *n*=60 participants were tested) showed that this volunteer had received atomoxetine.

Data for pulse rate, systolic blood pressure and diastolic blood pressure (Fig. 1) were entered into three separate repeated-measures ANOVAs with time as the within-subjects factor. For pulse rate, there was a significant effect of time (F(4,228)= 30.432, *p*<0.001) and a significant group by time interaction (F(8,228)= 3.563, *p*<0.001). From Fig. 1 it can be seen that the atomoxetine-treated group showed increasing pulse rate as a function of time compared to other groups. There were no differences in pulse rate at baseline (F(2,57)=0.099, *p*=0.906), nor at +1.0h (F(2,57)=1.183, *p*=0.314) and +1.5h after capsule (F(2,57)=2.107, *p*=0.131). However groups did differ significantly at +2.5h (F(2,57)=3.425, *p*=0.039) and +3.5h after capsule (F(2,57)=3.852, *p*=0.027), due to significantly higher pulse rates in the atomoxetine-treated group versus placebo (least significant LSD *p*=0.031). The citalopram group did not differ from placebo on these measures (most significant LSD *p*=0.586). For systolic blood pressure, there were no significant effect of time (F(4,228)=1.941, *p*=0.104), no significant group by time interaction (F(8,228)=0.436, *p*=0.899) and nor was there a significant effect of group (F(2,57)=0.981, *p*=0.381). For diastolic blood pressure there was a significant effect of time (F(4,228)=4.940, *p*<0.001), but there was no significant group by
time interaction ($F(8,225) = 1.225, p = 0.285$) nor was there a significant effect of group ($F(2,57) = 1.711, p = 0.190$).

Data for salivary cortisol levels (Fig. 2) were analysed using a repeated-measures ANOVA with time as the within-subjects factor. Several data points were missing due to insufficient saliva volumes for chemical analysis. Where possible these missing points were estimated by taking the mean of the two salivary cortisol levels either side of the reading time-wise (n = 4 of 360 samples). Otherwise, points were entered as missing data into the ANOVA model (n = 19 of 360 samples). There was a significant effect of time ($F(4,204) = 5.080, p < 0.001$) and a significant group by time interaction ($F(8,204) = 4.534, p < 0.001$). The groups did not differ significantly in terms of baseline salivary cortisol ($F(2,52) = 2.420, p = 0.099$), nor for salivary cortisol at +1 h ($F(2,53) = 2.671, p = 0.078$). Groups did differ overall for salivary cortisol levels at +1.5 h ($F(2,54) = 4.361, p = 0.018$), +2.5 h ($F(2,53) = 6.779, p = 0.002$), and +3.5 h ($F(2,52) = 8.577, p < 0.001$).

Post hoc tests showed that these overall group differences were attributable to higher cortisol levels in the atomoxetine-treated group compared to the placebo group at all three time points (least significant LSD $p = 0.005$). The citalopram-treated group did not differ from the placebo group for salivary cortisol levels at these time points (most significant LSD $p = 0.112$). In the total area under the curve (AUC) analysis, there was a significant overall difference between the groups ($F(2,51) = 7.963, p < 0.001$). Post hoc tests showed the atomoxetine-treated group had significantly larger AUC than the placebo group (LSD $p = 0.005$). The citalopram group did not differ significantly from placebo (LSD $p = 0.274$). In the delta cortisol max analysis, the groups differed in the ANOVA ($F(2,52) = 11.095, p < 0.001$). Post hoc tests revealed that the atomoxetine-treated group showed a significantly larger delta cortisol max than the placebo group (LSD $p = 0.005$) whereas the citalopram-treated group did not differ from the placebo group on this measure (LSD $p = 0.644$).

Discussion

Acute dosing with 60 mg atomoxetine led to clear increases in salivary cortisol in healthy male volunteers (total AUC and delta cortisol max $p < 0.001$ versus placebo). The time course of this response corresponded approximately to the established pharmacokinetic profile of this drug, which shows peak plasma concentrations 1–2 h after oral dosing (Sauer et al., 2005) (Fig. 2). These findings are consistent with previous acute studies using the less selective noradrenaline reuptake inhibitor reboxetine (Hennig et al., 2000; Schule et al., 2004). Atomoxetine also increased pulse rate in the absence of significant effects on blood pressure. It will be important in future work to assess longer term effects of atomoxetine. Schule and colleagues reported recently that 5-week treatment with reboxetine in depressed patients was associated with reductions in HPA axis function, assessed using the dexamethasone suppression/corticotropin releasing hormone test. Mirtazapine, an antagonist of noradrenergic and serotonergic sub-receptors, exerted more complex effects (Schule et al., 2004; Schule et al., 2006). Consequentially, it is likely but has yet to be
In sum, this study reported increases in salivary cortisol, a marker of HPA axis function, following acute treatment with atomoxetine in healthy volunteers. Evaluation of the effects of atomoxetine on HPA axis function in depression and ADHD would be of value, to assess the integrity of the noradrenergic system in these disorders, and to help elucidate the mechanisms by which noradrenergic drugs are able to exert their beneficial treatment effects (Sheline, 2000; Varghese and Brown, 2001; Goodyer et al., 2003; Chamberlain and Sahakian, 2005).

Acknowledgements

This work was funded by the Wellcome Trust (Programme Grant 076274/Z/04/Z) awarded to T.W. Robbins, B.J. Everitt, A.C. Roberts and B.J. Sahakian) and the Medical Research Council (Pathfinder Grant to U. Müller; Priority Studentship to Samuel R Chamberlain). We are grateful to nurses and administrative staff at the Wellcome Trust Clinical Research Facility (Addenbrooke’s Hospital, Cambridge), to the Pharmacy Production Unit (Sheffield Teaching Hospitals NHS Foundation Trust), and to all participants. This study was approved by Local Research Ethics Committee (Cambridge 04/038) and by the Medicines and Healthcare Products Regulatory Agency (MHRA), London, UK. All volunteers gave informed written consent prior to participation. T.W. Robbins and B.J. Sahakian consult for Cambridge Cognition.

References

subsequent major depressive disorder in adult women. Br J Psychiatry 177: 505–510