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Purpose of review

Impulsive symptoms occur across neuropsychiatric

disorders, with important ramifications for everyday

functioning and quality of life. This article considers recent

developments in the neuropsychological assessment of

impulsivity with a focus on the ability to suppress motor

responses (response inhibition).

Recent findings

Using objective tests, response inhibition deficits were

identified in several neuropsychiatric conditions associated

with impulsivity, namely attention deficit hyperactivity

disorder, trichotillomania, obsessive–compulsive disorder,

and chronic substance abuse. Deficits were also found in

unaffected first-degree relatives of attention deficit

hyperactivity disorder and obsessive–compulsive disorder

patients. Evidence from patients with focal brain lesions and

from healthy volunteers using functional MRI and

transcranial stimulation implicated the right inferior

frontal gyrus in response inhibition. Pharmacological

manipulations of the serotonin system had no detectable

behavioural effects on response inhibition, whereas

manipulations of the noradrenaline system did.

Summary

Neuropsychological assessment shows great promise in

the investigation of impulsivity and its brain substrates.

These results support a key role for response inhibition, a

function linked to the right inferior frontal gyrus, in the

manifestation of impulsivity. Measures of response

inhibition will contribute to the search for psychiatric

endophenotypes, novel treatments, and more optimal

diagnostic classification systems for neuropsychiatric

disorders.
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Introduction
The term ‘impulsivity’ encompasses a multitude of

behaviours or responses that are poorly conceived,

premature, inappropriate, and that frequently result in

unwanted or deleterious outcomes [1]. We all engage

from time to time in impulsive acts, such as blurting out

critical comments without thinking, or buying expens-

ive items on the spur of the moment. In the Diagnostic

and Statistical Manual of Mental Disorders version IV

(DSM-IV) several neuropsychiatric disorders are either

classified as impulse control conditions or encompass

impulsive symptoms in the diagnostic criteria, including

attention deficit hyperactivity disorder (ADHD),

trichotillomania (repetitive hair-pulling), and substance

abuse. These extreme pathological manifestations of

impulsivity impair quality of life and everyday function-

ing, and as such represent important targets for

treatment intervention [2,3]. This article considers

the advantages of investigating impulsivity using

objective neuropsychological tests, and discusses recent

findings in relation to response inhibition. Methods of

assessment are described, followed by findings in

patient and relative studies. The neural and neuro-

chemical substrates of response inhibition are con-

sidered on the basis of human and animal work. Finally,

these data are integrated in relation to their clinical

implications, and future research directions.

Investigating impulsivity: advantages of
neuropsychological assessment
Although impulsive symptoms can be described from a

‘top-level’ syndromic perspective, and this is central to the

formal diagnosis of neuropsychiatric disorders in DSM-IV,

it is important to question whether impulsivity can be more

objectively quantified, and related to underlying brain

function. Self-report questionnaires have also been

developed to measure aspects of impulsivity, including

the Barratt Impulsiveness Scale (BIS-10) [4,5] and the

Eysenck Personality Questionnaire [6]. Typically, volun-

teers are asked to rate the extent to which particular items

describe their long-term personality traits, e.g. ‘I act on
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Figure 1 An example stop-signal paradigm [12,14]
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Patients or volunteers view single arrows appearing on-screen and make
speeded motor responses depending on the direction of each arrow. On
25% of trials, a stop-signal (e.g. auditory beep) occurs, signalling that the
individual should attempt to suppress their just-activated motor
response. By varying the time between the presentation of the go
stimulus and the occurrence of the auditory stop-signal, this task
provides a sensitive estimate of the time taken by the brain to suppress
prepotent motor responses, the stop-signal reaction time.
impulse’. Measures such as these are difficult to relate to

underlying neurobiological substrates, are not suitable for

repeated administration, and were generally developed for

assessing lifetime traits in healthy volunteers rather than in

patients [2,3]. They may also be susceptible to bias from

low self-awareness in some patient groups [7]. By contrast,

objective computerized cognitive assessment can be

linked to underlying neural substrates by examining

behavioural performance in patients with focal brain

lesions, and by using techniques such as neuroimaging

[8��] and transcranial magnetic stimulation [9]. By

using selective pharmacological agents and amino-acid

manipulations, the role of neurochemical systems in the

control of cognitive functions can be probed. For many

neuropsychological tests, equivalent versions have been

developed in the animal literature, which permits the finer

fractionation of frontostriatal mechanisms underpinning

cognition [10,11].

Several potentially dissociable cognitive domains relating

to impulsivity have been described in the literature.

These include the ability to collect and evaluate

information before reaching decisions (‘reflection’), the

ability to opt for larger delayed rewards over smaller more

immediate rewards (‘deferment of reward’) and the

ability to suppress motor responses that have been ren-

dered prepotent (‘response inhibition’) [12–14,15�,16].

The focus of the present paper is on this latter function,

response inhibition, which has been implicated in

the manifestation of motor impulsivity in a number of

neuropsychiatric disorders, notably ADHD.

Measurement of response inhibition
Response inhibition is assessed with go/no-go and

stop-signal paradigms. On go/no-go tasks, volunteers

are instructed to make speeded motor responses on

go trials (e.g. horizontal lines appearing on-screen)

but to withhold responses on no-go trials (e.g. vertical

lines). By including more go than no-go trials, responses

are rendered prepotent. Motor impulsivity is assessed in

terms of the number of inappropriate motor responses

to no-go stimuli, referred to as commission errors.

Stop-signal paradigms differ from go/no-go tests in that

they measure the ability to inhibit already-activated

motor responses [14]. As can be seen in Figure 1,

volunteers make speeded motor responses to directional

arrows appearing on-screen. On a subset of trials, a

stop-signal (e.g. auditory tone) occurs after presentation

of the go stimulus. By varying the time between go

stimulus presentation and the stop-signal, such

paradigms provide a sensitive estimate of the time taken

for the brain to inhibit responses. This is referred to as

the stop-signal reaction time, which is the key measure

of motor impulsivity [12,14]. An equivalent stop-signal

paradigm for use in rats has also been developed with

success [17–20].
Impaired response inhibition in patients with

dysregulated impulse control

Response inhibition deficits have been found in several

neuropsychiatric conditions linked to problems suppres-

sing inappropriate impulsive behaviour. ADHD is

regarded by many as an archetypal disorder of impulsivity.

Children with ADHD undertake behaviour described as

impulsive in DSM-IV, such as hitting out at other children,

initiating fights, or running into danger [21�]. Into adult-

hood, ADHD is associated with impulsive phenomena

such as increased criminality and substance abuse

[22–24]. ADHD has a profound negative impact on school

and work performance. Behavioural deficits in response

inhibition represent one of the most consistent neuropsy-

chological findings in children and adults with ADHD

[25,26].

Trichotillomania is an atypical impulse control disorder

according to DSM-IV, in which patients undertake

repetitive damaging hair-pulling that leads to debilitat-

ing and noticeable hair loss [27]. The investigation of

impulsivity in this condition is important as little is

known about the brain basis of the symptoms and

there are no established pharmacological treatment

algorithms [28]. Chamberlain et al. [29��] reported

impairments in response inhibition in patients with

trichotillomania, the magnitude of which correlated

significantly with subjective ratings of hair-pulling

severity. Patients with obsessive–compulsive disorder

(OCD), which shares overlap with trichotillomania

in terms of phenomenology and likely genetic under-

pinnings [28,30,31��], also showed impaired response

inhibition compared with controls [29��,32]. Similar
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impairments for OCD patients were also identified by

Penades and colleagues [33�].

Impulsivity is also a feature of substance dependence

according to DSM-IV. Symptoms include putting oneself

into danger, recurrent legal problems, and persisting

substance use despite worsening behaviours. Monterosso

and co-workers [34] found stop-signal response inhibition

deficits in 5–7-day abstinent chronic methamphetamine

abusers (free from other current axis-I diagnoses),

compared with non-user controls. The authors indicated

that further research was needed to evaluate whether

these deficits preceded substance abuse (i.e. represented

a risk factor) or rather arose as a result of the damaging

effect of chemical abuse on corticosubcortical circuitry.

Impaired response inhibition as a candidate

endophenotype

In the context of cognitive neuroscience, the term

‘endophenotype’ refers to intermediate markers of brain

dysfunction that may be of utility in elucidating the

aetiological basis of neuropsychiatric disorders [35,36��].

Computerized measures of cognition hold great potential

in the search for these intermediate measures [14,36��,37].

Operational criteria for an endophenotype include: (1) that

the marker be associated with an illness within the

population; (2) that it be heritable; (3) that is be ‘trait’

(i.e. capable of existing to some degree in the absence of

clinically significant symptoms); and (4) that it be present

with unexpectedly high frequency in unaffected relatives

[38,39]. The search for psychiatric endophenotypes is

still in its infancy, and only a handful of studies have

investigated cognition, including response inhibition, in

the unaffected relatives of patients to date.

In a study by Schachar and colleagues [40], ADHD

patients and their siblings (7–16 years of age) were

assessed on the stop-signal task. In comparison with

control subjects, affected siblings, unaffected siblings,

and patient probands all showed response inhibition

deficits. In a study of children with ADHD and their

siblings conducted by Waldman and colleagues [41��],

the validity of several potential executive function endo-

phenotypes was evaluated. Their data suggested greater

impairments compared with controls in ADHD probands

and their unaffected siblings for all executive function

measures examined, including response inhibition.

Impaired response inhibition fulfilled more criteria for

validity as an endophenotype than the other measures of

executive functioning. Elsewhere, in a recent study

by Chamberlain et al. [32], OCD patients with no

co-morbid diagnoses and their unaffected first-degree

relatives were compared with individuals with no known

family history of OCD on the stop-signal paradigm. Both

patients and their unaffected relatives showed response

inhibition deficits compared with controls.
Neural substrates of response inhibition

Multiple functional neuroimaging studies in healthy

volunteers have implicated the right prefrontal cortex,

especially the right inferior frontal gyrus (RIFG), in

response inhibition [14]. Furthermore, Aron and

colleagues [42,43] reported that patients with damage

to the right prefrontal cortex showed lengthened

stop-signal reaction times compared with healthy

controls, whereas patients with left hemisphere lesions

did not. The volume of damage to the RIFG correlated

significantly with the magnitude of the stop-signal

impairment. Consistent with a key role for the RIFG

in response inhibition, Chambers et al. [44��] reported

that disruption of this region using transcranial magnetic

stimulation impaired response inhibition in healthy

volunteers. By contrast, disruption of the right middle

frontal gyrus and right angular gyrus had no effect on

response inhibition. In a seminal study by Rubia et al.
[45], a stop-signal paradigm was adapted for neuroima-

ging purposes and was deployed in medication-naive

adolescents with ADHD. ADHD patients showed

abnormally reduced brain activation in the RIFG during

successful motor response inhibition (Figure 2), which

correlated with behavioural ADHD scores.

Recent work suggests that the subthalamic nucleus, a

region in the basal ganglia, may also be involved in aspects

of response inhibition. Lesions to midbrain regions

including the subthalamic nucleus lead to stop-signal

impairment in rodents (D.M. Eagle, T.W. Robbins,

personal communication). Aron and Poldrack [46��] ident-

ified significant activation in the RIFG and subthalamic

nucleus in healthy human volunteers during successful

stopping, using functional MRI. Activation was greater in

individuals with superior stopping capacity. The authors

speculated that the RIFG may exert top-down effects on

inhibition via connections to the subthalamic nucleus,

and are presently following up these findings using

diffusion tensor imaging, to assess white matter tract

connectivity between brain regions [47].

Neurochemical modulation of response inhibition

Serotonin has traditionally been assumed to be critically

involved in impulsivity [48]. Reduced quantities of sero-

tonin metabolites have been found in the cerebrospinal

fluid of individuals who committed suicide, and in violent

offenders [49–51]. Tyano et al. [52] recently reported

correlations between low plasma serotonin levels and

measures of violence/suicidal behaviour in suicide

attempters. Certainly animal data support a role for

serotonin in aspects of impulsivity [53]. There is, how-

ever, little evidence to support the use of serotonin-based

medications in the treatment of core impulsive motor

behaviour in ADHD. By contrast, psychostimulants such

as methylphenidate has a confirmed track record of

efficacy [54], and act to increase extracellular levels of
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Figure 2 Medication-naive adolescents with attention deficit hyperactivity disorder showed abnormally reduced activation in the

right inferior frontal gyrus during successful versus unsuccessful response inhibition [45]

Reprinted with permission from
American Psychiatric Publishing Inc.
noradrenaline and dopamine, by preventing reuptake via

transporter blockade and triggering release [55]. Other

drugs with efficacy in the treatment of ADHD, namely

atomoxetine (a selective noradrenaline reuptake

inhibitor) and modafinil (a wake-promoting agent), also

exert important effects on noradrenergic or dopaminergic

transmission [56,57]. Atomoxetine increased free levels

of prefrontal noradrenaline and dopamine but not

serotonin when given systemically to rats [56,58].

Although the mechanisms of action of modafinil are

incompletely understood, its behavioural effects in

animals were counteracted by alpha-1 noradrenergic

receptor antagonism [59]. It thus appears that despite a

traditional focus on serotonin, other neurochemicals are

involved in modulating aspects of impulsivity.

Several studies in healthy volunteers have suggested a

limited role for serotonin in motor impulsivity, assessed

with stop-signal tests. Clark et al. [60�] assessed

the effects of central serotonin depletion, using the

tryptophan depletion technique, on stop-signal per-

formance in healthy volunteers. They found no evi-

dence for the effects of this manipulation on response

inhibition. In other healthy volunteer studies,

Chamberlain et al. [61] likewise found that adminis-

tration of the serotonin 1A receptor agonist buspirone

had no effect on response inhibition with the same

paradigm; nor did administration of the selective

serotonin reuptake inhibitor citalopram have any effect

[62��]. These findings do not refute the likely involve-

ment of serotonin in other forms of impulsivity. As

noted previously, there is evidence for a relationship

between low brain serotonin levels and behavioural

facets of impulsivity such as suicidality [52] and

aggression [63].
In contrast to these null stop-signal findings relating to

serotonin, several studies reported beneficial effects of

manipulating other neurochemical systems on response

inhibition. Aron et al. [64] reported improvements in

response inhibition in adults with ADHD after the

administration of methylphenidate. Turner et al. [65]

reported improvements in response inhibition after the

administration of modafinil in adults with ADHD, and in

healthy volunteers [66]. In the same study that reported

no significant effect of the selective serotonin reuptake

inhibitor citalopram on response inhibition in healthy

volunteers, response inhibition was improved by the

selective noradrenaline reuptake inhibitor atomoxetine

(Figure 3) [62��]. Previously, Overtoom et al. [67] had

reported beneficial effects of the less selective selective

noradrenaline reuptake inhibitor desipramine in children

with ADHD, but no effects of L-DOPA (with predomi-

nantly dopaminergic actions). More recently, atomoxe-

tine was also found to improve response inhibition in

adults with ADHD (Chamberlain et al., in preparation).

Findings from experimental animals support an emerging

role for the noradrenaline system, in particular, in

impulse control. Systemic dosing with atomoxetine in

rats improved response inhibition on a stop-signal

analogue, and reduced impulsive errors on the five-choice

serial reaction time task [19,68��]. Modafinil and methyl-

phenidate improved response inhibition in the rat stop-

signal paradigm, and these effects were not blocked by

concurrent dopamine receptor antagonism, nor was

response inhibition affected by dopamine receptor

antagonism per se [20]. Also, direct infusion of the

alpha-2 adrenoceptor antagonist yohimbine into the

prefrontal cortex of non-human primates impaired inhibi-

tory control on a go/no-go paradigm, and was associated

with increased locomotor hyperactivity [69,70,71��].
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Figure 3 Atomoxetine (selective noradrenaline reuptake inhibi-

tor) improved response inhibition in healthy volunteers whereas

citalopram (selective serotonin reuptake inhibitor did not) [62��]
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These findings, together with others, implicate a role for noradrenaline in
certain forms of impulsivity. Reprinted with permission from Science.�
P<0.05 atomoxetine significantly improved response inhibition. SSRT,

stop-signal reaction time.
Clinical implications
Findings to date indicate that response inhibition is

subserved by a right-lateralized neural network encom-

passing the RIFG. Dysregulation of such circuitry

probably belies response inhibition deficits manifested

across several neuropsychiatric disorders associated with

impulsivity. Drugs with noradrenergic actions (psychos-

timulants, atomoxetine, modafinil) show efficacy in the

treatment of the impulsive features of ADHD, and were

shown to improve response inhibition in several proof-

of-concept studies in animals and humans. Consequen-

tially, these drugs should be evaluated for other

conditions associated with failures of impulse control

in large-scale clinical trials. The identification of

response inhibition deficits in unaffected relatives of

OCD and ADHD patients demonstrates the likely utility

of objective cognitive measures in the search for

endophenotypes to help clarify genetic factors confer-

ring susceptibility to these phenomenologically related

disorders. Such measures may also help to identify those

relatives ‘at risk’ who may require some form of clinical

support.

Conclusion
Research so far has made important contributions to our

understanding of the relationships between cognition,

brain function (anatomical and chemical), and the

impulsive features of neuropsychiatric disorders.

Multidisciplinary neuroscience approaches, using tests

of response inhibition and other cognitive functions

relating to impulsivity, will improve our understanding

of the aetiology of debilitating neuropsychiatric

disorders, and help to optimize treatment approaches

and future diagnostic classification systems.
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