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Obsessive-compulsive disorder (OCD) is characterized by obsessions (intrusive thoughts) and compulsions (repetitive ritualistic
behaviours) leading to functional impairment. Accumulating evidence links these conditions with underlying dysregulation of
fronto-striatal circuitry and monoamine systems. These abnormalities represent key targets for existing and novel treatment
interventions. However, the brain bases of these conditions and treatment mechanisms are still not fully elucidated. Animal
models simulating the behavioural and clinical manifestations of the disorder show great potential for augmenting our
understanding of the pathophysiology and treatment of OCD. This paper provides an overview of what is known about OCD
from several perspectives. We begin by describing the clinical features of OCD and the criteria used to assess the validity of
animal models of symptomatology; namely, face validity (phenomenological similarity between inducing conditions and
specific symptoms of the human phenomenon), predictive validity (similarity in response to treatment) and construct validity
(similarity in underlying physiological or psychological mechanisms). We then survey animal models of OC spectrum
conditions within this framework, focusing on (i) ethological models; (ii) genetic and pharmacological models; and (iii)
neurobehavioural models. We also discuss their advantages and shortcomings in relation to their capacity to identify
potentially efficacious new compounds. It is of interest that there has been rather little evidence of ‘false alarms’ for
therapeutic drug effects in OCD models which actually fail in the clinic. While it is more difficult to model obsessive cognition
than compulsive behaviour in experimental animals, it is feasible to infer cognitive inflexibility in certain animal paradigms.
Finally, key future neurobiological and treatment research areas are highlighted.
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Introduction
Obsessive-compulsive disorder (OCD) is a common neuropsy-
chiatric disorder, affecting roughly 2% of the adult population
worldwide (Zohar, 1999), and responsible for considerable
psychosocial morbidity (Bolton et al., 1995; Hanna, 1995;
Hollander et al., 2010). The illness is characterized by obses-
sions (recurrent unpleasant thoughts) and/or compulsions
(repetitive unwanted behaviours that the individual is unable
to resist) (APA, 2000). Obsessions and compulsions are expe-
rienced as unpleasantly insistent and intrusive. OCD patients
usually report a wide range of obsessive-compulsive (O-C)
symptoms in a number of overlapping behavioural domains,
some of which naturally cluster together, which may also vary
over time (Mataix-Cols et al., 2005; Katerberg et al., 2010). The
disorder usually emerges in childhood or early adulthood
(earlier in males) and runs a lifelong, fluctuating course (Skoog
and Skoog, 1999). Existing treatment with drugs and cognitive
behavioural forms of psychotherapy are usually only partially
effective and roughly one third of cases do not achieve an
adequate clinical response (Fineberg and Gale, 2005).

OCD is commonly complicated by the co-occurrence of
other ‘comorbid’ mental disorders, notably depression which
supervenes in up to two-thirds of clinical cases (Fineberg et al.,
2005a; Peris et al., 2010). Other disorders that are characterized
by O-C behaviours, such as O-C personality disorder, body
dysmorphic disorder, trichotillomania (repetitive hair-
pulling) and Tourette’s Syndrome (Hollander, 2008; Hollander
et al., 2010; Phillips et al., 2010) also tend to cluster with OCD,
occurring either within the same individual or within close
family members and implying the possibility of shared patho-
physiological mechanisms. Indeed, this so-called ‘obsessive-
compulsive spectrum disorders (OCSDs)’ is characterized by
considerable phenotypic heterogeneity and overlap. More-
over, there is evidence of overlap in the treatment-response
across some disorders. Thus, the complexity and clinical mor-
bidity associated with OCD is high (Phillips et al., 2010) and
new and better treatments are sorely needed.

Multiple layers of evidence link OCD with dysregulation of
fronto-striatal neuro-circuitry and associated monoamine
systems. However, attribution of cause and effect may easily be
confounded by the multiplicity of associated symptom
domains that occur within such a complex mental disorder.
Translational research investigates underlying mechanisms,
and may therefore be more able to pinpoint neural contribu-
tions driving specific aspects of mental disorders. Convergent
evidence from translational studies, largely in human subjects,
suggests that a tendency towards behavioural disinhibition
(Chamberlain et al., 2005), presumably resulting from failures
in ‘top–down’ cortical control of fronto-striatal neural circuits,
or alternatively from over-activity within striatal ‘habit’ cir-
cuitry, may underpin aspects of behavioural compulsivity that
are found in OCD and related disorders (Fineberg et al., 2010;
Padhi et al., 2010). These abnormalities represent key targets
for existing and novel treatment interventions.

As our understanding of the behavioural, cognitive,
neural and genetic substrates of OCD and related OCSDs
advances, the search and evaluation of appropriate animal
models that can be used to test out the efficacy of potential
new treatments and their mechanisms of action in early-
phase studies becomes increasingly relevant. To date, no uni-

versally accepted animal model for OCD exists. However,
models of repetitive habits and inhibitory control problems
represent possible equivalents of aspects of compulsive
behaviour in OCD patients, and may offer potential for
enhancing our understanding of the pathophysiology and
treatment of OCD and spectrum disorders. Such models need
to be validated, in terms of being seen to accurately represent
the human condition, and to have the capability to be reli-
ably generated. This review aims critically to evaluate existing
animal models of relevance for OCD and related disorders
against these criteria. Several studies have provided impor-
tant information regarding the neural and neurochemical
substrates of OCD that could be used to endorse any such
model. In addition, the availability of somewhat effective
pharmacological treatments, such as clomipramine and the
selective serotonin reuptake inhibitors (SSRIs) (Fineberg and
Gale, 2005), provides an ancillary criterion for model valida-
tion, although their precise mode of action in OCD remains
incompletely characterized. In this paper, we focus on (i)
ethological models; (ii) genetic and pharmacological models;
and (iii) neurobehavioural models. We discuss their advan-
tages and shortcomings with examples of compounds that
are of clinical benefit. It is of interest that there has been
rather little evidence of ‘false alarms’ for therapeutic drug
effects in OCD models which actually fail in the clinic. Those
cases that have arisen may result from an incomplete phar-
macological characterization of the model.

Validation criteria for animal models

No single animal model can account for the entire psychiatric
syndrome it purports to represent. Therefore, the validation
criteria that each model is expected to fulfil in order to dem-
onstrate its validity are, for practical purposes, largely deter-
mined by the objective of the model and its intended use
(McKinney and Bunney, 1969; Matthysse, 1986; Willner,
1991; Geyer and Markou, 1995; Mckinney, 2000; Geyer and
Markou, 2002). According to the well-known classification by
Willner 1984), refined by Geyer and Markou (Geyer and
Markou, 1995, Geyer and Markou, 2002), the criteria for
assessing animal models are grouped into those used to estab-
lish face validity (phenomenological similarity between
inducing conditions and specific symptoms of the human
phenomenon), predictive validity (the extent to which an
animal model allows accurate predictions about the human
phenomenon based on the performance of the model, for
example, similarity in response to pharmacological or behav-
ioural treatment) and construct validity (similarity in underly-
ing physiological or psychological mechanisms). Reliability,
on the other hand, requires that the behavioural outputs of
the model are robust and reproducible between laboratories.
Geyer and Markou recommend that the evaluation of animal
models in neurobiological research should principally rely on
reliability and predictive validity, with face and construct
validity, which tend to be, respectively, highly subjective or
dependent upon assumptions and inferences, reserved as sec-
ondary criteria. Thus, in order to have the capacity to predict
the response of a mental disorder such as OCD to a new
pharmacological treatment, a proposed animal model needs
to produce a specific, measurable behaviour reliably, which is
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pharmacologically analogous with the clinical disorder. On
the other hand, predictive validity can be unduly restrictive
and lead to the generation of ‘me-too’ compounds (as is the
case for antidepressants) as opposed to the enhanced under-
standing and capacity for innovation which can be attained
via construct validity.

Clinical profile of OCD

The hallmark symptoms of OCD involve the unwanted and
needless repetition of thoughts and actions. Based on factor
analysis, OCD symptoms have been split into four phenotypic
categories (Leckman et al., 1997; Summerfeldt et al., 1999;
Cavallini et al., 2002): (i) aggressive sexual and religious obses-
sions with checking compulsions; (ii) symmetry obsessions
with compulsions of classification, sorting and repetitiveness;
(iii) obsessions of contamination with cleaning compulsions;
and (iv) hoarding. Many of these symptoms resemble normal
childhood behaviour that disappears during development.
Such behaviour appears habit-driven and may be evolution-
arily conserved, inasmuch as it is expressed across species (e.g.
hoarding, grooming, sorting) and may also fulfil an adaptive
role under conditions of privation (Leckman et al., 2010). The
maturation of the prefrontal cortex and its subcortical connec-
tions may result in the natural suppression of these habitual
acts, in favour of more adaptive, goal-directed behaviours
(Gillan et al., 2010), and thus, by inference, OCD may arise at
least in part as a result of a relative failure of this ‘top-down’
suppression. There is some evidence that in OCD patients,
these symptom clusters differ in terms of constituent temporal
and spatial dimensions of the behaviour (Zor et al., 2010),
treatment response (Black et al., 1998; Mataix-Cols et al., 1999;
Winsberg et al., 1999, Mataix-Cols et al., 2002), co-morbidity
with other psychiatric disorders (Samuels et al., 2002),
imaging profile (Mataix-Cols et al., 2004; van den Heuvel et al.,
2005) and genetic predisposition (Leckman et al., 2003; 2010;
Katerberg et al., 2010). Thus, in OCD, the heterogeneity of
observed symptomatology may be underpinned by subtly
differing pathophysiological mechanisms.

Traditional learning theory applied to OCD proposes that
an increase in anxiety occurs when an obsessive thought (e.g.
of committing an aggressive act) is experienced and that this
anxiety subsequently drives the urge to perform a neutralizing
ritual (e.g. checking for harm) that has a negatively reinforcing
effect, leading to a vicious cycle of obsession and compulsion
(Drummond and Fineberg, 2007). In line with this theory,
OCD has been categorized as an Anxiety Disorder in the major
diagnostic classificatory systems such as the Diagnostic and
Statistical Manual IV (APA, 2000), implying a key role for
anxiety dysregulation in its aetiology. However, the role of
anxiety in the pathophysiology of OCD has always been
controversial, and its nosological status is currently under
review (Hollander, 2008; Hollander et al., 2008; Phillips et al.,
2010). Whereas OCD symptoms do generally appear to worsen
under psychosocial stress, the expression of psychological and
physical anxiety symptoms as part and parcel of the syndrome
is unreliable and emotions other than anxiety, such as horror
or disgust, may be more prominent (Sprengelmeyer et al.,
1997). Depressive symptoms are also common in OCD. The
depressive syndrome is associated with relatively increased

worry and rumination and less vegetative disturbance com-
pared with major depressive disorder (Fineberg et al., 2005a).
Moreover, the depressive symptoms respond to pharmacologi-
cal treatment in tandem with the OCD (Hoehn-Saric et al.,
2000), suggesting that they are integral to this disorder.

Individuals with OCD also commonly present with move-
ment disorders, most notably tics, that can vary in severity
from the relatively rare, explosive actions associated with
Tourette’s syndrome to commoner mild, barely perceptible
facial twitches that are focused around the eyes, nose and
mouth and that appear similar to ‘neurological soft signs’
(Hranov and Fineberg, 2010). The presence of co-morbid tics
in children and adolescents with OCD predicts a positive
outcome in adulthood, whereas primary hoarding symptoms
are associated with persistent OCD (Bloch et al., 2009).
Indeed, the OCSDs may, to a greater or lesser extent, repre-
sent ‘formes-frustes’ of OCD. Of these disorders, body dys-
morphic disorder (BDD), most closely resembles OCD
symptomatically (Phillips et al., 2010). In BDD, an obses-
sional preoccupation with irregularities of bodily appearance
leads to compulsive checking and remediative acts. In con-
trast, in trichotillomania, rumination is less prominent and
the repetitive hair-pulling may produce positively reinforc-
ing, soothing effects (Chamberlain et al., 2007c; 2009).

Neurobiological substrates of OCD

The essential features of OCD and related spectrum disorders
most readily captured by animal models are the maladaptive
and perseverative behavioural and cognitive outputs (Bou-
lougouris et al., 2009). For example, the repetitive rituals in
OCD, or recurrent hair-pulling in trichotillomania. These
behaviours are thought to be mediated by dysfunctional
nodes within the fronto-striatal circuitry, possibly mediated
by glutamate neurotransmission, under modulation by
altered dopaminergic or serotoninergic influences. In OCD,
neuroimaging studies have implicated in particular the orb-
itofrontal cortex (OFC) and the caudate nucleus, and cingu-
lotomy has had a limited therapeutic success (Baxter, 1999).
Moreover, there may be grounds for considering OCD spec-
trum disorders as reflecting impaired functioning of several
distinct fronto-striatal ‘loops’ (Graybiel, 1997; Jog et al., 1999;
Graybiel and Rauch, 2000; Chamberlain et al., 2005; Nakao
et al., 2005; Whiteside et al., 2006; Menzies et al., 2008).

Pharmacological profile of OCD

OCD responds to a characteristically narrow range of phar-
macological treatments. According to a considerable body of
evidence from randomized controlled clinical trials, drugs
with potent inhibitory effects on the synaptic reuptake of
serotonin, such as the non-selective tricyclic clomipramine
and the more highly selective serotonin reuptake inhibitors
(SSRIs), are reasonably effective in approximately two thirds
of cases. The treatment effect develops slowly and gradually
over weeks and months, and higher SSRI doses, and extended
treatment duration appear to produce greater effect sizes
(Fineberg and Gale, 2005). Importantly, treatments found to
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be effective in other anxiety and affective disorders, such as
antidepressants that act via noradrenergic mechanisms, ben-
zodiazepines and mood stabilizers are not effective in OCD.
There is very little evidence-based treatment available for
SSRI-resistant illness. Positive results from a small number of
randomized controlled trials show limited extra benefit from
adjunctive first and second generation antipsychotics taken
in low or modest doses (Fineberg et al., 2005b; 2006a), and
lesser evidence from a randomized trial (Ninan et al., 2006)
supports increasing the dose of SSRI above formulary limits
(Fineberg et al., 2006b; Pampaloni et al., 2010). Tic-related
OCD may respond less well to SSRI monotherapy and prefen-
tially to adjunctive antipsychotic (Fineberg et al., 2006c).
Antipsychotics represent first-line treatment for Tourette’s
Syndrome and it is therefore, interesting that their combina-
tion with SSRIs shows greater efficacy in tic-related OCD
(Bloch et al., 2006). Compulsions associated with autistic dis-
orders may also respond to low-dose SSRI and to antipsychot-
ics (Kolevzon et al., 2006). Trichotillomania may respond to
SRIs and to antipsychotics, though confirmation in well-
powered controlled studies is required (Chamberlain et al.,
2007c). Trichotillomania has also been shown to respond to
treatment with the glutamate modulator N-acetyl cysteine in
a randomized placebo-controlled trial (Grant et al., 2009).
Promising results from experimental open-label treatment of
small numbers of OCD cases with alternative adjunctive
glutamatergic compounds, such as riluzole and memantine,
remain to be validated in controlled clinical trials.

The pharmacological mechanisms underpinning the anti-
obsessional treatment response remain poorly understood.
The superior efficacy of SSRI in doses higher than those needed
to completely inhibit the serotonin transporter suggest that
other receptor mechanisms in addition to increased intra-
synaptic serotonin concentrations may be relevant. The
extended development of the treatment effect implies the
recruitment of adaptive processes such as neurotransmitter
receptor modulation, perhaps focussed at neurones within
relevant neuro-circuitry such as the OFC and/or caudate
nucleus, that may take days or weeks to develop (Blier and de
Montigny, 1998). Evidence from pharmacological challenge
studies in which the non-selective serotonin receptor agonist
m-chlorophenylpiperazine (mCPP) induced OCD symptoms
that were blocked by pre-treatment with clomipramine or SSRI
(Zohar et al., 1988; Hollander et al., 1991), implicate serotonin
receptors in the pathophysiology and the treatment response.
There is evidence from ligand-based positron emission tomog-
raphy studies of striatal and cortical alterations in 5-HT2A
receptors and in striatal D2 receptors in OCD (Denys et al.,
2004b; Westenberg et al., 2007). Interactions between seroto-
nin and dopamine systems have also been inferred. In rats,
co-administration of quetiapine with fluvoxamine, a combi-
nation with established efficacy in OCD (Fineberg et al.,
2006c), robustly increased dopamine release in the prefrontal
cortex (Denys et al., 2004a) and this effect has been suggested
to play a possible role in the treatment response.

Lucey et al. (1993) suggested the involvement of the cho-
linergic system in OCD; compared with normal subjects,
OCD patients exhibited an increased growth hormone
response after pyridostigmine administration, providing evi-
dence of cholinergic hypersensitivity (Lucey et al., 1993).
Glutamate has also been implicated in OCD symptomatol-

ogy; administration of substances that act upon glutaminer-
gic receptors caused exacerbation of compulsive behaviour in
a genetic model of OCD and Tourette syndrome (Mcgrath
et al., 2000). Moreover, there have been attempts to treat
OCD using D-cycloserine, which is active at the glycine site of
the NMDA receptor. In addition, during the last years neu-
ropeptides and gene steroids have been implicated in OCD
pathophysiology (Lochner et al., 2004a,b). It should never-
theless be noted that, although all these data are limited, they
do not contradict the prevailing theory of OCD pathogenesis
as resulting from a dysmodulation of orbitofrontal-striatal
circuitry via serotoninergic and dopaminergic mechanisms.

Validating animal models for OCD

Animal models of OCD spectrum disorders have generally
fulfilled the criteria of face validity, but have sometimes been
based on psychological theorizing, thus attempting the deeper
level of modelling ‘construct validity’. In a seminal experi-
ment, Solomon et al. (1953) paired electric shocks with a light
to condition dogs to become anxious and escape when the
light bulb was switched on (Solomon et al., 1953). This escape
behaviour was conceptualized as being close to a compulsive
ritual in that it led to immediate relief. By preventing escape
(‘response prevention’) when the light bulb was turned on,
Solomon subsequently induced extinction of the conditioned
anxiety and of the compulsive urge to escape. In translating
aspects of this model to the human condition, early behav-
iourists such as Meyer (1966) developed exposure and
response prevention as an effective form of psychotherapy for
OCD (Meyer, 1966). In this approach, Meyer (1966) exposed
patients to anxiety-evoking stimuli and constant staff super-
vision to prevent compulsions. Predictive validity can also be
employed to some extent in OCD models, given the known,
but largely unexplained, efficacy of the SSRIs and other less
widely evaluated candidate treatments such as D1 receptor
antagonists and specific 5-HT receptor agents.

Animal models of OCD

Existing animal models for OCD may be grouped into natu-
rally occurring ethological models and laboratory-based
genetic, pharmacological and neurobehavioural models.

Ethological models (Table 1)
Ethological models focus on spontaneous persistent behav-
iours that resemble OCD or more likely trichotillomania.
They represent a source of naturalistic stereotypies that may
be informative about OCD spectrum disorders (Stein et al.,
1994). In general, they have good face validity (in being
repetitive and superficially resembling common human com-
pulsions) and some show predictive validity in terms of their
response to drug treatment, but low practicality and reliabil-
ity. Such behaviours are often elicited in veterinary contexts
and may be attributed to stressful environments, for example,
psychogenic alopecia in cats (Swanepoel et al., 1998), crib-
bing in horses (Luescher et al., 1998) and repetitive pacing in
several species. Other such disorders include tail-chasing
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(Brown et al., 1987), fur-chewing and acral lick dermatitis
(paw licking) in dogs (Rapoport et al., 1992); feather-picking
in birds (Grindlinger and Ramsay, 1991); wheel-running and
allogrooming (or ‘barbering’, akin to trichotillomania) in
mice (Garner et al., 2004a,b). For behaviours that represent
natural responses under stress, some degree of construct
validity for compulsions is also inferred inasmuch as the
compulsive behaviours are performed in states assumed to
correspond to anxiety. These include marble-burying in mice
(the use of bedding material to bury noxious/harmless
objects), which may be induced by basic fear avoidance
mechanisms (Ichimaru et al., 1995), displacement behaviour
in the face of the thwarting of goal-directed activities includ-
ing ‘schedule induced polydipsia’ (Robbins and Koob, 1980;
Woods et al., 1993) and food-restriction-induced hyperactiv-
ity (Altemus et al., 1996). Both stereotypies and schedule-
induced polydipsia have been considered as ‘coping
responses’ that hypothetically reduce stress, akin to compul-
sions. This hypothesis, however, has proven difficult to test
experimentally and may well not apply to all forms of
stereotypy.

Some of these models have tested the effects of SSRIs in
comparison to drugs ineffective in OCD (Winslow and Insel,
1991; Rapoport et al., 1992; Woods et al., 1993; Altemus et al.,
1996; Nurnberg et al., 1997). For example, the efficacy of
clomipramine in OCD and trichotillomania was predicated
by observations of its remediating effects on canine lick der-
matitis (Swedo et al., 1989; Rapoport et al., 1992). In addition,
the SSRIs, fluvoxamine and citalopram, clomipramine and a
selective, non-peptidergic NK(1) receptor antagonist
(RP67580) were all observed to block marble-burying in mice
(Millan et al., 2002; Wolinsky et al., 2006). Although the bio-
logical bases of this behaviour remain unclear, these observa-
tions hint that NK(1) receptors may be implicated in
compulsive disorders. However, it is possible that these
models relate more to anxiety and the behavioural response
to stress than to OCD per se. Agomelatine, a mixed melatonin
agonist and 5-HT2C antagonist with established antidepres-
sant and anxiolytic effects in clinical populations, has also
been shown to reduce stress-induced marble burying in mice
(Hamon et al., 2005), suggesting potential efficacy in OCD
that is in need of validation in a clinical population.

Genetic models of OCD (Table 1)
Several studies indicate that the pathogenesis of OCD has a
genetic component. Three genome-wide linkage studies of
OCD have so far been published (Hanna et al., 2002; 2007;
Shugart et al., 2006).

So far, only single-nucleotide polymorphisms in the
glutamate transporter gene SLC1A1, on chromosome 9p24,
have been found to be associated with OCD. This transporter
is widely expressed in neurones and also involved in cysteine
transport. Moreoever, sequence variations in SLC1A1 are
also associated with susceptibility to atypical antipsychotic-
induced O-C symptoms (Kwon et al., 2009). According
to other association studies, several candidate genes have
been found as possible risk factors for OCD, including those
that involve the serotonergic (e.g. serotonin transporter
5-HTTLPR, 5-HT2A receptor, 5-HT1D receptor (Zohar et al.,
2004), TPH2 (Mossner et al., 2006), dopaminergic (e.g. DRD4,
COMT) (Pooley et al., 2007) and glutamatergic system (e.g.

SLC1A1) (Wendland et al., 2009). One murine model of
autism, in which a genetically engineered 6.3 Mb duplication
of the human 15q11-13 chromosome leads to increased
anxiety and impaired reversal learning associated with
increased transmission at 5-HT2C receptors, appears to have
some relevance to compulsive behaviour (Nakatani et al.,
2009).

Animal models for OCD were not created on the basis of
a known mutation in humans that was found to be related to
OCD. These models rely on genetic manipulations on mice
and are largely based on face validity and behavioural simi-
larity, that is, the behaviour of genetically modified mice
resembles in some specific respects that of OCD patients.
Some of these responses show clear superficial parallels to the
compulsive grooming that characterizes trichotillomania,
and perhaps more obliquely to the more elaborate rituals of
OCD, including those related to cleaning and checking. It
seems likely that these examples of stereotyped behaviour are
mediated by basal ganglia, given the known role of the
caudate-putamen in stereotyped behaviour produced by psy-
chomotor stimulant drugs such as amphetamine (Creese and
Iversen, 1975) and in normal grooming sequences (Aldridge
and Berridge, 1998).

Greer and Capecchi (2002) reported that mice with muta-
tions of the Hoxb8 gene (expressed in the OFC, the striatum
and the limbic system, all of which are implicated in OCD
pathophysiology) groomed excessively to the point of hair
removal and skin lesions compared with their control coun-
terparts (Greer and Capecchi, 2002). These mutant mice also
excessively groom their wild-type cage mates, suggesting that
the excessive grooming behaviour is centrally generated. Evi-
dence suggests that in the mouse brain, the only detectable
cells derived from Hoxb8 cell lineage are microglia (Chen
et al., 2010), and the far-reaching role of such microglia in the
regulation of the brain’s immune activity is becoming
increasingly apparent. Normal bone marrow transplantation
into lethally irradiated Hoxb8 mutant mice rescues the exces-
sive grooming behaviour. Thus, pathological grooming
behaviour observed in Hoxb8 mutant mice may originate
from defective microglia within OCD-relevant neurocircuitry,
and the HoxB8 model offers a paradigm for exploration – at
the molecular genetic and cellular levels – of the mechanism
by which perturbation of immune function may lead to O-C
symptomatology. The HoxB8 model is promising in that
excessive grooming has superficial similarity to the symp-
tomatology of OC spectrum disorders and may involve
neural systems similar to the ones implicated in OCD, yet, it
lacks predictive validity in terms of drug treatment. Immu-
nological dysfunctions such as these are becoming widely
linked to many psychiatric disorders including OCD and
autism (Leonard and Swedo, 2001; Ashwood et al., 2010).

In the D1CT-7 mouse model, genetic manipulation of
dopamine (D1) receptor function using a neuro-potentiating
cholera toxin, expressed in the pyriform cortex and
amygdala, produces perseveration and repetitive jumping.
These effects are probably ultimately mediated via striatal
mechanisms (Campbell et al., 1999a,b,c). The repetitive
jumping behaviour may be exacerbated by the administra-
tion of yohimbine, an anxiogenic drug with antagonist
actions at alpha-2 adrenergic receptors inter alia (Mcgrath
et al., 1999). Although the D1CT-7 model is promising in the
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sense that some of the behaviours exhibited by the mice bear
similarities to those observed in OCD, and again implicates
common neural systems as in OCD, the pharmacological
isomorphism of the model with OCD is necessary for
strengthening the model’s relevance to OCD. To date, only
the effects of dopaminergic (i.e. cocaine, and D1 and D2
antagonists) and noradrenergic (clonidine) agents have been
assessed (Campbell et al., 1999b; Nordstrom and Burton,
2002), and thus again, predictive validity is absent.

Knock-down of the dopamine transporter in mice (DAT
KD mice) produces ‘sequential super-stereotypy’ with the per-
severative performance of complex chains of grooming
behaviour (Berridge et al., 2005). Likewise, a knock-down of the
5-HT2C receptor leads to perseverative ‘head-dipping’ or the
excessively orderly chewing of screen material (Chou-green
et al., 2003), a compulsive behaviour which – together with
stereotypic locomotion and excessive self-aggressive groom-
ing – has also been shown in rats following chronic lesions of
the median raphé nucleus (Hoshino et al., 2004). However,
the data obtained from this genetic preparation do not match
with other data investigating the same receptor, possibly
because of unspecified compensatory processes that may
develop in the transgenic preparation, as recent pharmaco-
logical data indicate the opposite finding that 5-HT2C receptor
activation is associated with increased compulsivity (Tsaltas
et al., 2005; Boulougouris et al., 2008).

The Slitrk family of transmembrane proteins are highly
expressed in the nervous system (Zuchner et al., 2006). The
function of Slitrks during development of the nervous system
has yet to be clearly defined, though they are thought to
regulate axon outgrowth during development. A recent study
in Slitrk5-/- mice demonstrated that loss of the neurone-
specific transmembrane protein, SLIT and NTRK-like protein-5
(Slitrk5), leads to OCD-like behaviours, which manifests as
excessive self-grooming and increased anxiety-like behaviour,
and is alleviated by the SSRI, fluoxetine. The knockout mice
also show selective over-activation of the OFC, abnormalities
in striatal anatomy and cell morphology and alterations in
glutamate receptor composition, which contribute to defi-
cient corticostriatal neurotransmission. Slitrk5 may be an
essential molecule for normally functioning corticostriatal
synapses and its knock-down may provide a new mouse model
of OCD-like behaviours with a degree of predictive, as well as
construct and face validity (Shmelkov et al., 2010).

The Sapap 3 gene is responsible for synaptic scaffolding
and migration of glutamate nerve cells from the caudate to
the orbitofrontal cortex. A recent study (Welch et al., 2007)
found that mice with a deletion of the Sapap3 gene groomed
themselves excessively, exhibited increased anxiety-like
behaviour, and had corticostriatal synaptic defects, all of
which were preventable with lentiviral-mediated expression
of Sapap3 in the striatum. The behavioural abnormalities
were also reversible with fluoxetine. Further experimentation
showed that variation within the human Sapap3 gene was
associated with grooming disorders (pathologic nail biting,
pathologic skin picking and/or trichotillomania), suggesting
that Sapap3 is a promising functional candidate gene for
human grooming disorders (Bienvenu et al., 2009).

In summary, although the genetic models of OCD offer
good face validity and behavioural similarities with human
OCD, there is often a lack of evidence on the pharmacologi-

cal isomorphism of these models with OCD. However, if
these models were to fulfil the criterion of predictive validity,
they may provide great insight for our understanding of the
neurochemical mechanisms of OCD.

Pharmacological animal models of OCD
Pharmacological models tend to be based on dopamine-
induced stereotypy produced by high doses of stimulant
drugs such as d-amphetamine and cocaine (Lyon and
Robbins, 1975) and appear superficially appealing as models
for OCD. Stereotypies in rodents typically consist of gnawing
and licking with repetitive sideways movements of the head,
which may represent vestiges of orienting behaviour. They
can be elaborated in such models to include grooming
(including allogrooming) (Sahakian and Robbins, 1975) and
perseverative operant behaviour in which rats may continue
to work for food they do not eat (Robbins and Sahakian,
1983). However, there is sufficient evidence to question
whether stimulant induced stereotypies represent a true cor-
relate of compulsive behaviour. For example, DICT-7 mice
that experience D1 receptor potentiation exhibit reduced ste-
reotypy after treatment with cocaine, suggesting that drug-
induced stereotypy and the stereotypies produced by
enhanced D1 receptor over-expression do not lie on the same
continuum (Campbell et al., 1999b). Furthermore, in clinical
studies, single doses of d-amphetamine have been shown to
ameliorate OCD symptoms (Insel et al., 1983; Joffe et al.,
1991). Notwithstanding, Szechtman et al. (1998) have shown
that the D2/D3 DA receptor agonist quinpirole leads to
behaviour that can be analysed as a form of repetitive ‘check-
ing’ in rats (Szechtman et al., 1998). Specifically, following
drug administration (quinpirole 0.5 mg·kg-1 or saline, twice
weekly for 5 weeks), rats were placed individually into an
open field with four objects at fixed locations and their activ-
ity was recorded for 55 min. Compared with saline,
quinpirole-treated rats visited two locations more frequently
than controls and at these sites exhibited a ‘ritual-like’ set of
motor activities. Moreover, this behaviour is reduced by treat-
ment with clomipramine, consistent with it being a plausible
model for OCD.

Perseveration is a term that can be applied to a variety of
behavioural outputs ranging from relatively simple to
complex. In ‘simple’ cases, a motor output is performed
repetitively, whereas ‘complex’ perseveration includes activi-
ties such as repetitive approach towards a specific, perhaps
moving, goal or persistence in complex sequences of operant
behaviour, for example in which rats persist in lever-pressing
for food they do not eat. In this type of model, administra-
tion of a 5-HT2A receptor antagonist had only weak effects on
compulsive lever pressing (Flaisher-Grinberg et al., 2008). In
addition, both spontaneous (Yadin et al., 1991) and rein-
forced delayed alternation behaviour (Tsaltas et al., 2005) can
become perseverative if the animal continues to make the
previous choice. In the rewarded T-maze alternation rat
model, Tsaltas et al. (2005) found that administration of
mCPP, a mixed serotonin agonist with potent 5-HT2C agonist
effects, increased persistence or compulsivity of responding,
whereas chronic pre-treatment with an SSRI (fluoxetine), but
not a benzodiazepine or desipramine, abolished the effects of
mCPP. These results mirror those seen in OCD patients,
where acute pharmacological challenge with mCPP exacer-
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bated OCD symptomatology, and this effect was attenuated
by pretreatment with fluoxetine (Hollander et al., 1991) and
clomipramine (Zohar et al., 1988). These factors suggest the
rewarded T-maze alternation rat model may represent a plau-
sible proxy for OCD. Challenge with the 5-HT1B receptor
agonist naratriptan had no effect on compulsivity within this
model (Tsaltas et al., 2005), suggesting a specific function for
the 5-HT2C receptor in OCD, which may be down-regulated
by chronic SSRI treatment. Activation of the 5-HT2C receptor
has also been shown to induce self-grooming in rats, further
supporting the hypothesis that selective stimulation of
central 5-HT2C receptors exacerbates OCD symptoms (Graf,
2006). Consistent with these findings, Boulougouris et al.
(2008) found that a 5-HT2C receptor antagonist improved
perseverative responding in rats during reversal learning (see
below) (Boulougouris et al., 2008). The same effect was
observed in a spatial alternation model of OCD: 5-HT2C, but
not 5-HT2A, receptor antagonism blocked the mCPP-induced
directional persistence. The novel antidepressant ago-
melatine, which shows a degree of selectivity for
5-HT2Creceptor antagonism, suppressed stress-induced
glutamate release in the prefrontal cortex of stressed rats, in
addition to reduced stress-induced marble burying (see
above) suggesting a possible role in anxiety and OCD (Tardito
et al., 2010). Blockade of stress-induced increase of glutamate
release in the rat prefrontal/frontal cortex by agomelatine
involves synergy between melatonergic and 5-HT2C receptor-
dependent pathways.

Neurobehavioural models of OCD
Various aspects of human behaviour can be successfully mod-
elled in animals. Neuropsychological and brain imaging
studies in OCD patients and their unaffected first-degree rela-
tives revealed performance and/or neural processing deficits
in several forms of cognitive or behavioural flexibility and in
inhibitory response control: (i) reversal learning, (ii) extra-
dimensional attentional set-shifting and (iii) motor impulsivity;
these different forms of behaviour are normally modulated in
humans and other animals including rats and monkeys by (i)
serotonin, (ii) catecholamine (i.e. dopamine and noradrena-
line) and (iii) noradrenaline respectively. These impairments
are thought to contribute towards the development of ‘cog-
nitive inflexibility’ and ‘motor impulsivity’ as endopheno-
typic traits within OCD families (Chamberlain et al., 2005;
2007b; Chamberlain and Menzies, 2009).

Reversal learning. Reversal learning refers to the reversal of
reinforcement contingencies in a two-choice discrimination
paradigm, such that the response to a previously rewarded
stimulus is now punished and vice versa. Impairments of such
reversal learning may reflect perseveration in responding to a
formerly reinforced stimulus, even though its spatial position
is shifted over trials. OCD patients and their unaffected rela-
tives have both been shown to exhibit a reduced blood
oxygen level-dependent response in the OFC during visual
reversal learning, suggesting a possible neuroendophenotype
for OCD (Chamberlain et al., 2008). In marmoset monkeys,
impaired visual (object) reversal learning is induced not only
by orbitofrontal lesions (Dias et al., 1996), but also by 5-HT
depletion, specifically within the prefrontal cortex (Clarke

et al., 2004) and in later studies when restricted to the OFC
(Clarke et al., 2005; 2007). This behaviour appears to be selec-
tively perseverative (rather than resulting from excessive
avoidance of the previously non-reinforced stimulus) in
nature, insofar as the reversal learning returns to normal if
the previously rewarded stimulus is substituted by a novel
one (Clarke et al., 2007). It is important to realize that this
perseverative behaviour does not simply represent enhanced
resistance to extinction; in fact, OFC 5-HT loss does not
enhance responding in the extinction of a visual discrimina-
tion, although such animals are biased in their responding to
the formerly reinforced stimulus. By contrast, selective
dopamine depletion from the OFC causes no such bias, but
leads to great persistence in responding in extinction (Walker
et al., 2009). It is important for this model that involvement
of the striatum is also confirmed. The OFC projects to the
medial striatum and nucleus accumbens in marmosets
(Roberts et al., 2007). Moreover, excitotoxic lesions of the
medial striatum also lead to enhanced perseverative behav-
iour during reversal (Clarke et al., 2008). Thus, specific
orbitofrontal-striatal loops are implicated in this form of cog-
nitive rigidity.

Overall, although there is evident translation from rodent
to monkey and humans, including OCD patients for the
neural substrates of reversal learning deficits, there has been
little attempt thus far to remediate reversal learning deficits
in these studies of non-human primates, although reversal
learning (though of the spatial rather than visual object rever-
sal type) has been used to assess 5-HT agents in rats (Bou-
lougouris et al., 2008). Hence, predictive validation of the
reversal learning model has been limited. However, a recent
study has shown an obvious relationship among reversal,
5-HT and effects of stress in rats, with elevated stress being
associated with impaired reversal learning (Lapiz-Bluhm
et al., 2009). This may demonstrate an important relationship
between rigidity induced by a cortical lesion in conjunction
with effects of stress (presumably leading to anxiety), medi-
ated by the ascending 5-HT system.

Extra-dimensional (ED) set shifting. In clinical studies,
another common form of perseverative responding involves
derangement of attentional set-shifting, exemplified by perse-
veration of a learned rule or stimulus category/dimension
(such as ‘sort by the perceptual category shape’) in the Wis-
consin Card Sort Test. Such impairment may occur as a result
of frontal lobe damage (see below). In work by Chamberlain
and colleagues, patients with OCD and their unaffected first-
degree relatives showed impaired extra-dimensional set-
shifting on the CANTAB intra-dimensional – ED task (where
subjects are impaired in shifting attention from one percep-
tual dimension (or aspect) of a complex stimulus to another
(Chamberlain et al., 2006; 2007b). OCD patients with con-
current OCPD were significantly more affected (Fineberg
et al., 2007) and groups of patients with BDD (Jefferies et al.,
2010), and schizophrenia with OCD (Patel et al., 2010), as
well as schizophrenia without OCD (Pantelis et al., 1999),
have also shown ED impairment compared with a suitably
matched control group. Thus, impaired ED-shifting may rep-
resent a hallmark of compulsive responding associated with
cognitive inflexibility. As opposed to reversal learning, this
form of attentional set-shifting modelled in the marmoset is
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impaired by lateral frontal – but not orbitofrontal – cortex
lesions and by catecholamine – but not 5-HT – depletion (see
Robbins, 2005 for review). It is also of importance that,
whereas the impaired ED-shifting in OCD patients is also seen
in their unaffected first-degree relatives (Chamberlain et al.,
2007a), this is not the case for schizophrenia (Ceaser et al.,
2008), suggesting that this form of cognitive inflexibility may
be an endophenotype for OCD but not for schizophrenia.

Signal attenuation. Another neurobehavioural model with
confirmed predictive validity invokes ‘signal attenuation’ as a
mechanism for compulsive responding. According to this
model, OCD results from deficient feedback associated with
the completion of goal-directed responses. Normal function-
ing of such feedback prevents pointless repetitions of
responses once their goal has been attained. The goal-directed
behaviour of this model is instrumental lever-pressing for
food. The feedback for a successful response is a compound
stimulus of light and tone. The ‘feedback deficit’, assumed to
underlie compulsive behaviour is induced in the model by
means of attenuation of the ‘signalling property’ of this com-
pound stimulus (repeated presentation without food in the
absence of lever-pressing opportunity). The behavioural
control condition for this attenuation process is termed
‘regular extinction’, and is identical in training and testing
sequence, apart from the omission of the ‘stimulus devalua-
tion’ (assumed to be equivalent to ‘signal attenuation’) stage.
The effects of ‘signal attenuation’ on lever-press responding
are assessed under extinction conditions through compari-
sons to the effects of ‘regular extinction’. Regular extinction
and, to a lesser extent, extinction after signal attenuation,
both produce excessive lever-presses (ELP) followed by maga-
zine entry (ELP-Completed, ELP-C). Extinction after signal
attenuation additionally produces excessive lever-presses not
followed by magazine entry (ELP-Uncompleted, ELP-U).
According to the authors, ELP-C reflects rats’ response to
non-reward while ELP-U reflects response to the encounter of
an attenuated signal and constitutes the model’s focal behav-
iour (surplus lever pressing). Arguably, Joel and Avisar (2001;
Joel et al., 2004) have developed this model more compre-
hensively than any other model of OCD (Joel and Avisar,
2001; Joel et al., 2004). The instrumental lever-pressing has a
perseverative quality which is sensitive to reductions pro-
duced by virtually all of the drugs used therapeutically in
OCD, but not to those which are less effective, such as diaz-
epam or desipramine. This behaviour is also enhanced by
lesions of the rat OFC and sensitive to manipulations of the
medial striatum, to which the OFC projects. Joel and col-
leagues have thus established many of the validating criteria
for a successful model of OCD, although the exact theoretical
explanation in terms of signal attenuation may perhaps be
queried.

Signal attenuation appears to resemble a special form of
extinction in which Pavlovian associations of a conditioned
stimulus are extinguished differentially with respect to instru-
mental responding. The perseveration in instrumental behav-
iour arises because the terminal links in the response chain
leading to food are extinguished. Extinction itself also
depends on an inhibitory process which suppresses associa-
tions which in fact remain intact (Rescorla, 2001). Another
example of this form of perseveration has been reported in

the performance of an attentional task for rats, namely the
five-choice serial reaction time task (5CSRTT). The 5CSRTT
(Robbins, 2002) is conducted in operant chambers equipped
with an arc of nine holes, four of which are occluded and five
exposed. Animals are required to initiate the trial by nose-
poking in the food magazine, detect a target visual stimulus
presented for 0.5 s randomly in one of the five exposed holes,
and then make a nose-poke response to the hole where the
light appeared (rewarded response). Perseverative nose-
poking possibly caused by a failure to detect response feed-
back cues can arise from lesions to the OFC in rats
(Chudasama and Robbins, 2003).

Exaggerated habit-learning. A related concept is that of exag-
gerated habit-learning, where compulsive behaviour is driven
by relatively heightened stimulus-response (S-R) associations
coupled with a generally weakened influence of the ultimate
goal. Compulsivity, in the context of OCD, may depend upon
a propensity towards excessive, stereotyped behaviour which
is carried out to reduce the likelihood of adverse conse-
quences (APA, 2000; Chamberlain et al., 2009). OCD patients
acknowledge that their behaviours are excessive and typically
ineffective, yet they are unable to exert adequate control over
the drive to perform these compulsive acts. This observation
has led to the hypothesis that OCD compulsions may not be
under goal-directed control and instead are driven by mal-
adaptive habit learning (Graybiel and Rauch, 2000; Bou-
lougouris et al., 2009). A study on humans with OCD
provides the first experimental evidence for a selective
impairment in OCD patients in flexible, goal-directed control
over behaviour, forcing them to rely instead on S-R habits
(Gillan et al., 2010).

Recent neuroscientific investigations implicate a circuit
linking ventromedial prefrontal cortex (vmPFC) and caudate
in goal-directed action control. Thus, persistent dominant
habitual control can be induced in animals by lesioning spe-
cific brain areas (see Balleine and O’Doherty, 2010 for review).
Animals with lesions to the dorsomedial striatum (DMS) and
the prelimbic cortex persist in habitually responding towards
food outcomes that are no longer desirable as a consequence
of pairing with lithium chloride-induced nausea or specific
satiety (Corbit and Balleine, 2003; Killcross and Coutureau,
2003; Yin et al., 2005). More recently, human functional mag-
netic resonance imaging (fMRI) studies have provided con-
vergent support for this dissociation in homologous brain
regions. Studies using instrumental learning tasks have impli-
cated the vmPFC (Valentin et al., 2007; De Wit et al., 2009)
and anterior caudate nucleus (DMS in rodents) (Tricomi et al.,
2004; Tanaka et al., 2008) in goal-directed response selection.
Importantly, habitual control is supported by different neural
structures, including specific sectors of the striatum (dorso-
lateral striatum, probably homologous to the putamen) (e.g.
Yin and Knowlton, 2006) and infralimbic cortex in animals
(Coutureau and Killcross, 2003; Yin et al., 2004) and the
putamen in humans (Tricomi et al., 2009). Thus, in OCD,
disrupted goal-directed control may force OCD patients to
rely strongly on inflexible, S-R habits which are supported by
a parallel corticostriatal pathway, including the putamen and
possibly the sensorimotor cortex (Tricomi et al., 2009; Bal-
leine and O’Doherty, 2010). A major unanswered question is
how habitual responding is converted into compulsive
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behaviour, relevant to OCD. One clue may come from the
observation that amphetamine sensitization has been shown
to enhance habit learning (Nelson and Killcross, 2006). Sen-
sitization is a form of neural plasticity that leads to height-
ened behavioural responses to the drug, probably mediated
by elevated striatal dopamine function, and so this suggests
again that dopamine contributes to compulsive behaviour.
Additionally, recent observations have shown how stress may
also enhance habit learning in rats (Dias-Ferreira et al., 2009),
suggesting once again a link between anxiety states in OCD
and compulsive behaviour.

Motor response inhibition. In addition to a possible shift in
control to habit-based representations, OCD patients also
exhibit decreased behavioural and cognitive inhibition in a
variety of tasks (Tien et al., 1992; Enright and Beech, 1993;
Rosenberg et al., 1997; Bannon et al., 2002; see Chamberlain
et al., 2005 for review), in addition to the increased errors
they show on the alternation learning task (Abbruzzese et al.,
1997; Cavedini et al., 1998). However, motor response inhi-
bition is perhaps most readily investigated using the stop-
signal reaction time task, in which it is necessary to stop an
already-initiated response on presentation of a stop-signal.
The stop-signal reaction time (SSRT) may be calculated in
humans by measuring the response latency required to suc-
cessfully cancel a response in a choice-reaction time proce-
dure (Logan et al., 1984). A recent comparative study of OCD
and trichotillomania (Chamberlain et al., 2006) shows an
interesting dissociation in which trichotillomania patients
had greatly lengthened SSRTs and that OCD patients were
also significantly slowed on this measure, as compared with
age- and IQ-matched controls. By contrast, OCD patients
were significantly impaired on the ED-shift test, whereas tri-
chotillomania patients were not. These data suggest that
whereas OCD is accompanied by a general problem in cog-
nitive flexibility, trichotillomania is associated more specifi-
cally with a failure to inhibit pre-planned motor activity.
Moreover, recent studies of OCD patients and their first-
degree relatives (Chamberlain et al., 2007b; Menzies et al.,
2007) identified behavioural deficits on these tasks in ‘at risk’
individuals, linked with structural abnormalities of fronto-
striatal circuitry.

Studies of human patients with frontal lobe damage have
localized one critical zone for SSRT to the right inferior
frontal gyrus (Aron et al., 2003) and other data implicate the
striatum and subthalamic nucleus in this inhibitory process
(Aron et al., 2007, but see also Hampshire et al., 2010). A
similar neural network may be implicated in the ED-shift,
according to a recent fMRI study (Hampshire and Owen,
2006) and other evidence of common noradrenergic media-
tion (Lapiz and Morilak, 2006; Robinson et al., 2008b). A
method of measuring SSRT in rats has been developed, which
is dependent on possibly homologous structures in the lateral
OFC and medial striatum (Eagle and Robbins, 2003; Eagle
et al., 2007). Intriguingly, however, the SSRT is insensitive to
serotoninergic manipulations in both rats and humans
(Chamberlain and Sahakian, 2007), but may be amenable to
noradrenergic remediation, for example, with methylpheni-
date or atomoxetine in patients with attention deficit hyper-
activity disorder (Chamberlain et al., 2007a; Devito et al.,
2009).

Lengthened SSRTs can be interpreted as enhanced impul-
sivity, supporting the view of functional relationships
between impulsivity and compulsivity postulated clinically
(Hollander and Rosen, 2000) in animal models of stimulant
drug addiction (Everitt and Robbins, 2005; Berlin et al.,
2008). In view of these possible links between the two con-
structs, an intriguing dissociation between premature
responding in the 5CSRTT and reversal learning (i.e. impul-
sivity and compulsivity) has been reported. Specifically,
studies utilizing the 5CSRTT have shown that systemic
administration of a 5-HT2C antagonist (SB 242084) exacer-
bated the enhanced impulsivity normally observed following
global 5-HT depletion produced by intra-cerebroventricular
administration of 5,7-dihydroxytryptamine; a similar
SB242084-related enhancement in impulsivity was seen in
sham-operated rats (Winstanley et al., 2004). In contrast,
systemic administration of a selective 5-HT2A receptor
antagonist (M100907) had opposite actions, remediating
impulsivity in both sham-operated and 5-HT-depleted rats.
These contrasting influences of the 5-HT2A and 5-HT2C recep-
tor antagonists were mimicked by infusions of the drugs into
the nucleus accumbens, but not the medial prefrontal cortex,
in intact animals (Robinson et al., 2008a). On the contrary,
studies utilizing a simple serial spatial reversal task, shown to
be sensitive to orbitofrontal lesions (Boulougouris et al.,
2007), showed that systemic administration of the 5-HT2C

receptor antagonist promoted reversal learning, while
M100907 had the opposite effect of impairing it. Note that
in terms of remediation, this is opposite to what was found
for measures of impulsivity. Similar enhancements of reversal
learning after treatment with the 5-HT2C antagonist were also
found after infusion into the OFC (Boulougouris and
Robbins, 2010).

Regardless of the precise elucidation of mechanism,
these data pharmacologically dissociate impulsivity and
compulsivity, suggesting that they cannot arise simply from
a common process of behavioural disinhibition. This disso-
ciation must be task-dependent as both tasks require
response inhibition for efficient performance, suggesting
that there is some other aspect of the processes engaged by
the task, which differentiates them. These results also imply
that impulsivity and compulsivity are functionally separate
and reciprocally yoked, lending support to the impulsive–
compulsive diathesis model (Hollander and Wong, 1995).
They also suggest that impulsivity and compulsivity are
neuroanatomically and neurochemically dissociated by
selective 5-HT2 receptor agents and may lead to new clini-
cal applications. However, further experimental evidence is
required to resolve how these data fit with the consistent
finding that OFC 5-HT depleted marmosets show impair-
ments on visual object reversal learning (Clarke et al., 2004;
2005). In addition, it would seem likely that these
seemingly opposed effects are mediated through separate
neural pathways: in the case of impulsivity, through
projections from the infralimbic vmPFC (area 25), an area
richly innervated by 5-HT2A receptors and strongly impli-
cated in affective regulation, towards the shell of the
nucleus accumbens (Vertes, 2004) and, in the case of com-
pulsivity, in connections between the OFC and the caudate
nucleus (or the dorsomedial striatum in the rat) (Schilman
et al., 2008).
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Anxiety models

Several other theoretical positions may be especially useful in
explaining certain forms of OCD. For example, the theoreti-
cal construct that anxiety is the prime trigger of OCD, as
posited for example by Rachman and Hodgson (1980),
should not be underestimated (Rachman and Hodgson,
1980). Active avoidance behaviour in animals is well known
to be very persistent as it so rarely has the opportunity for
extinction, and drugs such as d-amphetamine exacerbate this
perseverative tendency (Lyon and Robbins, 1975). Thus,
behaviour that initially has some adaptive value, for example,
that results in avoiding shocks, apparently loses its rationale
after thousands of trials in which shock is never presented. A
more recent formulation by Szechtman and Woody (2004)
suggests that OCD-like activity arises as an aberrant excess of
behaviour motivated by the need for security (Szechtman and
Woody, 2004). These theories are of obvious clinical interest
and will ultimately depend on their validation by the impor-
tance assigned to anxiety in producing the persistent symp-
toms of OCD.

These findings may provide interesting new insights into
the clinical understanding of compulsivity in OCD that link
habit and goal-directed learning and affective state. Consider
this common example. Seeing, or being reminded of a poten-
tial contaminant triggers anxiety relating to a potentially
catastrophic outcome, and activates the compulsive response
of washing one’s hands. Although the individual clearly rec-
ognizes that this act has little or no bearing on contracting
illness, performing the compulsion causes a momentary
reduction in anxiety which is experienced as relief. In other
words, the act of washing one’s hands may not be driven by
its direct consequences, but rather by external triggers of
compulsive habits that are reinforced by the experience
of relief within the general aversive motivational state of
anxiety. Although compulsivity, in the context of OCD, is
avoidant and not appetitive, it is likely that the same funda-
mental mechanisms may give rise to reliance on S-R habit
reinforcement. In line with this hypothesis, Kim et al. (2006)
showed that the OFC is engaged not only when people gain
rewarding events, but also when aversive events are success-
fully avoided (Kim et al., 2006).

Deep Brain Stimulation (DBS)

In patients with severe, treatment refractory OCD, psycho-
surgery is sometimes considered as a means of alleviating the
symptoms (for review see Greenberg et al., 2010). In one such
approach – DBS – small electrodes are implanted into the
brain guided by imaging techniques, and are subsequentially
used to stimulate particular neural nodes. Several pilot
patient studies have reported beneficial reductions in OCD
symptoms when electrodes have been implanted into such
neural regions as the ventral striatum (Greenberg et al., 2008),
caudate (Aouizerate et al., 2004), subthalamic nucleus (Mallet
et al., 2008) and the nucleus accumbens (Denys et al., 2010).
As described previously, most of these regions have been
implicated in the neurobiology of OCD per se; however, it
should be noted that choice of electrode site has also been

guided by what is known of the neurobiology. Several trans-
lational studies have explored effects of DBS in animal
models of the disorder.

Low- but not high-frequency stimulation of the thalamic
nucleus was effective in reducing 8-OHDPAT-induced perser-
vation in rats (Andrade et al., 2009). In the rat, quinpirole-
induced repetitive checking model, high frequency
stimulation of the subthalamic nucleus reduced compulsive
behaviours transiently, as did stimulation of the nucleus
accumbens shell and core (Klavir et al., 2009; Mundt et al.,
2009; Djodari-Irani et al., 2011). Similar benefits have been
reported in the signal attenuation model of Joel and col-
leagues, with post-training high-frequency stimulation of the
subthalamic nucleus, and globus pallidus, leading to anti-
compulsive effects (Klavir et al., 2009). Collectively, the avail-
able animal studies involving stimulation of specific neural
regions show remarkable parallels with findings in human
OCD patients, and also suggest potential novel therapeutic
anatomical targets.

Conclusions

We are thus intriguingly close to providing useful theoreti-
cally motivated models of OCD, particularly with regard to
repetitive motoric habits and inhibitory failure. The animal
models reviewed above constitute an important vehicle for
the investigation of several aspects of OCD. However, every
model has its strengths and weaknesses (Table 1) which
should be taken into consideration for determining the needs
it can serve. An important feature of a model for anti-
compulsive activity screening is its predictive validity.
Regarding predictive validity, it should be noted that around
40–60% of OCD patients are resistant to SSRI monotherapy
(Fineberg et al., 2006b). Therefore, the establishment of a
model’s predictive validity lies not only on the effectiveness
of SSRIs but, more importantly, on the ineffectiveness of
drugs known not to be efficacious in OCD as well. Addition-
ally, chronic drug administration might be a good candidate
for such a differentiation. The signal attenuation and rein-
forced spatial alternation models of OCD have good predic-
tive validity, as they have shown pharmacological
isomorphism with the treatment of OCD and the lack of
effect on the models’ focal behaviours of drugs not effective
to OCD treatment. However, the signal attenuation model is
not suitable for examining the effects of chronic pharmaco-
logical treatment, as prolonged drug administration may con-
taminate the early stages of the procedure. Yet, the genetic
and neurobehavioural models previously discussed lack pre-
dictive validity, although they look more convincing in terms
of construct validity and may have promise for the develop-
ment and screening of anti-compulsive drugs.

Elucidation of the neurobiological substrates of OCD is
amply represented in many animal models, contributing to
their construct validity. Additionally, behavioural models
such as those based on signal attenuation or reversal learning
have already been shown to be sensitive to serotoninergic/
dopaminergic systems and orbitofrontal dysfunction, both
heavily implicated in OCD. On the other hand, genetic
models of OCD involving single gene alterations might be
extremely useful for the understanding of certain forms of
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OCD pathophysiology. It would be of considerable interest to
determine whether the more obvious motor manifestations
of the other conditions, such as trichotillomania, are associ-
ated with structural and/or functional impairments of similar
cortico-striatal loops, possibly more at striatal than cortical
nodes, or whether, as seems likely, these are associated with
impairments in other fronto-striatal pathways: for example,
related to the putamen and its role in the control of motor
output.

Although none of the animal models reviewed in this
paper can account for simulating OCD in its entirety, as
presupposed by an ‘ideal’ model, some could potentially be
enhanced by further investigation. None of the animal
models provide a good model for obsessions, as opposed to
compulsive behaviours. Given the heterogeneity and aetio-
logical complexity of OCD, the findings emerging from the
combined use of different models may provide insight to the
various aspects and aetiology of the disorder and lead to new
treatments. Direct comparison of these findings might also
elucidate genuine anti-compulsive effects rather than effects
limited to a specific model that is not necessarily related to
OCD.
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