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Abstract The success of plant breeding programs

depends on the ability to provide farmers with

genotypes with guaranteed superior performance in

terms of yield across a range of environmental

conditions. We evaluated 49 sugar beet genotypes in

four different geographical locations in 2 years aiming

to identify stable genotypes with respect to root, sugar

and white sugar yields, and to determine discriminat-

ing ability of environments for genotype selection and

introduce representative environments for yield com-

parison trials. Combinations of year and location were

considered as environment. Statistical analyses

including additive main effects and multiplicative

interactions (AMMI), genotype main effects and

genotype 9 environment interaction effects (GGE)

models and AMMI stability value (ASV) were used to

dissect genotype by environment interactions (GEI).

Based on raw data, root, sugar and white sugar yields

varied from 0.95 to 104.86, 0.15 to 20.81, and 0.09 to

18.45 t/ha across environments, respectively. Based

on F-Gollob validation test, three interaction principal

components (IPC) were significant for each trait in the

AMMI model whereas according to F ratio (FR) test

two significant IPCs were identified for root yield and

sugar yield and three for white sugar yield. For model

diagnosis, the actual root mean square predictive

differences (RMS PD) were estimated based upon

1000 validations and the AMMI-1 model with the

smallest RMS PD was identified as the most accurate

model with highest predictive accuracy for the three

traits. In the GGE biplot model, the first two IPCs

accounted for 60.52, 62.9 and 64.69% of the GEI

variation for root yield, sugar yield and white sugar

yield, respectively. According to the AMMI-1 model,

two mega-environments were delineated for root yield

and three for sugar yield and white sugar yield. The

mega-environments identified had an evident ecolog-

ical gradient from long growing season to intermediate

or short growing season. Environment-focused scaling

GGE biplots indicated that two locations (Ekbatan and

Zarghan) were the most representative testing envi-

ronments with discriminating ability for the three traits

tested. Environmentally stable genotypes (i.e. G21,

G28 and G29) shared common parental lines in their

pedigree having resistance to some sugar beet diseases
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(i.e. rhizomania and cyst nematodes). The results of

the AMMImodel were partly in accord with the results

of GGE biplot analysis with respect to mega-environ-

ment delineation and winner genotypes. The outcome

of this study may assist breeders to save time and costs

to identify representative and discriminating environ-

ments for root and sugar yield test trials and creates a

corner stone for an accelerated genotype selection to

be used in sweet-based programs.

Keywords AMMI � GGE biplot � Model diagnosis �
Hybrid � Stability � Representativeness �
Discriminating ability

Introduction

The sugar beet share in the global sugar market is

significant. Exact sugar contents can vary between 12

and 21%, depending on genotype of the cultivar and

growing conditions (FAO 2009; Biancardi et al. 2010).

Based on genotype, sugar beet can differ in yield and

quality traits. These are additionally modified by

biotic and non-biotic parameters of the environment

(Stevanato et al. 2017; Broccanello et al. 2018). The

aim of growing many crops is to achieve high and

stable yields in different environmental conditions.

Although the principal aim of sugar beet breeding

programs from 1950 until 1970 was to raise yields,

since the early 1970s more emphasis has been placed

on increasing the sugar and extractable sugar content

(Zimmermann and Zeddies 2002). From this point of

view, it is necessary to produce varieties adapted to

environmental conditions and pathogens that threaten

sugar beet growing areas (Brewbaker 1944; Biancardi

et al. 2005). For genetic breeding programs, an

inherent difficulty in identifying varieties with supe-

rior performance is the interaction of different geno-

types with various environmental conditions (Eberhart

and Russell 1966). In the last stage of a breeding

program ending with cultivar release, where there is a

large amount of material available for each advanced

genotype, it is possible to characterize each genotype

in terms of its stability in coping with different

environmental conditions (Cooper and Delacy 1994;

Acosta-Pech et al. 2017; Zoric et al. 2017). Genotype

by environment interaction (GEI) has a significant

effect on the efficiency of crop improvement through

plant breeding, largely because it confounds compar-

isons among genotypes with the test environment and

complicates the definition of breeding objectives. It is

argued that overcoming these constraints needs a

better understanding of the differences in plant

adaptation associated with variations in the perfor-

mance and in particular the GEI (Xu 2016). GEI

complicates the process of genotype selection and

superior performance. Multi environment trials

(MET) are widely used by plant breeders to evaluate

different aspects of the GEI puzzle (Finaly and

Wilkinson 1963; Eberhart and Russell 1966; Perkins

and Jinks 1968).

Many tools have been used to characterize envi-

ronments and discriminate stable from unstable geno-

types in different crops (Phuke et al. 2017).

Regression-based and multivariate statistical analyses

are certainly the most popular methods for assessment

of yield stability in cultivar release programs. Multi-

variate statistical analyses provide options to incor-

porate different reactions of genotypes to

environmental conditions. GGE stands for genotype

main effect (G) and genotype by environment inter-

action (GE) method and was developed by Yan (2002)

for graphical analysis of MET. METs are widely used

by plant breeders to evaluate the relative performance

of a genotype for a target environment (Delacy et al.

1996; Akter et al. 2014). The additive main effects and

multiplicative interaction (AMMI) model is the other

most widely used statistical method (Gauch 1992). It

can be used to understand the structure of interactions

between genotypes and environments. The reason for

the extensive use of AMMI is that the model can

justify a major part of the total deviation of interaction

and differentiate the main interactions from one

another (Ebdon and Gauch 2002a, b). Yan et al.

(2007) concluded that both GGE biplot and AMMI

analyses combine rather than separate G and GE in

mega-environment analysis and genotype evaluation.

The most important components of sugar beet yield

are root weight and sugar content. The combination of

a high root yield and high sugar content gives a higher

sugar yield per hectare. At the sugar factory, higher

sugar content leads to lower energy consumption

during the extraction processes. Sugar beet quality is

improved by the increase in sucrose concentration

reducing the concentration of impurities such as amino

acids, potassium and sodium. These impurities often

cause a reduction in extractable sugar. Root yield,
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sugar content and yield improvements are the main

goals of plant breeders targeting higher sugar produc-

tion. In GEI studies on sugar beet, different univariate

statistical methods have been used (Barocka 1978;

Beckett 1982; Campbell and Kern 1982; Ggyllenspetz

1998; Ahmad et al. 2012; Hoberg et al. 2016). In a

study, the results of univariate statistical analyses

revealed that environment had a significant effect on

sugar yield variations irrespective of a non-significant

interaction between the variety and environment

effects (Hoberg et al. 2016). In another study, the

lack of interaction between genotype and harvesting

and between genotype and irrigation demonstrated

that there was no need to consider the planned harvest

date or climatic factors in the growing region for

variety choice (Bloch and Hoffmann 2005). Ahmad

et al. (2012) used simple statistics for stability analysis

of sugar beet varieties for agronomic traits and sugar

contents and no multivariate analysis was performed

for better understanding of GEI. Liebe and Varrel-

mann (2016) assessed the effects of environmental

variations and type of sugar beet genotypes on

pathogens during storage in three consecutive years

but no attempt was made to evaluate sugar yield and

content. The AMMI model has been used for GEI

analysis of sugar yield and content in sugar beet

monogerm cultivars and the results indicated that

genotype and environment had significant effects on

these traits, although only a few genotypes were used

for stability analysis (Moradi and Jalilian 2012).

A review of the recent literature shows that few

attempts have been made to dissect the effects of GEI

on sugar related traits using sophisticated multivariate

statistical methods in sugar beet (Hoffmann and

Marlander 2005; Ahmad et al. 2012; Moradi and

Jalilian 2012). The objectives of this study were

therefore to dissect genotype by environment interac-

tions for root yield and sugar yield and content and to

assess the stability of different sugar beet varieties

under variable geographical conditions. The data from

MET have three main objectives that are more

accurate to estimate and predict yield based on limited

experimental data, to determine yield stability and the

pattern of response of genotypes across environments

and provide reliable guidance for genotypes selection

with respect to agronomic related traits for commer-

cial cultivations (Crossa 1990).

Materials and methods

Plant materials and field trials

Forty-nine sugar beet (Beta vulgaris L.) genotypes

including 32 new hybrids, five single crosses, seven

pollinators and five commercial varieties provided by

the Iranian Sugar Beet Seed Institute (www.sbsi.ir)

were used in this research (Table 1). All genotypes

were evaluated for quantitative and qualitative traits in

eight field trials in Iran at the four locations of Ekba-

tan, Torogh, Miandoab and Zarghan. The same num-

ber of replications for the forty-nine genotypes was

used in each experiment. Each trial was replicated in

two growing seasons. To analyze genotype by envi-

ronment interactions, combinations of year and loca-

tion were considered as environmental trials. Standard

sugar beet agronomic practices were followed at each

site. Deep plowing (40 cm) and distribution of phos-

phate fertilizer (200–300 kg/ha) were applied in all

trials. In the spring, field preparation included shallow

plowing, disking and leveling. After leveling,

100–200 kg ha-1 urea (46% nitrogen) was dis-

tributed, which was determined following soil analysis

tests. Each experimental plot consisted of three 8- m

rows with 50 cm row spacing. After seedling emer-

gence and at the 4–6 leaf growth stage plants were

manually thinned to obtain a density of

85,000–86,000 ha-1. Weed control, pest management

and irrigation were practiced according to local stan-

dard procedures. The experimental design in each site

was a randomized complete block with two replica-

tions per genotype. In mid-October, an area of 8 m2

was harvested from in the middle rows. Twenty-five

root samples were randomly pulled out of the soil in

each plot. The beets were hand washed and root yield

was determined (t/ha). Pulps were prepared and kept

frozen in a freezer, then transferred to the laboratory

until analysis. After extraction of 26 g pulp and clar-

ifying the extract by acetate (II) lead, different

parameters were measured such as sugar content

(polarimetric method), sodium and potassium con-

centration SC (using flame photometry), and amino

nitrogen a-N (using Betalyzer). Crude syrup purity

was measured by dividing sugar content by brix. The

dry matter of each sample was determined through

drying a part of pulp at 85 �C for 48 h (Abdollahian-

Noghabi et al. 2005).

Euphytica  (2018) 214:79 Page 3 of 21  79 

123

http://www.sbsi.ir


Statistical analysis

Descriptive statistics

The resulting sugar beet data set were collected for the

repeated experiments in four locations and two

growing seasons. The mean, range and standard

deviation (STD) were calculated for the three traits

tested. These statistics were obtained in Statistical

Analysis System (SAS) software. In analysis of

variance, the effects of year and location were

considered as random and genotype as fixed.

Analysis of AMMI model

The AMMI model (Gauch 1988) was used to dissect

variance components contributing towards genotype

by environment interactions and the stability of sugar

related yield across trials. AMMI combines univariate

analysis of variance (ANOVA) and multivariate

principal component analysis (PCA). ANOVA model

was used to analyze the trait data with main effects of

genotype and environment without the interaction, a

PCA was then integrated using the standardized

residuals. These residuals include the experimental

error and effect of the GEI. The analytical model for

the ith genotype in the jth environment can be written

as (Zobel et al. 1988; Gauch 1992; Yan et al. 2007):

Yijr ¼ lþ gi þ ej þ brðejÞ þ
Xk

n¼1

kkaikcjk þ qij þ eij

where Yijr is the root yield, sugar content or sugar yield

of genotype i in environment j for replicate r, l is the

Table 1 Genotype code, and origin of 49 sugar beet genotypes in 8 environments (2 years and 4 locations) in Iran

Genotype code Type Parentage/name Genotype code Type Parentage/name

1 Hybrid SC MH070 * SHR01-P.12 26 Hybrid SC MH41 * F-8738

2 Hybrid SC MH076 * SHR01-P.12 27 Hybrid (7112*SB36) * F-8738

3 Hybrid SC MH7 * SHR01-P.12 28 Hybrid SC MH070 * SB27

4 Hybrid SC MH41 * SHR01-P.12 29 Hybrid SC MH076 * SB27

5 Hybrid SC MH070 * SHR02-P.4 30 Hybrid SC MH7 * SB27

6 Hybrid SC MH076 * SHR02-P.4 31 Hybrid SC MH41 * SB27

7 Hybrid SC MH7 * SHR02-P.4 32 Hybrid (7112*SB36) * SB27

8 Hybrid SC MH41 * SHR02-P.4 33 Pollinator SHR01-P.12

9 Hybrid SC MH070 * S1-24 34 Pollinator SHR02-P.4

10 Hybrid SC MH076 * S1-24 35 Pollinator S1-24

11 Hybrid SC MH7 * S1-24 36 Pollinator S1-88605

12 Hybrid SC MH41 * S1-24 37 Pollinator F-8726

13 Hybrid SC MH070 * S1-88605 38 Pollinator F-8738

14 Hybrid SC MH076 * S1-88605 39 Pollinator SB 27

15 Hybrid SC MH7 * S1-88605 40 Single crosses (MS) SC MH070

16 Hybrid SC MH41 * S1-88605 41 Single crosses (MS) SC MH076

17 Hybrid (7112 * SB36) * S1-88605 42 Single crosses (MS) SC MH7

18 Hybrid SC MH070 * F-8726 43 Single crosses (MS) SC MH41

19 Hybrid SC MH076 * F-8726 44 Single crosses (MS) SC (7112 * SB36)

20 Hybrid SC MH7 * F-8726 45 Check Pars

21 Hybrid SC MH41 * F-8726 46 Check Torbat

22 Hybrid (7112*SB36) * F-8726 47 Check Ekbatan

23 Hybrid SC MH070 * F-8738 48 Check Tous

24 Hybrid SC MH076 * F-8738 49 Check Kermit

25 Hybrid SC MH7 * F-8738

SC single cross, MS male sterile
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grand mean, gi is the deviation of genotype i from the

grand mean, ej is the environment main effect as

deviation from l, kk is the singular value for the

interaction principal component (IPC) axis k, aik and
cjk are the genotype and environment IPC scores (i.e.

the left and right singular vectors) for axis k, br(ej) is

the effect of the block r within the environment j, r is

the number of blocks, qij is the residual containing all

multiplicative terms not included in the model, n is the

number of axes or IPCs retained in the model, and eijr
is the error under independent and identical distribu-

tion assumptions,

eij � N;
d2

r

� �

In the AMMI analysis of variance, the number of

degrees of freedom (df) for component m was simply

defined to be df = g ? e - 1 - 2m, where g and e

stand number of genotype and environment, respec-

tively (Gollob 1968).

AMMI stability value (ASV) was calculated fol-

lowed by a formula developed by Purchase et al.

(2000):

ASV ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

½SSIPCA� 1

SSIPCA� 2
ðIPCA� 1 scoreÞ�2 þ IPCA� 2 score

� �s

where SSIPCA-1 is the sum of squares for interac-

tion principal component analysis 1 (IPCA-1) and

SSIPCA-2 is the sum of squares for IPCA-2.

GGE biplot analysis

A genotype main effect plus genotype environment

interaction bi-plot based on MET data visualizes the

(i) which-won-where pattern of the MET, (ii) interre-

lationship among test environments, and (iii) ranking

of genotypes based on both mean performance and

stability parameters. Proper visualization of such

aspects, however, requires appropriate singular value

(SV) partitioning between the genotype and environ-

ment eigenvectors (Yan 2002). Singular value decom-

position (SVD) of the first two PCs was used to fit the

GGE bi-plot model (Yan 2002),

Yij ¼ lþ bjþ k1ni1gj1 þ k2ni2gj2 þ eij

where Yij is the trait mean for genotype i in environ-

ment j, l is the grand mean, bj is the main effect of

environment j, l ? bj being the mean yield across all

genotypes in environment j, k1 and k2 are the singular
values (SV) for the first and second PCs, respectively,

ni1 and ni2 are eigenvectors of genotype i for PC1 and

PC2, respectively, g1j and g2j are eigenvectors of

environment j for PC1 and PC2, respectively, eij is the
residual associated with genotype i in environment

j. In GGE bi-plot analysis, PC1 scores were plotted

against PC2 (Yan and Tinker, 2006). The GGE bi-plot

analyses were performed by GENSTAT 12th Edition

(GENSTAT 2009). The means of environments and

genotypes for sugar related traits were compared using

the least significant differences (LSD) test in SAS (V

9.2) software.

Model diagnosis

In the AMMI analysis, model diagnosis and accuracy

gain (accurate for predicting the true means) to

identify most appropriate AMMI family were per-

formed followed Ebdon and Gauch (2002a, b) and

Gacuh (2013) descriptions. The actual root mean

square predictive differences (RMS PD) were esti-

mated based upon 392,000 validations with the 392

treatment actual data. The softwares MATMODEL V.

3 (Gauch 2007) and AMMISOFT (Gauch 2013) were

used for model diagnosis and accuracy gain. Beside

cross validation, the resultant robustness tests includ-

ing FR (Cornelius 1993) and Gollob (1968) F-test were

used to assess model diagnosis and to identify

significant IPCs. The ratio as the yield for AMMI

winners within each environment (identified in the

first column of AMMI ranks) was calculated by

dividing the yield for the overall winner (Gauch 2013).

In the GGE biplot analysis, several considerations

were imposed so that a feasible number of mega-

environments (or groups of environments) were

identified (Yan et al. 2007). By definition, the GGE

biplot always displays the most important patterns of

the G ? GE in GEI analysis. Accordingly, the pattern

in the biplot means the adequacy of the biplot. If no

pattern is seen it means it means there is no clear

pattern in the data. For correct interpretation of the

biplot obtained, several parameters including center-

ing, scaling and singular-value partitioning associated

with the biplot along with the goodness of fit were

imposed according to Yan et al. (2007) descriptions.

For the mean versus stability view of the GGE biplot,

the data were not scaled but environments were

centered (centering = 2) and the biplot was based on
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genotype-focused singular value partitioning (SVP =

1). SVP = 1 indicates that the singular value to

enhance the suitability of the biplot for comparing the

genotypes. In the which-won-where biplot, the data

not scaled (scaling = 0), not transformed (trans-

form = 0) and environments centered (centering = 2).

To better visualizing the relationship between envi-

ronments, the biplot was based on environment-

focused singular value partitioning (SVP = 2). For

the discriminating ability vs. representativeness view

of the GGE biplot, the data were not transformed

(transform = 0) and not scaled (scaling = 0), environ-

ments centered (centering = 2) and the biplot was

based on genotype-focused singular partitioning

(SVP = 2).

Estimation of heritability

Broad-sense heritability across environments was

estimated for each tested trait. Five variance compo-

nents (r2e ; r
2
g; r

2
gl; r

2
gy; r

2
gly) were estimated using the

expected mean squares in combined analysis of

variance for each of three traits (Falconer and McKay

1996).

h2 ¼
r2g

r2g þ
r2gy
y
þ r2

gl

l
þ r2

gly

ly
þ r2e

rly

where r2e ; r
2
g; r

2
gl; r

2
gy; r

2
gly stand for error variance,

genotypic variance, variance of genotype by location

interactions, variance of genotype by year interaction

and variance of genotype by year by location interac-

tion, respectively. The letters r, l and y stand for

number of replications, location and year, respectively.

Results

Meteorology data and variations in traits

The meteorology data revealed that annual average

rainfall ranged between 193.6 mm and 462.8 mm

demonstrating wide variations between study sites

(Table 2). Mean temperature was from 12.5 to

19.13 �C. The lowest temperatures occurred mostly

in autumn, varying between - 8.8 and - 23.4 �C.
Three soil textures were identified including silt loam,

clay loam and silty clay loam. The presence of such

variability demonstrates the need to identify

stable genotypes with relatively consistent perfor-

mance across a range of environments.

Descriptive statistics for the traits tested in the eight

environments are presented in Table 3. Root yield

varied between 4.52 and 96.04 t/ha across environ-

ments. The range for sugar yield and white sugar yield

were 0.8–18.96 and 0.56–16.66 t/ha, respectively. The

heritability estimates were meaningfully high for the

three traits.

Predictive accuracy, model diagnosis and AMMI

analysis of variance

The results of AMMI analysis indicated that variations

in environmental conditions and the GEI significantly

affected root, sugar and white sugar yields (Table 4).

The share of main variance components in the AMMI

model analysis showed that 58.2, 59.7 and 61.63% of

the total variation in root yield, white sugar yield and

sugar yield data were attributed to the environment

component (E), respectively. GEI contributed to

17.87, 16.83 and 19% of the total variation of root

yield, sugar yield and white sugar yield, respectively.

Genotype had the lowest share in the total variations of

the three traits. Results from model diagnosis through

cross validation identified AMMI-1 model as having

the smallest RMS PD and therefore the best predictive

accuracy for root yield (Table 5). This model is more

close to true means than the raw data (AMMI-F

model). The AMMI gain factor for root yield was 2.39.

This accuracy gain amounts the number of replications

required to achieve the same predictive accuracy

without AMMI. Likewise, the AMMI-1 model had the

smallest RMS PD with 1.91 and 6.09 gains for sugar

yield and white sugar yield, respectively.

The results of F-tests for determining the best

predictive truncated model are displayed in Table 4.

The results of FR test were in accord with the results

obtained by Gollob’s F-test for white sugar yield

where both demonstrated three significant IPCAs. The

only discrepancy identified between the results of two

F-tests was related to root yield and sugar yield data

where three IPCAs were detected as significant in the

Gollob’s F-test whereas two IPCAs were selected by

FR test.

For the root yield data, the residual mean square

was 107 demonstrating GE interaction contains 47%

noise statistically. Accordingly, GEI captured 53%

signal for root yield data (Table 4). The genotype and
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Table 2 Meteorology data, description of the field trial sites and USDA soil classifications

Environment Location Year Altitude

(m)

Latitude

(�N)
Longitude

(�E)
Low

temp

(�C)

High

temp

(�C)

Mean

temp

(�C)

Annual

rainfall

(mm)

Soil

classificationa

E1 Torogh (Mashhad) 2013 990 36� 1600 59� 3800 - 8.8 39.8 16.1 193.6 Silt loam

E2 Zarghan (Shiraz) 2014 1596 29� 4700 52� 4300 - 15 41.6 19.13 205.5 Silt loam

E3 Miandoab (West

Azerbayjan)

2013 1300 36� 5800 46� 0300 - 20 37.4 14.34 197.3 Silt loam

E4 Ekbatan (Hamedan) 2013 1757 34� 5200 48� 3200 - 17.8 39.6 12.5 268.6 Clay loam

E5 Torogh (Mashhad) 2014 990 36� 1600 59� 3800 - 17.4 39.6 15.6 213.2 Silt loam

E6 Zarghan (Shiraz) 2015 1596 29� 4700 52� 4300 - 17 40.2 19.1 340 Silt loam

E7 Miandoab (West

Azerbayjan)

2014 1300 36� 5800 46� 0300 - 17.4 39.6 14.86 462.8 Silt Loam

E8 Ekbatan (Hamedan) 2014 1757 34� 5200 48� 3200 - 23.4 39.1 12.8 238.6 Silty clay

loam

Month

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

E1 Temp (�C) Max 19.6 19.8 27 29.3 36.3 39.8 39.5 39.6 39 35.9 22.7 19.9

Min - 8.6 - 0.2 - 8.8 1.3 8.8 15 18.4 11.6 12.5 1.8 - 3.5 - 8.2

Mean 4.4 7.3 10.9 14.5 21.2 26.9 29.1 26 24.8 15.1 9.7 3.3

Rain (mm) 6.5 34 58.3 28.2 26.6 0.4 0 2.8 0 26.4 3.2 7.2

E2 Temp (�C) Max 17.5 20 23.5 31 35.5 40 41.6 41.6 36.6 34.5 21 19.2

Min - 15 - 5.6 - 1.8 1 8 11.4 17 10.4 12 3 - 2.4 - 4.4

Mean 2.1 7.8 13.4 19.4 24.4 30.3 32.6 30.8 27.3 21.5 11.1 8.8

Rain (mm) 72.3 19.6 15.2 34 0 0 0 0 0 0.6 63.8 0

E3 Temp (�C) Max 14.8 16.6 23.4 26 30.2 35.4 37.4 37.2 35.6 28.2 20.8 16

Min - 10.4 - 6.8 - 6.6 - 1.4 6 7.6 10.8 8.4 2.4 - 1.6 - 1.4 - 20

Mean 2.7 6.2 10 14.3 18.2 24.6 27.8 26.4 22.6 13.9 9.7 - 4.3

Rain (mm) 20.6 42.5 9.1 30.6 16.2 0.4 0 4 0 3.8 38.4 31.7

E4 Temp (�C) Max 14.4 16.7 22.3 24.1 29.8 37.3 39.6 36.8 34.9 28.5 18 15.8

Min - 15.7 - 9.6 - 10.5 - 2.4 3 6.8 11.5 11.6 3 - 2.9 - 1.8 - 17.8

Mean 0.7 3.6 8.2 11.3 15.1 22.3 27.1 25.1 19.9 12.6 7 - 3.4

Rain (mm) 12.5 4.3 25.3 26.1 23.1 0 0 0 0 11.4 85.3 80.6

E5 Temp (�C) Max 21.1 21.2 27.1 32.9 37.1 39.6 41.6 39 35.6 28.6 21 18.7

Min - 6.6 - 17.4 - 3.4 1 12.1 14.4 16.9 15.8 11.9 - 0.9 - 0.3 - 4.9

Mean 4.8 1.1 9.1 15.5 23.1 27.7 28.4 27.8 23.8 14.3 7 5.1

Rain (mm) 5 2.9 73.7 35.1 22.4 4.3 0 0 0 16.9 42.4 10.5

E6 Temp (�C) Max 21.6 22 22 31.6 37 40.2 40 38.6 37.5 33.5 24.5 22.6

Min - 17 - 5.4 - 4.2 4.2 8.6 15 15.8 14.6 9 6.8 - 1.6 - 5

Mean 8.5 9.7 12.6 20.3 25.1 30.2 30 30.7 24 20.3 11.3 6.5

Rain (mm) 28 57.2 68.7 0 8.4 0 3.8 0 4 8 85.3 76.3

E7 Temp (�C) Max 11.8 18 19.8 26.8 31.2 36 39.6 37.2 36.4 26.4 17.6 13.2

Min - 17.4 - 11.6 - 1.4 - 4.8 5.2 9.6 11.6 10.6 6 1.4 - 5 - 4.4

Mean 0.1 2.9 10.1 15 20.6 25.2 28.3 28 23.4 13.7 6.5 4.5

Rain (mm) 34.1 7 57.1 16.4 22.8 0.9 3.3 0 0.7 133.2 138.9 48.4
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environment main effects contain 11 and 0.3% noise

for root yield, respectively. For the sugar yield data,

GEI, genotype and environment contained 44, 10 and

0.2% noise, respectively. The estimated sum of

squares for GEI, environment and genotype effects

noise with respect to white sugar yield data were 37.5,

9 and 0.2%, respectively. Accordingly, GE interaction

captured 56 and 62.5% signal for sugar yield and white

sugar yield data, respectively.

Dissection of GEI mean squares revealed that the

first two IPCAs captured 57.68 and 58.19% of the total

GEI for root yield and sugar yield, respectively. For

white sugar yield, the three significant IPCAs con-

tributed to 75.47% of the total variation of GEI.

AMMI winners and mega environments

The winner genotypes for AMMI model family are

listed in IPC1 order (Table 6). Genotypes at the top

and bottom in Table 6 have opposite GE interaction

patterns. This contrast of genotypes has an evident

agricultural interpretation. The results indicated that

43 genotypes never win for root yield and sugar yield.

For root yield, AMMI-1 shows G29 won in six

environments and G21 in two. Accordingly, two

mega-environments was distinguishable for root yield

based on AMMI-1. AMMI-4, AMMI-6 and AMMI-F

had 5 winners and accordingly these families divided

the eight environments into 5 mega-environments

with respect to root yield. The results indicated that 42

genotypes never win for white sugar yield in the eight

environments tested. According to AMMI-1, the most

accurate member of this family, three genotypes won

for sugar yield and white sugar yield demonstrating 3

mega-environments identified for these traits.

Table 7 is a ranking table illuminating the top 5

genotypes in each of the environments according to

AMMI-1 and AMMI-F. The environments are listed in

IPC1 order. Accordingly, those at top and bottom have

opposite GE interaction patterns. These models are of

particular interest because the first is suited for mega-

environment delineation and the later represents the

raw data. According to AMMI-1 for root yield data,

the first mega-environment comprised of E1, E2, E4,

E5, E6 and E8 and the second contained E3 and E7.

G29 won in the first mega-environment and G21 in the

second. G29 stood third rank in E3. The ratio for G21

was 1.06 and 1.38 in E3 and E7, respectively. Based on

AMMI-F, G29 and G21 won only in E5 and E7,

respectively. The three mega-environments delineated

Table 2 continued

Month

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

E8 Temp (�C) Max 10.5 17 19.7 25.3 30.4 36.9 38.8 39.1 34.6 28.2 17.8 14.4

Min - 23.4 - 21.7 - 4.5 - 6.1 3.7 7.4 11.7 11.2 6.9 0.1 - 7.1 - 6.5

Mean - 4.1 - 2.5 7.1 12.3 16.7 22.9 26.6 25.8 21 12.4 4.3 2.5

Rain (mm) 30.1 50 46.3 13.9 27.3 0.4 0.3 0.2 0 31.4 20.3 18.4

aSoil types by clay, silt and sand composition as used by the United States Department of Agriculture

Table 3 Variance components and heritability estimates of traits

Traits Min Max Mean STD r2g r2yg r2lg r2ylg H2

Root yield (t/ha) 4.52 96.04 42.95 19.14 534.79 1.15 21.20 27.17 97.37

Sugar yield (t/ha) 0.80 18.96 7.26 3.49 31.94 0.04 0.74 0.83 98.59

White sugar yield (t/ha) 0.56 16.66 5.87 2.97 23.43 0.02 0.56 0.63 98.60

Min minimum, Max maximum, STD standard deviation, r2g variance of genetic, r2yg variance of genetic and years interaction, r2lg
variance of genetic and location interaction, r2ylg variance of genetic, year and location interaction, h2 heritability in broad-sense
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by AMMI-1 ranks for sugar yield were identical to

those identified for white sugar yield. The only

discrepancy was the order of E2, E4, E6 and E8 in

the second mega-environment. The first mega-envi-

ronment comprised of E1 and E5, whereas the third

comprised of E3 and E7. G29 and G28 were overall

winners of AMMI-1 for sugar yield and white sugar

yield, respectively. In the AMMI-F, the raw data, 5 of

49 genotypes won first rank for sugar yield. AMMI-1

had three winners, G48, G29 and G21, for sugar yield

Table 5 AMMI model and root mean square predictive difference (RMS PD) of 49 sugar beet genotypes in 8 environments for root,

sugar and white sugar yields

Model DF RMS PD

Root yield (t/ha) Sugar yield (t/ha) White sugar yield (t/ha)

AMMI-1 54 13.252 2.146 1.987

AMMI-2 52 13.455 2.217 2.153

AMMI-3 50 13.912 2.284 2.263

AMMI-4 48 14.195 2.326 2.338

AMMI-5 46 14.316 2.337 2.388

AMMI-F 391 14.638 2.380 2.457

AMMI additive main effects and multiplicative interaction, DF degree of freedom

Table 6 Winner genotypes

in the AMMI model

families for root, sugar and

white sugar yields

AMMI additive main effects

and multiplicative

interaction, F full model

Genotype AMMI model family

1 2 3 4 5 6 F

Root yield G32 1

G49 1 1

G48 1 1 1 2 2 2

G29 6 5 3 2 2 1 1

G28 1 3 3 3 3 3

G21 2 1 1 1 1 1 1

Mega-

environment

2 4 4 5 4 5 5

Sugar yield G48 2 2 2 2 2 2 2

G49 1 1 2 2 2

G29 4 4 3 1 1

G14 1

G28 1 1 3 3 2 2

G21 2 1 1 1 1 1 1

Mega-

environment

3 4 5 5 4 5 5

White sugar

yield

G48 1 1 2 2 2

G47 2 2 3 3 2 2 2

G28 4 3 1 1

G27 1 1 2 2 1 1

G13 1

G20 1 1 1 1 1 1

G49 2 1 1 1 1 1 1

3 5 6 5 5 6 6
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and three; G47, G28 and G49, for white sugar yield. In

AMMI-1, G29 also stood second and third AMMI-1

ranks in E5 and E3 for sugar yield, respectively.

Among sugar yield AMMI-1 winners, G48 and G21

won only in E1 and E7 according to AMMI-F ranks.

G48, stood second AMMI-1 rank in E4 and E6,

respectively. According to the AMMI-1 ranks, the

overall winner for white sugar yield was G28 being

identified first rank in the second mega-environment.

Based on AMMI-1 ranks, this genotype also stood

third and fourth ranks in the first mega-environment

and E3. G47 and G49 won in the first and second

mega-environments with respect to white sugar yield.

G47 stood second AMMI-1 rank in the second mega-

environment.

Results of AMMI-2 family model indicated that

G48 had specific adaptation to E1 (Fig. 1). Several

genotypes were specifically adapted to E2 (G4, G10,

Table 7 Ranking genotypes in environments for AMMI1 and AMMIF of 49 sugar beet genotypes in 8 environments for root, sugar

and white sugar yields

Root Yield
Environment

Ratio AMMI-1 Ranks AMMI-F Ranks
1 2 3 4 5 1 2 3 4 5

E1 1 G29 G30 G48 G49 G32 G48 G29 G30 G4 G24
E5 1 G29 G30 G28 G48 G49 G29 G49 G28 G22 G31
E6 1 G29 G30 G28 G48 G49 G28 G14 G36 G39 G29
E2 1 G29 G28 G30 G48 G49 G28 G30 G14 G4 G31
E4 1 G29 G28 G30 G48 G14 G32 G49 G28 G29 G17
E8 1 G29 G28 G30 G14 G22 G48 G29 G31 G45 G22

E3 1.06 G21 G28 G29 G19 G45 G28 G29 G47 G13 G24
E7 1.38 G21 G28 G25 G19 G2 G21 G19 G25 G7 G45

Sugar yield E1 1.07 G48 G30 G29 G49 G31 G48 G30 G29 G24 G32
E5 1.02 G48 G29 G30 G49 G31 G49 G29 G28 G22 G31

E6 1 G29 G48 G28 G30 G49 G14 G39 G29 G36 G28
E4 1 G29 G48 G28 G30 G49 G49 G30 G31 G32 G28
E2 1 G29 G28 G48 G30 G49 G28 G30 G14 G31 G29
E8 1 G29 G28 G48 G30 G49 G48 G31 G29 G18 G22

E3 1.08 G21 G28 G29 G19 G45 G28 G29 G47 G14 G13
E7 1.4 G21 G19 G28 G25 G45 G21 G19 G25 G7 G45

White Sugar Yield E5 1.09 G47 G48 G28 G29 G30 G48 G27 G28 G21 G30
E1 1.08 G47 G48 G28 G29 G30 G47 G29 G28 G23 G31

E4 1 G28 G47 G27 G48 G29 G48 G29 G47 G30 G27
E8 1 G28 G47 G27 G48 G29 G47 G28 G30 G17 G48
E6 1 G28 G27 G47 G48 G29 G13 G28 G38 G35 G30
E2 1 G28 G27 G47 G20 G13 G49 G27 G29 G13 G30

E3 1.11 G49 G20 G27 G28 G18 G27 G28 G13 G46 G3
E7 1.44 G49 G20 G18 G27 G44 G20 G18 G6 G24 G44

AMMI additive main effects and multiplicative interactions, E environment, F full, G genotype, each mega-environment is separated

by blank lines

Euphytica  (2018) 214:79 Page 11 of 21  79 

123



G26, G29 and G36), E4 (G3, G9, G22 and G23), and

E8 (G5 and G18). According to AMMI-2 biplot

analysis, E1 (Torogh-2013), E3 (Miandoab-2013) and

E7 (Miandoab-2014) and the genotypes G48, G28,

G33, G21 and G25 gave the highest contribution to GE

interaction for root yield. In the AMMI-2 biplot, the

furthest away genotypes indicated that they were more

susceptible to the interactive forces of the environment

(Miranda et al. 2009). G8, G21, G28 and G48 for sugar

yield, G8, G13, G21 and G48 for white sugar yield

gave the highest contribution to GE interaction.

Accordingly, these genotypes were relatively suscep-

tible to changes in environmental conditions. Accord-

ing to the AMMI-2 familymodel, G16, G27, G34, G40

and G42 for root yield, G16, G17, G24, G27 and G42

for sugar yield and G3, G9, G17, G35 and G44 for

white sugar yield were identified as stable genotypes.

E2, E4 and E8 were close to the center of the AMMI-2

biplot for both root and sugar yield and hence were

stable environments with respect to these traits. E2, E6

and E8 were stable environments for white sugar yield

(Fig. 1). E1, E3 and E7 for root and sugar yields, and

E1, E3, E5 and E7 for white sugar yield were identified

as unstable environments (Fig. 1).

IPCA scores and stability value (ASV) of the

AMMI model for the three traits are presented in

Suppl. Tables 1, 2 and 3. G16 had lowest ASV and

was accordingly the most stable genotype for root

yield, whereas G21 was unstable (Suppl. Table 1).

G17 and G42 were stable for sugar yield whereas G48

was unstable (Suppl. Table 2). G48 was likewise

unstable for white sugar yield whereas G44 was the

most stable genotype (Suppl. Table 3).

GGE biplot: genotypic discriminating ability

and representativeness of the test environments

The GGE biplot analysis indicated that the first two of

PCs were attributable to 60.52, 62.90 and 64.69% of

total GEI variation for root, sugar and white sugar

yields, respectively (Figs. 2, 3, 4). Stable genotypes

and environments with low IPCA-1 and IPCA-2

scores are near the origin of the GGE biplot graph

(Yan and Tinker 2006). Which-won-where GGE

biplot graphs are divided by an equality line into

sectors in which different mega environments can be

detected (Yan and Tinker 2005, 2006). In this study,

the equality line divided the test environments into

four mega- environments for the studied traits (Figs. 2,

3, 4). For root yield, the first mega environment

consisted of E1, whereas the second included E2, E4,

E5, E6 and E8 (Fig. 2). The third root yield mega-

environment was E3, and E7 was the fourth. E7 was

the first sugar yield mega- environment and E3 the

second. E2, E4, E5 and E6 and E8 were identified as

the third mega- environment for sugar yield and the

fourth was E1 (Fig. 3). Likewise, two single environ-

ments were the first (E7) and second (E3) mega-

environments for white sugar yield. The third (E2, E4,

E6, E8) and fourth (E1, E5) mega- environments for

white sugar yield were also identified (Fig. 4).

The ability of test environments to discriminate

genotypes and representativeness of the environments

for root yield are shown in Suppl. Fig. 1. Concentric

circles in Suppl. Fig. 1 help visualize the distance

between each environment and the ideal environment,

‘‘ideal test environment’’, which is at the center of the

concentric circles. Hence, E8 was the best represen-

tative environment and had the highest ability for

discriminating genotypes with respect to root yield

whereas E7 was the poorest. Likewise, E2 and E8 for

sugar yield and E2 and E4 for white sugar yield were

the best representative and discriminating test envi-

ronments (Suppl. Figs. 2, 3).

GGE biplot: winners and mega-environments

In the GGE biplot model, the ideal genotype might

have the highest mean performance stability (Yan and

Kang 2003). Although such a genotype may not exist

in reality, it can be used as a reference for evaluation of

genotype. If a genotype is closer to the ideal genotype,

it becomes more desirable than others that are located

further away. The concentric circles in GGE biplot for

genotype-focused scaling help to identify an ideal

genotype for a trait of interest. The average environ-

ment coordination (AEC) view of GGE biplot indi-

cated that G29 (SC MH076 * SB27) was closest to the

ideal genotype and was accordingly identified as the

most desirable genotype with respect to root yield

(Suppl. Fig. 4). G28 was the next nearest to the ideal

genotype and accordingly may be considered as the

second desirable genotype for higher root yield.

Although G34, G35 and G40 were low yielding

genotypes they were highly stable as positioned on the

AEC abscissa. Likewise, G28 and G29 were located at

the center of the concentric circles of AEC view of

GGE biplot and were accordingly the most desirable
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Fig. 1 AMMI-2 biplot for

root yield (a), sugar yield
(b) and white sugar yield (c),
of 49 sugar beet genotypes

(G) and 8 environments (E)
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genotypes for both sugar and white sugar yield traits

(Suppl. Figs. 5, 6). Instead, G30, G48 and G49 were

deemed unstable for these two traits as they were far

from the AEC abscissa although they were high

yielding.

Environmental means and correlations

Mean comparison of the environments showed that E4

and E5 yielded significantly higher root and sugar with

respect to the grand mean (Suppl. Tables 1 and 2). E5

showed the highest mean for white sugar yield (Suppl.

Table 3). E8 for root and sugar yields and E2 for white

sugar yield had lower IPCA-1 showing that these

environments were more stable for these traits because

low IPCA-1 score means higher environmental sta-

bility (Yan and Tinker 2006; Jamshidmoghaddam and

Pourdad 2013). Analysis of correlation between

environments with respect to each trait indicated that

E2 and E6 (r = 0.70**), and E4 and E8 (r = 0.69**)

had relatively stronger correlations for root yield

(Suppl. Table 4). Likewise, these two environments

showed stronger correlations for sugar and white sugar

yields.

Discussion

Genotype by environment interaction is one of the

unifying challenges facing plant breeders (Lin and

Binns 1988, 1994). Many agriculturally important

traits are affected by external factors at some time

during the life cycle of plants (Kumar et al. 2015). The

extent to which genotype by environment interaction

affects a trait is an important determinant of the degree

of testing over years and locations. The present study

aimed to identify environmental stability of sugar beet

genotypes with respect to root, sugar and white sugar

yields and to understand the factors leading to a good

sugar yield phenotype. The experiment was performed

Fig. 2 Which-won-where polygon view of the GGE biplot for

root yield of 49 sugar beet genotypes (G) in 8 environments

(E) to show which genotype performed best in which

environment and meaningful mega environment. The perpen-

dicular of the polygon facilitates visual comparison of the

distance between genotypes and environments. Different mega

environments are located in different biplot sectors

Fig. 3 Which-won-where polygon view of the GGE biplot for

sugar yield of 49 sugar beet genotypes (G) in 8 environments

(E) to show which genotype performed best in which

environment and meaningful mega environment. The perpen-

dicular of the polygon facilitates visual comparison of the

distance between genotypes and environments. Different mega

environments are located in different biplot sectors
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in eight environmental conditions (combination of

location and year). The data were collected from four

geographically different locations replicated in 2

years. Descriptive statistics for root, sugar and white

sugar yields revealed that wide variations for the three

traits exist in the genotypes tested. Although sugar is

the primary product of sugar beet little information is

available regarding the contribution of environmental

conditions to sugar yield variation and analysis of

genotype by environment interactions. Improvements

in yield and chemical properties of the root by plant

breeding continue to increase the amount of white

sugar extracted at the processing factories (Dryacott

2006). The biggest breakthrough by plant breeders is

the introduction of new cultivars of hybrids allowing

higher sugar yield and content under a wide range of

environmental conditions. Evaluations of genotypes in

different environments must be employed to satisfac-

torily quantify their performance. Discarding geno-

types evaluated in just one environment in the early

stages of breeding programsmay lead to losing genetic

variations because these might do well in another

environment. Some useful genes could thus be lost due

to limited testing. Including genotype by environment

analysis will therefore further improve the progress of

genotype selection towards cultivation in a target

environment. In the present study, two multivariate

statistical analyses including the AMMI and GGE

biplot models were used to assess stability of root and

sugar yield. The results from the AMMI model for

root, sugar and white sugar yields showed that the

main components of AMMI analysis of variance:

genotype (G), environment (E) and their interactions

(GEI) were significant. In the AMMI model, 58.20%

of the total sum of squares was attributable to the

environment component, indicating the significant

effect of environmental variables on changes in root

yield. Likewise, environment components gave the

largest contribution to the total variation of sugar and

white sugar yields. Similar results from other studies

indicate the large proportion of environmental condi-

tions in the total variation of GEI with respect to

yellow passion fruit and durum wheat (Oliviera et al.

2014; Bassi and Sanchez-Garcia 2017). In the present

study, the first two IPC (IPCA-1 and IPCA-2) for the

interaction component cumulatively contributed to

higher than 55 and 60% of the total variation of GEI

for each trait in the AMMI and GGE biplot models,

respectively. But, in a study with soybean, the results

revealed that the AMMI model was better than the

GGE biplot at retaining the greatest amount of

variation in the first two principal components (Sousa

et al. 2015). In another study with soybean, a

genotype-by-trait biplot explained 52–63% of total

variation of the data in the GGE biplot analysis (Yan

and Rajcan 2002). Dissection of genotype by envi-

ronment interaction component in barley showed that

the IPCA-1 and IPCA-2 were cumulatively con-

tributed to 61.07% of the GEI variance with respect

to grain yield data (Kiliç 2014).

Analysis of model diagnosis is required to identify

which model family is the best for a given dataset and

research objective. Two basic approaches, cross

validation and test of hypothesis about the number of

components, have evolved to identify the optimal

number of multiplicative terms in dissection of GEI

mean squares (Gauch and Zobel 1988; Cornelius

1993; Dias and Krzanowski 2003; Gauch 2013). In the

present study, the two approaches were used for model

Fig. 4 Which-won-where polygon view of the GGE biplot for

white sugar yield of 49 sugar beet genotypes (G) in 8

environments (E) to show which genotype performed best in

which environment and meaningful mega environment. The

perpendicular of the polygon facilitates visual comparison of the

distance between genotypes and environments. Different mega

environments are located in different biplot sectors
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diagnosis and optimizing predictive accuracy of

AMMI model families. The results showed that the

estimated sum of square (SS) for GEI signals were

somewhat larger than IPCA-1 SS for the three traits

tested. Accordingly, IPCA-1 was strongly dominated

by signal rather than noise. Results of cross validation

identified the AMMI-1 model, with the smallest RMS

PD, as the best predictive accuracy for the three traits.

The aim of achieving maximum predictive accuracy is

to balance underfitting real structure and overfitting

spurious noise (Gauch and Zobel 1988; Ebdon and

Gauch 2002a, b). The AMMI-1model left residuals SS

that are 42.33, 41.81 and 24.5% of the GE interaction

for root yield, sugar yield and white sugar yield,

respectively; which are close to the target noise. This

accuracy gain improves cultivar recommendations. In

the Ebdon and Gauch (2002a, b) study, 36.4 and

43.7% noise were estimated for Kentuchy bluegrass

and ryegrass data sets, respectively. In our study,

distribution of F tests, Gollob’s F-test and FR, came up

with different results; indicating two significant IPCs

based on FR test for each of root yield and sugar yield

traits and three significant IPCs identified according to

Gollob’s F-test results. For white sugar yield, the

results of both F-tests demonstrated three significant

IPCs. In the GEI studies, there is a large discrepancy

between the results of different methods used for

model diagnosis and predictive accuracy (Vargas and

Crossa 2000). In a study, distribution of F-tests

indicated two components as optimum whereas the

RMS PD estimates demonstrated three or four (Dias

and Krzanowski 2003). In another study with GEI in

barley, the results of FR and Gollob’s F- tests were

relatively similar with respect to significant IPCs but

the results of these tests were not in accord with the

results obtained by cross validation procedure (Ak-

barpour et al. 2014). It has been shown that F-test

methods are rely on distributional assumptions, nor-

mality of data, and some of F-tests, i.e. FR could be

liberal (Akbarpour et al. 2014) or conservative in

detection of significant IPCs (Anicchiarico 1997).

Here, in our study distribution of the data were normal

based on the results of several normality tests; i.e.

Shapiro–Wilk (1965) and Anderson–Darling (1954),

with respect to the three traits tested (Table 4). Of the

two approaches used for model diagnosis, predictive

accuracy merits special attention (Gauch 2013). It can

be concluded that the three tests for model diagnosis

agreed on AMMI-1 for the three traits, whereas

AMMI-2 and AMMI-3 were also selected as signif-

icant models by F-tests for sugar yield and white sugar

yield, respectively. Practical constraints limit the

number of workable mega-environments to only 2 or

3 or perhaps a fewmore which requires a lower AMMI

model (AMMI-1 or maybe AMMI-2) than that

identified solely by statistical considerations (Gauch

2013). Thereby, this illuminates a tradeoff between

statistical and practical considerations might assist

choosing appropriate and parsimonious models in GEI

studies.

Winners for the AMMI model family identified in

this study demonstrated more complex AMMI models

have more genotype winners or mega-environments.

In the AMMI-0 model, the eight environments tested

were distinguished as a mega-environment but,

AMMI-0 captures no GEI signal. Five mega-environ-

ments were identified according to AMMI-F, a model

which captures all noise and signals. Accordingly, a

parsimonious intermediate model, i.e. AMMI-1 or

AMMI-2 might have the most predictive accuracy

(Gauch 2013). Rankings of environments based on

IPC scores in the AMMI-1 model demonstrated 2

mega-environments for root yield and 3 for each of

sugar yield and white sugar yield traits which are tidy

and practical for assessment of GEI trials. The AMMI-

1 mega-environments identified have an evident

agricultural interpretation with respect ecological

gradient from long growing seasons (E1, E5) to

intermediate (E2, E4, E6 and E8) and short growing

seasons (E3 and E7). The AMMI-1 winners in the

short growing seasons outperformed the overall

AMMI-1 winner for the three traits. The meteorology

data of the environments tested indicated that the long

growing season mega-environment had higher mean

temperature and lower annual rainfall than the short

growing season one. In some studies with GEI,

precipitation distribution, temperature differences

and relative humidity are known to significantly

contribute to total GEI variations (Saeed et al. 1984;

Dehghani et al. 2006; Jalata 2011).

Low IPCA-1 scores that are related to stable envi-

ronments (Yan and Tinker 2006; Naroui Rad et al.

2013) demonstrated E4 (Ekbatan-2013) and E8 (Ek-

batan-2014) as being the most stable environments for

root yield and E4 (Ekbatan-2013) for both sugar and

white sugar yield. Assessment of meteorological and

soil data indicates that Ekbatan had a nutrient enriched

soil accompanied by suitable weather conditions and it
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can be a good candidate for growing sugar beet.

Furthermore, E8 (Ekbatan-2014) and E2 (Zarghan-

2014) were also stable environments for all traits

tested.

The prediction assessment with AMMI has shown

that only two IPCs could be the best predictive model

in GEI studies (Zobel et al. 1988; Kiliç 2014). The

AMMI-2 which is a graphical representation of the

IPCA-1 versus IPCA-2 explains the magnitude of

interaction of each genotype and environment (Gauch

and Zobel 1988). Based on AMMI-2, E2 (Zarghan-

2014), E4 (Ekbatan-2013) and E8 (Ekbatan-2014)

were stable for root and sugar yield and E2 (Zarghan-

2014), E6 (Zarghan-2015) and E8 (Ekbatan-2014)

were more stable for white sugar yield. Therefore, E2

(Zarghan-2014), E4 (Ekbatan-2013) and E8 (Ekbatan-

2014) and partly E6 (Zarghan-2015) could be good

environments for testing sugar beet genotypes. These

four environments were also detected as mega-envi-

ronment according to the truncated AMMI-1 model.

Which-won-where graphs identified through anal-

ysis of GGE biplot facilitate the visual comparison of

distance between genotypes and environments and

helps identify the representativeness of environments

and their discriminating ability (Yan and Tinker

2005, 2006). The polygon view of a GGE biplot

clearly displays the which-won-where pattern, based

on mega-environments that allow breeders to identify

discriminating and representative environments which

are good test environments for detection of generally

adapted genotypes or breeding for adaptation to

specific environmental factors (Akinwale et al. 2014;

Xu 2016). In addition, by adding mega-environment

boundaries, breeders can determine whether a test

location is predictive for a given environment or else

frequently crosses mega-environment boundaries

from year to year (Gauch et al. 2008). Accordingly,

analysis of which-won-where GGE biplot in our study

revealed that E2 and E6 (Zarghan) and E4 and E8

(Ekbatan) could be considered as a mega-environment

for root yield. Environment-focused scaling GGE

biplots indicated E8 (Ekbatan- 2014), which was

closest to the center of the concentric circles, as an

ideal environment for root yield followed by E4

(Ekbatan-2013) and E2 (Zarghan-2014) as the most

representative testing environments. E2 (Zarghan-

2014) and E4 (Ekbatan-2013) followed by E8 (Ek-

batan-2014) were identified as most representative

testing environments for sugar and white sugar yields.

These results were in accord with the results of the

AMMI model analysis. E1 (Torogh-2013) and E7

(Miandoab-2014) were the poorest representative

environments although most discriminating for all

the traits studied in this research. Assessment of

discriminating ability and representativeness of envi-

ronments are the most important features of the GGE

biplot analysis, providing not only valuable but also

unbiased information about tested genotypes and

environments (Yan and Hunt 2001; Yan and Kang

2003; Abate et al. 2015). From this point of view, a

favorable test environment must have high IPCA-1

scores (more discriminating genotypes) and near zero

IPCA-2 scores (more representative environment).

The results of our GGE bi-plot analysis showed that

E2, E4, E8 and partly E6 were the best test environ-

ments where the best genotypes could easily be

identified with respect to each sugar and root trait.

Similar results were obtained based on the AMMI-1

and AMMI-2 family models demonstrating these four

environments identified as a mega-environment for

sugar and root yield.

According the truncated AMMI-1 model, G29 and

G21 for root yield, G48, G29 and G21 for sugar yield,

and G47, G28 and G49 for white sugar yield were

identified as the first ranked winners. G29 was the

overall AMMI-1 winner for root yield and sugar yield

with ratio equal 1. Both parents of G29 have shown

resistance to rhizomania (www.sbsi.ir). Among

AMMI-1 winners, G21 and G28 and G29 have shown

resistance to rhizomania in their pedigrees. SB27

which was the common parental line used in produc-

tion of G28 and G29 has shown resistance to both

rhizomania and cyst nematodes diseases (www.sbsi.

ir). Hence, crossing hybrids with SB27 might increase

root and sugar yields, and also resistance to afore-

mentioned diseases under different environmental

conditions. G21 with narrow adaptation to one of

mega-environments (E3 and E7) identified in this

study outperformed the overall AMMI-1 winner

genotype (G29) with respect to root yield and sugar

yield. G48 that was a check high yielding variety

(www.sbsi.ir), was another AMMI-1 winner for sugar

yield outperformed the overall winner in E1 and E5.

Beside multivariate statistics, the AMMI stability

value (ASV) assists selection of stable genotypes in

the AMMI model. Genotypes with lowest ASV are

stable (Naroui Rad et al. 2013). Hence, the results of

this study revealed that G16, G17 and G44 with lowest
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ASV, were stable genotypes for root, sugar and white

sugar yields, respectively. Although G16 and G21 had

a common parental line in their pedigree they showed

different ASV values. One possible justification for

this might be the contribution of different pollinators

being used during the improvement of these two

genotypes in breeding programs. The results of ASV

were partly different from the results of AMMI-1 and

somewhat GGE biplot analyses. This is because; IPC

scores are used in the ASV formula whereas the

AMMI-1 model is based on both the mean of traits and

IPC scores. Similar results were found in a study on

safflower (Jamshidmoghaddam and Pourdad 2013).

The results of ASV scores were in accord with the

AMMI-2 family model with respect to

stable genotypes.

Winner genotypes were also identified based on the

results of GGE biplot analysis. G14, G22 and G29 had

specific adaptability to the second mega-environment

(E2, E4, E6 and E8) identified for root yield in GGE

biplot whereas G28 and G21 adapted to E3 and E7,

respectively. According to which-won-where GGE

biplot, G21 and G28 had specific adaptability to E7

(Miandoab-2014) and E3 (Miandoab-2013) for sugar

yield. This result was partly in accord with results of

the truncated AMMI-1 model indicating G21 had

narrow adaptation to E3 and E7 as the third mega-

environment identified for sugar yield. G28 stood

second and third ranks in E3 and E7 in the AMMI-1

model with respect to sugar yield respectively. G14,

G22, G29 and G31 in third GGE biplot mega-

environment (E2, E4, E5, E6 and E8) and G30, G43

and G48 in E1 had the best sugar yield. Results of a

study indicated that the genotype rankings by the GGE

biplot and AMMI analyses were significantly corre-

lated in wheat (Roostaei et al. 2014). Identification of

mega- environments are important for breeders to

verify discriminating and representative environments

that could potentially be good test environments to

select generally adapted genotypes and breeding for

adaptation to specific environmental factors (Akin-

wale et al. 2014; Xu 2016). G21 was the best specific

adapted genotype under E3 and E7 for white sugar

yield. The third GGE biplot mega-environment com-

prised of E2, E4, E6 and E8 with G22, G29 and G31

were identified as the best specific adapted genotypes

for white sugar yield. E1 (Torogh-2013) and E5

(Torogh-2014) constituted the fourth mega-environ-

ment for white sugar yield and the two G48 and G49

genotypes were superior with respect to this trait. G48

was identified as one of the AMMI-1 first ranked

genotypes for sugar yield in E1 and E5 whereas G49

stood fourth rank.

Conclusion

The results of both AMMI and GGE biplot demon-

strated that several genotypes had broad and narrow

adaptation to environments. G28 for white sugar yield

and G29 for root yield and sugar yield were identified

as the best genotypes in most environments. Analysis

of model diagnosis through cross validation demon-

strated the truncated AMMI-1 model as the most

accurate model with highest predictive accuracy,

although AMMI-2 and AMMI-3 were also detected

as significant models based on FR and Gollob
’s F-tests.

In the GGE biplo, the first two PCs explained large

proportion of GEI variations. Results of the AMMI

and GGE biplot models were partly in accord with

respect to winner genotypes and mega-environment

delineation. Most sugar beet lines in the present study

were environmentally stable although low yielding.

They could therefore be used in the development of

stable but moderate yielding hybrids. Due to high

heritability estimates, genotype selection might lead to

improvement of traits and development of new sugar

beet cultivars. Also, significant variations in response

of hybrids and lines to the effect of environments show

the right choice of experimental sites for genotype by

environment interactions assessment. According to

AMMI-1, AMMI-2 and GGE biplot based on envi-

ronment-focused scaling, Zarghan and Ekbatan could

be good representative environments for testing sugar

beet genotypes. Most sugar beet lines in the present

study were low yielding. They can therefore be bred

for higher root and sugar content in future breeding

programs.
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