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Targeting thermogenesis in brown and beige adipocytes for
treating obesity and metabolic disease has sparked enormous in-
terest even beyond the scientific community (4). Several more
recent publications have added a new player in this field: the
well-studied enzyme creatine kinase (CK) together with its sub-
strates phosphocreatine (PCr) and creatine (Cr). These are best
known for their eminent bioenergetic role in energy buffering
and energy channeling via the so-called CK/PCr shuttle (3) or
circuit (31) that link sites of ATP generation (e.g., mitochondria
and glycolysis) with sites of ATP utilization (e.g., cytosolic and
membrane bound ATPases) in tissues with high energy turn-
over, such as skeletal, cardiac and smooth muscle, brain, neural
tissue, spermatozoa, inner ear hair cells, etc. (25, 27, 30, 31). As
highly energy-dependent cells, adipocytes also express CK iso-
enzymes and contain the CK substrates PCr and Cr (for review,
see Ref. 28). In fact, a series of elegant and very comprehensive
studies by Spiegelman, Kazak, and colleagues (2, 15, 16, 18),
well summarized in a recent review (17), provides ample
genetic and functional evidence for a direct involvement of the
CK system in adipocyte thermogenesis with an increased Cr/
PCr turnover being thermogenic. In beige or brown adipocytes,
such Cr-dependent heat generation would work in parallel to
uncoupling of mitochondrial respiration by uncoupling protein
1 (UCP1), a futile proton cycle that represents the canonical
pathway of nonshivering thermogenesis. Since noncanonical
UPC1-independent, but ATP- and Cr-dependent, thermogenesis
is not only operational during short-term cold response and
long-term cold acclimation, but also in diet-induced thermogen-
esis (16, 18), these recent advances open exciting new avenues
for targeting obesity and metabolic disease.
What then is the exact molecular mechanism underlying Cr-

dependent thermogenesis? For heat generation, increased Cr/
PCr turnover has to be linked to a futile cycle, i.e., a metabolic
pathway that is not generating useful work, but dissipates free
energy as heat. The mechanism put forward so far has been fu-
tile Cr-cycling (15). Here, PCr generated by mitochondrial CK
in the mitochondrial intermembrane space (IMS) (31) would be
immediately hydrolyzed by a postulated PCr phosphatase,
colocalizing in the IMS or eventually outside mitochondria, e.
g., at the endoplasmic reticulum (ER) (17). However, CK is the
only confirmed enzyme that can use PCr and Cr as substrates,
while the existence and subcellular localization of the proposed
PCr-phosphatase are still uncertain and ill-defined, respectively.

Importantly, the presence of such a phosphatase would poten-
tially disrupt PCr-based cell energetics by depleting cellular PCr
and thus lowering local PCr/ATP and ATP/ADP ratios. This
would be detrimental for proper Ca2+ homeostasis that depends
on highly energy-demanding Ca2+ pumps (10, 12, 23, 29–31).
Based on our extensive research on the molecular structure,

function, and localization of CK isoforms at specific subcellular
microcompartments (6, 7, 24, 25, 27, 29–31), we propose here
an alternative model for CK/PCr/Cr-mediated thermogenesis in
adipocytes (Fig. 1). It combines the classical CK/PCr shuttle (3,
25, 31) with futile Ca2+ cycling at the ER. The latter has been
described in detail in recent years in beige and brown adipocytes
(10, 12). In this model, PCr fulfills its classical function by shut-
tling energy from mitochondria to the ER (1, 5, 8, 26, 29),
where it is converted by membrane-associated cytosolic CK
into ATP. Since the CK/PCr shuttle can also use glycolytic ATP
for PCr generation, this pathway would also work in case the
mitochondrial ATP would become limiting, which seems the
case in adipocytes (11, 19). In fact, there is evidence for addi-
tional, noncanonical UCP1-independent nonshivering ther-
mogenesis, fueled by enhanced glycolytic ATP generation
(9). ER-localized, cytosolic CK then locally fuels the SR/ER
Ca2+-ATPase2b (SERCA2b) (23), which is also expressed in
adipocytes (12), for efficient Ca2+ uptake into the ER lumen.
Requiring a very high ATP/ADP ratio for its function, this
Ca2+ pump has a particular requirement for PCr-dependent
fueling via CK (23, 29–31). Although such local ATP supply
has not been specifically analyzed in adipocytes, it is well
known and documented for skeletal and cardiac muscle, as
well as for heater organs of fish (20, 31).
Futile Ca2+ cycling in brown/beige adipocytes is then induced

by coupling Ca2+ uptake via SERCA2b to immediate Ca2+

release via different routes that may operate in parallel: adipo-
cyte ryanodine receptor (RyR2), inositol 1,4,5-triphosphate re-
ceptor type 1 (IP3-R1), or more so type 3 (IP3-R3). All these
constituents have been identified in beige/brown adipocytes,
and they all rely on the stimulation of adrenergic receptors (a1,
b3) (10, 12, 13). Adipocyte Ca2+ cycling between SERCA2b
and RyR2 occurs under cold exposure and/or adrenergic
receptor stimulation (13), is accompanied by a significant
increase of oxygen consumption rate (OCR) and heat genera-
tion, and improves cold tolerance and metabolic status (12,
13). Furthermore, evidence for an involvement of IP3-R in
futile Ca2+ cycling is given by the fact that RyR2 blockage by
high dose ryanodine or ruthenium red only partially but not
completely disrupts norepinephrine-induced thermogenesis
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in UCP1-knockout adipocytes (12). This is supported by ear-
lier data (10) showing that elevated cytosolic Ca2+, caused by
mitochondrial Ca2+ release, plus elevated IP3 levels, after
a1-adrenergic stimulation of adipocytes together result in a
Ca2+ release from the ER/SR via IP2 receptor (22). This event
is likely to happen in parallel with Ca2+ release via RyR2 (12).
There is also evidence that the CK system and Ca2+ cycling via
SERCA2b operate in the same pathway for UCP1-independent
thermogenesis. When using UCP1-knockout beige adipocytes,
both SERCA2b depletion and CK inhibition by b-guanidinopro-
pionic acid (b-GPA) reduced OCR, but b-GPA treatment had
no additional effect on OCR in already SERCA2b-depleted adi-
pocytes (12).
In conclusion, the role of Cr and CK in thermogenesis of

beige and brown adipocyte has attracted much attention. Their
role in UCP1-independent, but ATP-dependent nonshivering
thermogenesis is clearly emerging (15–18, 21), but the detailed
molecular nature of the thermal energy generator is less evident.

It is our contention, however, that it does not necessarily require
futile Cr cycling and the presence of a hypothetical, novel PCr
phosphatase. It is proposed here that Cr and PCr may just oper-
ate as part of the classical energy shuttle, providing ATP to
other thermogenic pathways, in particular for futile Ca2+ cycling
at the ER. For the latter, ample evidence for its functioning in
adipocytes is available (10, 12, 13). Much diligent experimenta-
tion, however, is still needed to clarify these issues before they
can be harnessed for mechanism-based therapeutic approaches
to combat obesity, type 2 diabetes, and metabolic syndrome (4).
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Fig. 1. Proposed mechanism of creatine-driven thermogenesis in brown/beige adipocytes. The creatine kinase (CK)/phosphocreatine (PCr) shuttle (bold red and
black arrows) improves energy transfer between mitochondrial and/or glycolytic ATP supply (big white circles) and ATP consumption at the endoplasmic reticu-
lum (ER) by SR/ER Ca2+-ATPase2b (SERCA2b). This shuttle is supported by specifically associated mitochondrial CK (black square) and cytosolic CK (gray
squares) isoforms. At the mitochondrial site, CK functionally interacts with adenine nucleotide translocase and voltage-gated anion channel (small white circles)
to exchange matrix ATP against ADP and cytosolic creatine (Cr) against PCr, respectively (14, 27). At the ER site, cytosolic CK fuels SERCA2b for Ca2+ pump-
ing (30), which can switch to futile Ca2+ cycling (blue arrows). This involves Ca2+-release by either ryanodine receptor (RyR2), potentially regulated by calsta-
bin2 (Cal2) (12), or the inositol-3-phosphate receptor-3 (IP3-R3), facilitated by IP3 signaling (10). Such futile Ca2+cycling can be stimulated via the sympathetic
nervous system, norepinephrine, and/or adrenergic receptors (a1, b3) (10, 12, 13). This classical CK/PCr shuttle links ATP supply with ER-based ATP consump-
tion by SERCA2b, thus supporting futile Ca2+ cycling for noncanonical, UCP1-independent, but ATP-dependent, nonshivering thermogenesis. [Figure modified
with permission from (27)].
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