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Abstract Logistic regression is a widely used statistical method to relate a binary
response variable to a set of explanatory variables and maximum likelihood is the
most commonly used method for parameter estimation. A maximum-likelihood lo-
gistic regression (MLLR) model predicts the probability of the event from binary
data defining the event. Currently, MLLR models are used in a myriad of fields in-
cluding geosciences, natural hazard evaluation, medical diagnosis, homeland secu-
rity, finance, and many others. In such applications, the empirical sample data often
exhibit class imbalance, where one class is represented by a large number of events
while the other is represented by only a few. In addition, the data also exhibit sam-
pling bias, which occurs when there is a difference between the class distribution
in the sample compared to the actual class distribution in the population. Previous
studies have evaluated how class imbalance and sampling bias affect the predictive
capability of asymptotic classification algorithms such as MLLR, yet no definitive
conclusions have been reached.

We hypothesize that the predictive capability of the model is related to the sam-
pling bias associated with the data so that the MLLR model has perfect predictability
when the data have no sampling bias. We test our hypotheses using two simulated
datasets with class distributions that are 50:50 and 80:20, respectively. We construct
a suite of controlled experiments by extracting multiple samples with varying class
imbalance and sampling bias from the two simulated datasets and fitting MLLR mod-
els to each of these samples. The experiments suggest that it is important to develop
a sample that has the same class distribution as the original population rather than
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ensuring that the classes are balanced. Furthermore, when sampling bias is reduced
either by using over-sampling or under-sampling, both sampling techniques can im-
prove the predictive capability of an MLLR model.

Keywords Probabilistic classification - Imbalance - Sampling - Binary class -
Over-sampling - Under-sampling

1 Introduction

Linear regression is perhaps the most commonly used statistical method for predict-
ing the value of a dependent variable from observed values of a set of predictor vari-
ables. However, linear regression requires the dependent variable to be continuous
and the model residuals to be normally distributed. Logistic regression is a variation
of linear regression for situations where the dependent variable is not a continuous
parameter but rather a binary event (e.g., yes/no, 0/1, etc.). The value predicted us-
ing a logistic regression is a probability of the event, ranging from 0 to 1. A check
of the ISI Web of Knowledge reveals that 11,725 papers were published in 2008 in
which “logistic regression” appeared in either the title or among the key words. King
and Zeng (2001) referred to the use of maximum likelihood as the nearly universal
method for parameter estimation in logistic regression. Maximum-likelihood logistic
regression (MLLR) has been applied to a wide range of applications, including, but
not limited to, radar detection of hail (Lopez and Sanchez 2009), fingerprint match-
ing (Cao et al. 2009), bank failure predictions (Boyacioglu et al. 2009), wildfire risk
(Preisler et al. 2004), and diagnoses of rare medical conditions (Correia et al. 2009;
Page et al. 2009).

MLLR is also widely used in engineering and geoscience applications such as
evaluation of soil liquefaction potential (Juang et al. 2001, 2002; Lai et al. 2006),
assessment of landslide susceptibility (Atkinson and Massari 1998; Carrara 1983;
Chung and Fabbri 2003), classification of intermittent and perennial streams (Bent
and Steeves 2006; Olson and Brouillette 2006), regionalization of low streamflows
(Tasker 1989), mineral exploration (Agterberg 1974; Bonham-Carter and Chung
1989; Caumon et al. 2006), and for classifying wetlands (Toner and Keddy 1997). In
these applications, the empirical data often have a large number of events/examples
from one class while the other is represented by only a few instances. This imbalance
in the data is referred to as class imbalance. For natural hazard applications, it is com-
mon for the hazard event (yes or one) to be sampled much more frequently than the
non-hazard event (no or zero). For example, we see class imbalance in a soil liquefac-
tion cone penetration test database where the class ratio of instances of liquefaction
to non-liquefaction is 76:24 (Moss et al. 2006). In addition to class imbalance, the
class ratio of the data/sample is often different from the class ratio in the population.
This difference in the class ratio between the sample and the population is known
as sampling bias. For example, if the true population of the data has a class ratio of
80:20 and a sample has a class ratio of 50:50, then the sample has no class imbalance
but it exhibits sampling bias.

Since the 1980s and recently across a variety of disciplines, there have been sev-
eral attempts by researchers to answer the following question: how does class im-
balance affect the predictive capability of asymptotic classification algorithms such
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as MLLR? (Burez and Van den Poel 2008; Cosslett 1981a; Garcia et al. 2008;
Gu et al. 2008; Liu et al. 2009; Seiffert et al. 2009; Sun et al. 2009; Tang et al. 2009;
Williams et al. 2009). These studies have generally minimized or removed class im-
balances using basic sampling methods. Two common methods to minimize class
imbalance are under- and over-sampling. Under-sampling eliminates majority-class
events and over-sampling duplicates minority-class events. However, none of the pre-
viously cited studies have drawn definitive conclusions regarding when and how class
imbalance affects MLLR. The current consensus is that when both classes are equally
easy to collect, an equal sampling is optimal in a few situations and near optimal in
most situations. (Cosslett 1981b; Imbens 1992; King and Zeng 2001). Others have
concluded that “there is no general answer to which class distribution will perform
best, and the answer is surely method and case dependent,” (Weiss and Provost 2003)
or “there is no need to under-sample so that there are as many churners in your train-
ing set as non-churners” (Burez and Van den Poel 2008).

It is evident that no clear consensus has emerged on whether a dataset should have
an equal number of classes or a unique class distribution (optimal imbalance) for
optimal classifier performance. It is also not clear whether class imbalance is case
dependent and, if so, how the optimal imbalance for each case can be determined
a priori. From the literature, most of the discussion is on class imbalance without a
clear discussion on how sampling bias and class imbalance interact.

We analyze the competing issues of sampling bias and class imbalance on the
performance of MLLR models using controlled experiments based on simulated data.
We test our hypotheses that the MLLR model has perfect predictability when the
data have no sampling bias. We simulate two datasets with alternate class-imbalance
ratios (50:50 and 80:20) and then sample these datasets to produce samples with the
following class distributions: 50:50, 60:40, 70:30, 80:20, 90:10, 95:5, 98:2, and 99:1.
Finally, we develop MLLR models on these samples and quantify their predictive
capability using various statistical measures.

2 Simulated Data

We generate two samples from a logistic model with known model parameters to
enable us to perform controlled MLLR experiments. Agresti (2002) and others docu-
ment that for a logistic regression, the probability distribution of the dependent vari-
able y follows the Bernoulli probability mass function

f.x.a ) =(1 —n(x,a,m)exp(y-ln(%» (1)

where
exp(a+ B - x)

1+expla+pB-x)°

and where y is a binary dependent variable of interest, x is a predictor variable, & and
B are regression coefficients, and = is the continuous probability associated with the
dependent variable of interest y. Taking logarithms, one can easily show that

Infz/(1—m)]=a+p-x, ®3)

where In[rr /(1 — )] is often termed the logit function.

)

T(x,a, p)=
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The Bernoulli Probability Mass Function (PMF) yields

fO(X,asﬁ):(l—ﬂ(x»“vﬂ))s and fl(x,a,ﬂ):ﬂ(x,a,ﬂ). (4)
For a fixed probability p, one can generate the Bernoulli trial y using

dummy <« rnd(1),
y(p) =10 if dummy < p, (5)
1 otherwise,

where p is the probability of y. The conditional Bernoulli trials y are then generated
by substitution of 7 (x, , 8) in place of f(p) in (4) so that

dummy <« rnd(1),
y(@x,a, B)) =0 ifdummy < 7 (x, e, B), (6)
1 otherwise.

We simulate a predictor variable x from a uniform distribution, which ranges from
0to 10. For Case A, we use « = —10 and 8 = 2, and for Case B, we use « = —10 and
B = 3.85. For each value of x, we calculate the true value of 7 (x, «, 8) using the cor-
responding « and B values for each case. The true value of 7 (x, «, 8) is substituted
into (6) to generate the conditional Bernoulli trial y.

The theoretical properties of the simulated datasets are presented in Fig. 1 in terms
of both the probabilities given by (2) and the logit function given in (3). Both the
datasets have a total of 50,000 events, with the Case A dataset having a class distri-
bution of about 50:50 (class 0: class 1:: 24970:25030) and Case B dataset having a
class distribution of about 80:20 (class 0: class 1:: 39102:10757).

3 Methodology

To test the hypothesis that sampling bias controls the optimal class balance required
for the best predictive performance of MLLR model, we extract samples from the
Case A and Case B datasets with different class distributions. These samples have
class distributions (that is, the ratio of class O to class 1) varying from 50:50, 60:40,
70:30, 80:20, 90:10, 95:5, 98:2, and 99:1, respectively. For each sample class dis-
tribution, we carry out 1000 Monte Carlo simulations and for each simulation we
develop an MLLR model. The MLLR model is developed using the glm function
in the stats package of the R programming language (R Development Core Team
2009). The predictive performance of each MLLR model is quantified using statisti-
cal model validation metrics such as area under the receiver operating characteristic
curve (AUC), area under the precision recall curve (AU-PRC), precision (Prec), re-
call (Rec), and F-measure (F-M)/F-score (van Rijsbergen 1979). These metrics are
all computed from elements of the confusion matrix. A confusion matrix is a table
used to evaluate the performance of a classifier. It is a matrix of the observed versus
the predicted classes, with the observed classes in columns and the predicted classes
in rows as shown in Table 1. The diagonal elements (where the row index equals
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Fig. 1 Theoretical properties of the simulated datasets: (a) predictor variable x versus the probability of

x for Case A, (b) predictor variable x versus the logit of x for Case A, (¢) predictor variable x versus the
probability of x for Case B, and (d) predictor variable x versus the logit of x for Case B

Table 1 Confusion matrix,
presenting the observed classes
in rows and the predicted classes
in columns where TP is the true
positive, TN is the true negative,
FP is the false positive, and FN
is the false negative

Observed

Yes | No

Yes | TP FP

Predicted

No | FN | TN

the column index) include the frequencies of correctly classified instances and the
non-diagonal elements include the frequencies of misclassifications.

To develop the confusion matrix for evaluating a probabilistic classifier, we must
choose a probability threshold value that marks the class boundary between class 0
and class 1. The selection of a probability threshold to mark the class boundary is han-
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dled in two ways, either by choosing a single threshold value or by using the complete
spectrum of thresholds (that is, operating conditions). In this study, we evaluated the
MLLR models both ways.

When a single threshold value is chosen, we use the probability value that maxi-
mizes the accuracy as the optimal threshold. The accuracy is given by

Accuracy = (TP +TN)/(P + N), (7

where the true positive (7P) is the sum of instances of class 0 correctly predicted,
true negative (TN) is the sum of instances of class 1 correctly predicted, P is all the
instances of class 0, and N is all the instances of class 1. When a single threshold
value is used, the predictive performance of the MLLR model is evaluated using
metrics such as Prec, Rec, and F-M, applied separately to the different classes in the
dataset.

Prec measures the accuracy of the predictions for a single class, whereas Rec mea-
sures accuracy of predictions only considering predicted values.

Prec =TP/(TP + FP), (8)

and
Rec =TP/(TP + FN), 9)

where the False Positive (FP) is the sum of instances of class 1 classified as class 0,
and the where the false negative (FN) is the sum of instances of class O classified as
class 1.

The F-M combines the Prec and Rec value to a single evaluation metric. The F-M
is the weighted harmonic mean of the Prec and Rec

F-M = (1 + $?)(Prec - Rec) /(B - Prec + Rec), (10)

where B is a measure of the importance of Prec to Rec.

When the complete spectrum of probability thresholds is used to evaluate a prob-
abilistic model, the evaluation metric is a two-dimensional curve. The commonly
used two-dimensional evaluation curves for probabilistic classifiers are the Precision—
Recall (P-R) curve and the receiver operating characteristic (ROC) curve (Fawcett
2006). P-R and ROC curves provide a measure of the classification performance for
the complete spectrum of probability thresholds (that is, operating conditions). The
P-R and ROC curves are developed by calculating the Prec, Rec, and the False Posi-
tive Rate (FPR) for each threshold from O to 1. The FPR is

FP

FPR= —.
FP+TN

(11
Any point on either the P-R or ROC curve corresponds to a specific threshold. Fig-
ure 2 presents an idealized ROC curve, where the dashed line is the idealized best
possible ROC curve. The AUC is a scalar measure that quantifies the ROC curve in
terms of accuracy of the probabilistic classifier. The AUC varies from 1.0 (perfect ac-
curacy) to 0. Randomly selecting a class produces the diagonal line connecting (0, 0)
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and (1, 1) (shown as dotted diagonal line Fig. 2). This gives AUC = 0.5, thus it is
unrealistic for a classifier to have an AUC less than 0.5.

Figure 3 presents an idealized P-R curve. The dashed line represents the best P—
R curve with point A marking the best performance. AU-PRC is a scalar measure
that quantifies the P-R curve signifying the predictive performance of the classifier.
Unlike ROC curves, P-R curves are sensitive to the influence of class imbalance and
sampling bias in a dataset (Oommen et al. 2010).
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4 Logistic Regression and Maximume-likelihood Estimation

Logistic regression models a binary response variable. The logistic function is

1

77/(X) = m,

(12)
where X is the input or the predictor variable and 7’(X) is the estimated output or
the estimate of the response variable (Cox 1970). When there are multiple predictor
variables, X can be expanded as the total contribution of all the predictor variables,
given by

X =a+ pi1x1+ Poxo + -+ - + Brxk, (13)

where k is the number of predictor variables, « is the intercept, and By, B2, ..., Bk
are the regression coefficients of the corresponding predictor variables.

The advantage of the logistic function is that it can take any value from —oo to
oo as the input, whereas the output is confined to values between 0 and 1. This is
achieved by a logit transformation (Cox 1970) of the logistic function, given earlier
in (3)

/ 7(X)
loglt(r[ (X)) _1n<1 —n(X))' (14)
Equations (12) and (14) form the bases of a logistic regression analysis, where 7' (x)
represents a maximume-likelihood estimate of its true value  (X), given in (2).

Although the above model used to find X in (13) looks like a simple linear regres-
sion, the underlying distribution of the dependent variable of interest y is binomial
and the parameters « and Bi, f2, ..., Bx cannot be estimated in the same way as
for simple linear regression because there is no normally distributed model error in
logistic regression. Instead, the parameters are usually estimated using the method
of maximum likelihood (ML). Nearly every software package which implements lo-
gistic regression uses the ML method, although other methods have been advanced,
including exact logistic regression (Hirji et al. 1987).

5 Results and Discussion
5.1 Case A

In Case A, the two classes (class 0 and class 1) in the original population have a
balanced distribution of 50:50. We extract eight random samples from the Case A
population with varying class distribution of 50:50, 60:40, 70:30, 80:20, 90:10, 95:5,
98:2, and 99:1, respectively. Each sample is referred with the case number, followed
by the sample class distribution in subscripts. For example, a sample with a class
distribution 60:40 from Case A is referred as Case Ago-40. The sample size for each
of the eight samples is determined by fixing the length of the majority class (class
0) at 5000. An MLLR model is applied to each of the eight samples. A plot of the
true 7 (X) versus predicted 7' (x) probability is presented in Fig. 4. We observe from
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Fig. 4 Scatter plot of the true probability against the predicted probability using MLLR for Case A sam-
ples

Fig. 4 that the sample (Case Asg.50) with no class imbalance and no sampling bias
(Fig. 4a) has the best overall predictive performance with the true probabilities being
nearly equal to the predicted probabilities using MLLLR. We also observe that as the
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class imbalance increases from 60:40 to 99:1 resulting in increasing sampling bias
and class imbalance (Figs. 4b to 4h); the MLLR model tends to under-predict the
probability with the degree of under-prediction being proportional to the sampling
bias and class imbalance. We observe that in Case A, the sample (Case Asg.50) that
has the best model performance (Fig. 4a) does not have a class imbalance (because
both class 0 and class 1 have an approximately equal class distribution) or a sampling
bias (because the distribution of classes in the sample is approximately equal to the
distribution of classes in the population). Therefore, it is not evident from Case A
whether both sampling bias and class imbalance are significant for the performance
of the model or whether it is either one of them.

We carry out 1000 Monte Carlo simulations for each of the eight samples in
Case A. For each simulation, an MLLR model is developed and the model predic-
tive performance is quantified using AUC, AU-PRC, Prec, Rec, and F-M. Figure 5
presents the box plot of these predictive performance measures for each of the eight
samples. We observe that as the class imbalance and sampling bias increase from
Case Agp.40 to Case Ago.; (Figs. 5b to 5h), the performance measures of the mi-
nority class (class 1) decrease considerably with the exception of the AUC. How-
ever, it is important to note that when there is no class imbalance and no sampling
bias (Case Aso.50) and when the predicted probability is close to the true probability
(Fig. 5a), the mean Prec, Rec, and F-M were similar for both classes (class 0 and
class 1), whereas these performance measures substantially differ for other samples
(Figs. 5b to 5h).

AUC is similar to a rank sum test and measures the separability of the classes
in a dataset. In Fig. 5, we observe that although all other performance measures in-
dicate decrease in separability as class imbalance and sampling bias increase, AUC
indicates that the separability is consistent. Therefore, to visualize the separability
between the classes in each of the eight samples, we selected one simulation from
each sample and plotted its estimated probability using the MLLR model against the
number of instances for each class separately (as shown in Fig. 6). We observe from
Fig. 6 that as the class imbalance and sampling bias increases from Case Agp.40 to
Case Ago.1 (Figs. 5b to 5h), the separability in the dataset is not significantly differ-
ent. This indicates that the measure of separability using AUC is more robust over
other measures and is not influenced by class imbalance or sampling bias. This also
indicates that although the predicted probability is significantly affected due to the
increase in sampling bias and class imbalance in the data, the separability between
the classes is unaffected. Therefore, the impact of class imbalance and sampling bias
can be different for users depending on their objectives. For example, when the ob-
jective of the user using the MLLR model is to know whether a site is susceptible
to landslide or not, the impact of class imbalance and sampling bias can be minimal;
when the objective of the user is to compare between two sites that are susceptible to
landslide, the user is interested in the probability of landslide susceptibility, in which
case the impact of sampling bias and class imbalance can be significant.

Mehta and Patel (1995) recommend the use of exact logistic regression as an al-
ternative for maximum-likelihood estimates when the data is sparse or unbalanced.
However, we tried the exact logistic regression and the results did not improve the
predicted probability compared to what was estimated using maximum likelihood.
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Fig. 5 Box plot of the predictive performance measures (AUC, AU-PRC, Prec, Rec, and F-M) of the
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A samples

5.2 Case B
In Case B, the two classes (class 0 and class 1) in the original population have a
class imbalance of 80:20. Similar to Case A, we extract eight random samples from

the Case B population with the ratio of class 0 to class 1 varying from 50:50, 60:40,
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Fig. 7 Scatter plot of the true probability against the predicted probability using MLLR for Case B sam-
ples

70:30, 80:20, 90:10, 95:5, 98:2, and 99:1, respectively. A plot of the true probability
against the probability that is predicted using the MLLR model developed for each
of the eight samples is presented in Fig. 7. Here, it is evident from Fig. 7 that the
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sample (Case Bsg.50) that has a balanced class (Fig. 7a) no longer performs best,
as observed in Case A. Instead, the sample (Case Bgg.29) that has no sampling bias
(Fig. 7d) performs the best.

The sample (Case Bgg.20) that performs the best (Fig. 7d) does not have a sampling
bias because in that case, the class distribution of the sample (80:20) is equal to the
class distribution of the population. We observe once again, that as the sampling bias
increases (Figs. 7a to 7c and 7e to 7h), the MLLR model highly under- or over-
predicts the probability. When the distribution of the minority class in the sample
is more than the distribution in the population, the MLLR model over-predicts the
probability, and if the distribution of the minority class in the sample is less than the
distribution in the population, the MLLR model under-predicts the probability.

We also carry out 1000 Monte Carlo simulations for each of the eight samples in
Case B. Figure 8 presents the box plot of the predictive performance for each of the
eight samples using the same evaluation measures reported for Case A. For the case
when the percentage of the minority class in the sample is less than its occurrence in
the population, and as the sampling bias increases from samples Case Bog.1o to Case
Boo.; (Figs. 8e to 8h), the mean Prec, Rec, and F-M for the minority class (class 1)
decrease considerably; when the distribution of the minority class in the sample is
greater than the distribution in the population (Figs. 8a to 8c), both classes had high
mean Prec, Rec, and F-M values, even though the predicted probability in these cases
(Case Bsg-50 to Case B7:30) are greater than the true probability. Similar to Case A,
we observe from Fig. 8 that there is no significant change in the AUC value due to
class imbalance or sampling bias. Also similar to Fig. 6, Fig. 9 verifies that in Case
B the separability between the classes is unaffected by class imbalance or sampling
bias.

Next, we compare the performance measures from the samples that have the best
MLLR model from Case A (Fig. 4a) and Case B (Fig. 7d). In Case A, the sample
(Case As.50) that performs best has no sampling bias or class imbalance; in Case B,
the sample (Case Bg-20) that performs the best has no sampling bias, but does exhibit
some class imbalance. From these comparisons, we conclude that the performance
of an MLLR model is more dependent upon the sampling bias than upon the class
imbalance. In Case A, for the best performing sample (Case Asg.50), the mean Prec,
Rec, and F-M are similar within and between the classes, whereas in Case B, for
the best performing sample (Case Bgo.20), the mean Prec, Rec, and F-M are similar
within the classes. This indicates that the difference in the mean Prec, Rec, and F-M
within the class and between the classes can be used as an indicator of sampling bias
and the resulting inaccuracy of the predicted probabilities using the MLLR model.

In order to analyze the impact of sample size on the performance of the MLLR
model, we carried out a sensitivity analysis by varying the majority-class size of
the best sample from Case Bgg.20. The majority-class size varied from 5000 to 100
instances. Results indicated that the sample size did not impact the predictive per-
formance significantly. However, if the sample size is considerably small, it could
impact the predictive performance of the MLLR model.
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Fig. 8 Box plot of the predictive performance measures (AUC, AU-PRC, Prec, Rec, and F-M) of the
MLLR model computed separately for class 0 and class 1 for the 1000 Monte Carlo simulations of Case
B samples

6 Improving MLLR Models Using Sampling Techniques
We have tried to improve the performance of the worst performing samples of Case
A (Case Agg.1) and Case B (Case Bogo.1) by using common sampling techniques:

under- and over-sampling. The worst performing sample of Case A (Fig. 4h) is further
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Fig. 10 Scatter plot of the true probability against the predicted probability using MLLR for the
over-sampled (Case Aps.50:50) and under-sampled (Case Ays-50:50) samples, compared to the original
sample (Case Agg.1) (Fig. 4h, class distribution of 99:1)

Table 2 Mean predictive performance of the MLLR model for the simulations of under-sampled (Case
Ays-50:50) and over-sampled (Case Apgs-50:50) samples, compared to the worst performing sample (Case
Agg.1) of Case A

Case Class 0 Class 1
AUC  AU-PRC Prec Rec F-M AUC AU-PRC Prec Rec F-M

Agy.| 099 099 099 099 099 099 083 090 069 077
Aussoso 098 098 093 095 094 098 098 095 093 094
Aoss0:50 099 0.99 098 098 098 099 097 092 093 093

sampled to derive two different samples of which one is over-sampled and the other is
under-sampled. The resulting samples have a class distribution of 50:50. The sample
that is over-sampled is referred to as Case Aps.50:50 and the sample that is under-
sampled is referred to as Case Ays.so:50, respectively. The class distribution of 50:50
for the sample from Case A represents a balanced class with no sampling bias. A plot
of the true probability against the probability predicted using an MLLR model for
both the over- and under-sampled samples is presented in Fig. 10. It is evident from
Fig. 10 that both over- and under-sampling improved the predictive capability of the
sample compared to the original sample (Case Agg.1) (Fig. 4h, class distribution of
99:1).

We carried out 1000 Monte Carlo simulations of over- and under-sampling, and
developed an MLLR model for each simulation. In Table 2, we present the com-
parison of the mean predictive performance of the MLLR model for the simulation
compared to the predictive performance of the MLLR model in the original sample.
The mean predictive performance measures for the under- and over-sampled samples
have improved considerably over the original (biased and imbalanced) sample, es-
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Table 3 Mean predictive performance of the MLLR model for the simulations of under-sampled (Case
Bus-50:50 and Case Bys_go.20) and over-sampled (Case Bpgs_50:50 and Case Bpg_go:20) samples, com-
pared to the worst performing sample (Case Bgg.1) of Case B

Case Class 0 Class 1
AUC  AU-PRC Prec Rec F-M AUC AU-PRC Prec Rec F-M

Boo:| 099  0.99 099 099 099 099  0.83 090 069 0.77
Bus.soso 0.99  0.99 097 097 097 099 099 097 097 097
Bos.so:so  0.99  0.99 098 096 097 099 099 096 098 097
Bus.so20  0.99  0.99 098 098 098 099 098 095 093 094
Bos.s020  0.99  0.99 098 098 098 099 097 092 093 093

pecially for class 1. The comparison of the mean predictive performance measures
for the under- and over-sampled cases reveals that they both have similar predictive
performance.

In Case B, the worst performing sample (Case Boo.;) is further sampled to derive
four different samples of which two are over-sampled and the other two are under-
sampled. The resulting samples have class distributions of 50:50 and 80:20. The sam-
ples that are over-sampled are referred to as Case Bos.50:50 and Case Bos.s0:20, re-
spectively, and the samples that are under-sampled are referred to as Case Buys-50:50
and Case Bys.go:20, respectively. Figure 11 compares the true probability with the
predicted probability for both the over-sampled and under-sampled cases for class
distributions of 50:50 and 80:20. Here we observe for the case of over- and under-
sampling that the sample with no sampling bias (Case Bos-g0:20 and Case Bys-g0:20)
results in predictions which outperform the model based on the sample with no class
imbalance (Case Bos-50:50 and Case Bus.50:50). As in Case A, a comparison of the
model performance based on over- with under-sampling indicates that the true and
predicted probability are in better agreement for the case of over-sampling than for
the case of under-sampling.

Similar to Case A, we have carried out 1000 Monte Carlo simulations of over-
and under-sampling for both class distributions in Case B and developed an MLLR
model for each simulation. In Table 3, we present the comparison of the mean pre-
dictive performance of the MLLR model compared to the predictive performance of
the MLLR model based on the original sample. The mean predictive performance for
both class distributions (50:50 and 80:20) and both sampling techniques (under- and
over-sampling) demonstrates considerable improvement over the original sample. It
is observed from Table 3 that the difference between the mean Prec, Rec, and F-M
is minimal within and between the classes in the case of balanced samples (Case
Bos-s0:50 and Case Bys.so:50), whereas it is minimal within the classes when there
is no sampling bias (Case Bos-g0:20 and Case Bys-g0:20). This indicates that the dif-
ference in mean Prec, Rec, and F-M can be used as an indicator of sampling bias
even when the samples are re-sampled using under- or over-sampling. Our results,
which indicate that over- and under-sampling can improve predictive performance,
are consistent with previous results in the literature but provide more guidance on
when over- or under-sampling should be used and what the sampling ratio should
be. Cosslett (1981b), Imbens (1992), and King and Zeng (2001) have recommended
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Fig. 11 Scatter plot of the true probability against the predicted probability using MLLR for the
over-sampled (Case Bpg.50.50 and Case Bps.go.20) and under-sampled (Case Byg.50.50 and Case
Bus-g0:20) samples from the worst performing sample (Case Bgg.1) of Case B

correction and weighting methods for the estimation of the maximum-likelihood es-
timates to correct for the sampling bias. However, the proposed methods require the a
priori knowledge of class distribution of the population and are not always available
(King and Zeng 2001).

In order to improve the performance of an MLLR model when a priori knowledge
of class distribution is not known, King and Zeng (2001) recommended a sequential
practice involving the equal collection of both classes, that is, class 0 (frequent event)
and class 1 (rare event), and verify if the standard errors and confidence intervals
are narrow enough to stop. Otherwise, they suggest continuing sampling class 0 ran-
domly until the confidence intervals get sufficiently small for the substantive purpose
at hand. In effect, by this sequential practice, the user is reducing the sampling bias
between the sample and the population. The results from our study support the recom-
mendation of King and Zeng (2001) when dealing with samples for which the class
distribution in the population is unknown. In fields such as geosciences, geohazards,
and medical diagnosis, the distribution of the classes in the population is unknown a
priori. However, we recommend that in fields where the distribution of the classes in
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the population is known a priori, the user should choose a sample that has the same
distribution as the population to ensure optimal performance of the MLLR model.

7 Conclusions and Future Work

We have analyzed the influence of class imbalance and sampling bias on the perfor-
mance of the asymptotic MLLR classifier. We have generated two synthetic datasets
with class distributions of 50:50 and 80:20. Here we have generated datasets with
completely known properties from an underlying logistic regression model for which
we know the true model parameters. We have performed a set of simulations that
extract several samples from these datasets that have different class distributions and
have compared the resulting MLLR models, which were fit to each of the samples
in terms of various commonly used statistical performance measures which are all
based on the confusion matrix.

The following specific conclusions arise from our performance evaluation of the
resulting fitted MLLR models:

e The predicted probability using an MLLR model is closest to the true probability
when the sample has the same class distribution as the original population. There-
fore, in probabilistic modeling using MLLR, it is important to develop a sample
that has the same class distribution as the original population rather than ensur-
ing that the classes are equally sampled. In summary, it is critical that the user of
MLLR attempts to limit sampling bias.

e When the objective of the MLLR model is only to separate between the classes in
the dataset, neither sampling bias nor class imbalance are significant, that is, the
separability of the data is not affected by the difference in the true and predicted
probabilities. However, when the user is interested in comparing predictions within
a class, it is important that the sample has minimal sampling bias to ensure that the
difference in the true and predicted probabilities will be minimal.

e AUC is a widely used measure of the predictive performance of probabilistic clas-
sifiers, which ranges from 0.5 (random performance) to 1 (perfect performance).
Independent of the class imbalance and sampling bias in the data, AUC measures
the separability between the classes.

e For the evaluation of probabilistic models, we recommend the use of AUC to eval-
uate the separability between the classes. The difference between the Prec, Rec,
and F-M within a class can be used as an indicator of the sampling bias as well as
the difference in the true and predicted probabilities.

e When the sampling bias is reduced using basic sampling techniques, both over- and
under-sampling will tend to improve the predictive capability of the model with
over-sampling providing slightly improved estimates of the probability of interest.
While the use of over- and under-sampling is not new, our results provide guidance
in using these sampling methods. The goal of sampling should be to mimic the
population class ratio in the sample.

In this study, using two synthetic datasets from a model with known parameters,
we demonstrate that sampling bias limits the predictive performance of MLLR, an
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asymptotic classifier. Our future work will focus on how to identify the correct class
distribution of the original population from a sample. This information is needed to
correct for sampling bias and thus derive better estimates of probability using MLLR
classifiers.
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