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A B S T R A C T   

A growing body of evidence suggests that urban densification may be protective against obesity, type 2 diabetes, 
and cardiometabolic diseases, yet studies on how built environmental features relate to metabolic syndrome 
(MetS) and its components are scarce. This longitudinal study examines the associations of baseline urban 
density and densification over 9 years with MetS and MetS components, among 510 participants enrolled in both 
waves of the ORISCAV-LUX study (2007–2017) in Luxembourg. A continuous MetS score (siMS) was calculated 
for each participant. Six features of residential built environments were computed around participants’ home 
address: street connectivity, population density, density of amenities, street network distance to the nearest bus 
station, density of public transport stations, and land use mix. A composite index of urban densification (UDI) 
was calculated by averaging the six standardized built environment variables. Using adjusted generalized esti
mating equation (GEE) models, one-SD increase in UDI was associated with a worsening of the siMS score (β =
0.07, 95% CI: 0.02, 0.13), higher triglyceride levels (β = 0.05, 95% CI: 0.02, 0.09), and lower HDL-c levels (β =
− 1.29, 95% CI: − 2.20, − 0.38). The detrimental effect of UDI on lipid levels was significant only for participants 
living in dense areas at baseline. Higher baseline UDI, as well as increased UDI over time among movers, were 
also associated with greater waist circumference. There were no associations between UDI, fasting plasma 
glucose and systolic blood pressure. Sex and neighborhood socio-economic status did not moderate the associ
ations between UDI and the cardiometabolic outcomes. Overall, we found limited evidence for an effect of urban 
densification on MetS and its components. Understanding urban dynamics remains a challenge, and more 
research investigating the independent and joint health effect of built environment features is needed to support 
urban planning and design that promote cardiometabolic health.   

1. Introduction 

The global burden of cardiometabolic diseases (such as heart attack, 
stroke, diabetes, insulin resistance, and non-alcoholic fatty liver disease) 
is increasing (Roth et al., 2017). In 2019, cardiometabolic diseases were 
responsible for about 1.7 million deaths (37 percent of all deaths) and 
constitute the leading cause of death in Europe (OECD/European Union, 
2022). The burden of cardiometabolic diseases is attributable to com
binations of various individual and environmental risk factors (Abbafati 
et al., 2020). Thus, implementing effective public health policies to 
tackle these diseases requires the use of ecological frameworks ac
counting for the complex interactions between individual and environ
mental factors in health (Lang and Rayner, 2012). 

At the local level, planning of the urban built environment is now 
recognized as an important factor that could affect cardiometabolic 
health by influencing a complex network of exposure to environmental, 
social, and behavioral risks (Giles-Corti et al., 2016). The rapid pace of 
urbanization over the last century has been the main driver of changes in 
the urban built environment in Europe. Between 1960 and 2020, the 
urban population in Europe increased from 59 to 75 percent and is ex
pected to expand further over the coming years (World Bank Data, 
2018). Urban design and public transportation have evolved to cope 
with this rapid growth, leading to two distinct phenomena: urban 
densification and urban sprawl (European Environment Agency, 2016). 
Despite the lack of a unanimously accepted definition, urban densifica
tion refers to process of the concentration of urban infrastructures within 
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city centers, resulting in a high population density, mixed land use, and 
easy access to public transport (Burton, 2002). Conversely, urban sprawl 
refers to a dynamic of the city spreading into suburban areas, leading to 
low-density residential housing, poor access to infrastructure, and 
increased dependency on automobile transport (Galster et al., 2001). 

Growing evidence suggests that living in dense and low-sprawled 
areas is more likely to be protective against obesity, type 2 diabetes, 
and cardiovascular diseases (Chandrabose et al., 2019c; DenBraver 
et al., 2018; Feng et al., 2010; Leal and Chaix, 2011; Mackenbach et al., 
2014; Malambo et al., 2016; Sallis et al., 2012). Reduced car dependency 
— and consequently less traffic exposure, pollution, and noise — as well 
as improved access to public transport, footpaths, and local stores are all 
features of more compact and dense cities that could positively influence 
health outcomes (Giles-Corti et al., 2016; Nieuwenhuijsen, 2016). 
However, previous studies have relied extensively on cross-sectional 
designs, which are particularly susceptible to reverse causation and 
self-selection and do not permit causal inference (Lamb et al., 2020). In 
addition, longitudinal studies have mainly focused on obesity, whereas 
the effect of urban densification on other cardiometabolic outcomes — 
and in particular on metabolic syndrome (MetS) — has been little 
investigated (Chandrabose et al., 2019c). 

MetS is nevertheless a burgeoning public health concern that affects 
about 25 percent of the European adult population (Scuteri et al., 2015). 
It refers to the co-occurrence of several metabolic abnormalities: 
abdominal obesity, raised triglyceride levels, low high-density lipopro
tein, high blood pressure, and elevated fasting plasma glucose (Alberti 
et al., 2009). People with MetS have a higher risk of developing car
diometabolic diseases, making it a good predictor for the early detection 
of people at high risk of cardiometabolic complications (Galassi et al., 
2006; Mottillo et al., 2010). A few studies on urban densification and 
MetS have been conducted in non-European settings, and mixed results 
have been found (Barnett et al., 2022; Coffee et al., 2013; Daniel et al., 
2019; Fong et al., 2019; Müller-Riemenschneider et al., 2013). This 
further emphasizes the importance of investigating the influence of 
urban densification on MetS in a European context. In addition, there is 
a need for future longitudinal studies to disentangle the effect of the 
built environment features to better inform future urban planning and 
design (Chandrabose et al., 2019c). 

The aim of the current study was to assess the longitudinal associa
tions of baseline urban density and urban densification over 9 years with 
MetS and its components in the Grand Duchy of Luxembourg. We hy
pothesized that urban densification is protective against developing 
MetS, and that associations will vary by both MetS components and the 
characteristics of the built environment. 

2. Material and methods 

2.1. Study population 

Data was obtained from two waves of the nationwide population- 
based survey monitoring cardiometabolic health in the adult popula
tion of the Grand Duchy of Luxembourg: ORISCAV-LUX (2007–2008) 
and ORISCAV-LUX 2 (2016–2017). Details of the two surveys have been 
published elsewhere (Alkerwi et al., 2010, 2019). Briefly, in the first 
survey, a random sample of Luxembourg residents aged 18 to 69, 
stratified by gender, age categories, and districts was drawn from the 
national insurance registry (n = 1432). The second survey combined a 
follow-up of the participants from the first survey with an additional 
random sample (n = 1558). In both waves, participants were invited to 
complete self-administered questionnaires, as well as undergoing clin
ical and anthropometric examinations. The present study includes par
ticipants who took part in both surveys (n = 660, 46.1% of the baseline 
sample). We excluded participants who did not want their data to be 
reused (n = 27), those with self-reported chronic conditions (myocardial 
infarction, stroke, angina, or cancer) (n = 59), or with any missing data 
(n = 64), resulting in a final sample of 510 study participants (Fig. 1). As 

the number of complete cases in the data was above 95 percent, a 
Complete Case Analysis (CCA) was performed. Using the rule of thumb 
that in scenarios when the proportion of missing data is less than 5 
percent, the benefits of alternative approaches of dealing with missing 
data, such as Multiple Imputation (MI), tend to be negligible in terms of 
reducing any bias (Schafer, 1999). Participants in the final sample had 
similar sociodemographic characteristics to the ORISCAV-LUX I study 
population, with the exception of a lower percentage of less-educated 
people (Supplemental Table 1). 

The study was approved by the National Ethics Committee for 
Research (Ref: 202104/03 V2.0). 

2.2. MetS components and MetS score (siMS) 

Metabolic syndrome (MetS) is defined as the accumulation of the 
following cardiometabolic risk abnormalities: abdominal obesity, insu
lin resistance, raised triglycerides, lowered high-density lipoprotein 
cholesterol, impaired glucose metabolism, and hypertension (Eckel 
et al., 2010; Samson and Garber, 2014). Anthropometric measurements, 
blood pressure, and a venous blood sample were collected by a nurse 
during the clinical examinations. The resting systolic blood pressure 
(after 30 min of sitting) was measured three times with a minimum a 
5-min intervals and the mean of the three measurements was used in the 
analysis. The blood samples were analyzed by an accredited laboratory 
(Ketterthill, Esch-sur-Alzette, Luxembourg) for the biological 
measurements. 

To better quantify the spectrum of metabolic abnormalities, we 
computed a continuous score of MetS (Aguilar-Salinas et al., 2005) using 
the siMS score developed by Soldatovic et al. (2016):  

siMS score = 2(Waist/Height) + (FPG/ref.) + (TG/ref.) + (SBP/ref.) - (HDL- 
c/ref. male/female).                                                                                

The reference values represent the cut-off values used for the diag
nosis of the MetS. We used cut-offs from the latest harmonized definition 

Fig. 1. Flow chart of study participants.  
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of MetS given by the American Heart Association/National Heart, Lung, 
and Blood Institute (AHA/NHLBI) and the International Diabetes 
Federation (IDF), namely fasting plasma glucose (FPG) ≥ 100 mg/dL, 
fasting triglycerides (TG) ≥ 150 mg/dL, high-density lipoprotein 
cholesterol (HDL-c) < 40 mg/dL in men or < 50 mg/dL in women, 
systolic blood pressure (SBP) ≥ 130 mmHg (Alberti et al., 2009). 

2.3. Built environment variables and urban densification 

Previous frameworks have identified urban design, density of pop
ulation and amenities, access to public transport infrastructure, and 
diversity of urban spaces as features of the local built environment that 
could influence health and well-being (Giles-Corti et al., 2016). We 
investigated these four features through six built environment variables 
described in Table 1. Street connectivity, population density, density of 
amenities, density of public transport stops, and land use mix were 
calculated for a 1000 m road-network buffer around each participant’s 
residence (equivalent to a 10- to 15-min walk) — a commonly-used 
distance to define residential neighborhoods (Lovasi et al., 2012). The 
road network measurement was chosen over circular buffers, as the 
former provided a more accurate representation of the neighborhood 
accessible to participants as they travel along the road (Li et al., 2022). 
The distance (in meters) from each respondent’s home to the nearest bus 
station was computed using the shortest path. 

To account for the joint effects of built environment variables that 
occur simultaneously in urban areas, we created a composite index of 
urban densification (UDI) by averaging the six standardized built envi
ronment variables (i.e., z-scores with a mean of 0 and standard deviation 
of 1), at each wave. For the shortest path to the nearest bus station, the 
opposite z-score was used, so that higher values indicated greater access 
to bus stations. 

2.4. Covariates 

A directed acyclic graph (DAG) was created to facilitate the identi
fication of potential confounders (Supplemental Fig. 1). DAGs are dia
grams that display a priori causal assumptions about the relationships 
between variables (Greenland et al., 1999). Based on our DAG, a set of 
individual-level and environmental-level covariates were considered. 
The individual-level covariates included sex, age, country of birth 
(Luxembourg, European country, or non-European country), educa
tional level (no diploma, secondary education, or higher diploma), 
working status (employed, not employed, stay-at-home parent, disabled 
or retired), marital status (married/living with partner, single/never 

married, or divorced/widowed). Data was obtained for both waves from 
the self-administered questionnaires. 

Environmental-level variables included the neighborhood socio- 
economic status and the healthiness of the retail food environment. 
The average housing price (in euros per square meter) was used as a 
proxy of neighborhood socio-economic status (Coffee et al., 2020; Ware, 
2019). The average sales prices (in euros per m2) for the years 2008 and 
2017 at the level of participants’ municipality of residence were ob
tained from the Housing Observatory of the Ministry of Housing. Tertiles 
of housing prices in our sample were used to create three groups, with 
the values reclassified according to an ordinal level of measurement: 
low, intermediate, and high housing prices. The Modified Retail Food 
Environment Index (mRFEI) was used to estimate the healthiness of the 
retail food environment. The mRFEI measures the percentage of food 
retailers that provide healthy food items such as fruit and vegetables, 
using the following formula: mRFEI = 100 x (# of Healthy Food Re
tailers)/(# of Healthy Food Retailers + # of Less Healthy Food Retailers) 
(CDC, 2011). Healthy food retailers included supermarkets and large 
grocery stores, greengrocers and open markets, and less healthy food 
retailers included convenience stores/gas stations and fast food restau
rants (CDC, 2011). The mRFEI ranges from 0 to 100% and was classified 
into four categories: no food retailers, no healthy food retailers (mRFEI 
= 0), rather unhealthy food retail environment (mRFEI≤50), rather 
healthy food retail environment (mRFEI>50). 

2.5. Statistical analysis 

Multi-level generalized estimating equation (GEE) was used to 
examine the relationship between changes in residential densification 
variables and cardiometabolic outcomes. GEE is a marginal model 
commonly used in longitudinal data analysis (Fitzmaurice et al., 2012). 
To test for the effect of baseline and change in UDI on changes in car
diometabolic outcomes over time we included the following variables in 
the models: time, baseline UDI (potential impact of baseline UDI on 
mean level in cardiometabolic outcomes over time), change in UDI 
(computed as the difference of UDI between the two waves, and repre
senting the potential impact of change in UDI on mean level in car
diometabolic outcomes over time), interaction term between time and 
baseline UDI (potential impact of baseline UDI on changes in car
diometabolic outcomes over time), and interaction term between time 
and change in UDI (potential impact of change in UDI on changes in 
cardiometabolic outcomes over time). Both baseline and change in UDI 
were standardized (mean = 0; SD = 1) to model one-SD increase. GEE 
models were fitted with an identity link function and considering an 

Table 1 
Description of the residential built environment variables used in the study.  

Residential design 
features 

Built environment 
components 

Description Data source 

Design Street connectivity Number of three-or-more-way intersections 
divided by the neighborhood area (in nb/km2) 

BD-L-TC (ACT) (2008, 2015) 

Density Population density Sum of number of inhabitants per address 
divided by the neighborhood area (nb inhab./ 
km2) 

General Inspectorate of Social Security (IGSS) (2009, 2019) 

Density of amenitiesa Number of amenities divided by the 
neighborhood area (in nb/km2) 

BDD Equipment (2009), Spatial Development Observatory – LISER 
(2017). Crosscheck on Open Street Map, Editus.lu, Google street view, 
Google maps 

Public transport 
infrastructure 

Street network distance to 
the nearest bus station 

Shortest distance to the nearest bus station (in 
m) 

BD-L-TC (ACT) (2008, 2015); Public transport timetables and stops, 
Public Transport Administration, LISER (2009–2018) 

Density of public transport 
stations 

Number of bus, public bike and train stations 
divided by the neighborhood area (in nb/km2) 

Public transport timetables and stops, Public Transport Administration, 
LISER (2009–2018) 
Mvel’OH! (List of stations), City of Luxembourg (2016) 
Vël’OK, CIGL Esch-sur-Alzette (2019) 

Diversity Land use mix Level of diversity of land use types within the 
neighborhood 

Land Information System Luxembourg (LIS-L) Land use change layer 
2007–2015  

a Local amenities included are: community-serving retail outlets (banks, ATMs, post offices, pharmacies, and town halls), medical services (general practitioners, 
hospitals, and clinics), education services (primary, secondary, and high schools), cultural places (cinemas, theaters, and concert halls), and sport facilities (public 
swimming pools, sports fields, and gymnasiums). 
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exchangeable working correlation structure. We considered two levels 
of adjustment. Model 1 was adjusted for individual socio-economic 
variables (sex, age, country of birth, educational level, working sta
tus). Model 2 was further adjusted for the environmental-level variables 
(housing price in the municipality of residence and mRFEI). The data is 
presented as estimates (β) and 95 percent confidence intervals (CIs). We 
performed restricted cubic spline regressions to examine the 
dose-response relationship between UDI and the investigated car
diometabolic outcomes, using the SAS macro written by Desquilbet and 

Mariotti (2010), considering the median of the exposure distribution as 
the reference value and three knots located at the 5th, 50th, and 95th 
percentiles. 

2.6. Sensitivity analysis 

We performed several sensitivity analyses to test the robustness of our 
results. First, we added a triple interaction between time, baseline UDI 
and change in UDI to investigate whether levels of urban density at 

Table 2 
Individual and environmental-level characteristics of the study population by tertile of continuous metabolic syndrome score (siMS) at follow-up, n = 510 adults from 
ORISCAV-LUX study (2007–2017) a.   

Total sample siMS score at wave 2 

(n = 510) Low (n = 171) Intermediate (n = 169) High (n = 170) P valueb 

Baseline individual-level characteristics 
Sociodemographic 
Age (years) 43.8 (11.7) 40.3 (11.8) 44.6 (11.4) 46.48 (11.2) <.0001 
Women 258 (50.6) 111 (64.9) 85 (50.3) 62 (36.5) <.0001 
Working status 

Employed 365 (71.6) 129 (75.4) 117 (69.2) 119 (70) 

<.0001 
Not employed 44 (8.6) 18 (10.5) 14 (8.3) 12 (7.1) 
Stay-at-home parent 52 (10.2) 15 (8.8) 22 (13) 15 (8.8) 
Disabled or retired 49 (9.6) 9 (5.3) 16 (9.5) 24 (14.1) 

Education level, n (%) 
No diploma 78 (15.3) 18 (10.5) 27 (16.0) 33 (19.4) 

0.025 High school or vocational diploma 256 (50.2) 84 (49.1) 79 (46.7) 93 (54.7) 
Higher diploma 176 (34.5) 69 (40.4) 63 (37.3) 44 (25.9) 

Marital status 
Married/living with partner 386 (75.7) 124 (72.5) 130 (76.9) 132 (77.6) 

0.445 Single/never married 77 (15.1) 33 (19.3) 23 (13.6) 21 (12.4) 
Divorced/widowed 47 (9.2) 14 (8.2) 16 (9.5) 17 (10) 

Country of birth, n (%) 
Not European country 27 (5.3) 10 (5.8) 8 (4.7) 9 (5.3) 

0.922 European country 168 (32.9) 52 (30.4) 59 (34.9) 57 (33.5) 
Luxembourg 315 (61.8) 109 (63.7) 102 (60.4) 104 (61.2) 

Cardiometabolic 
Waist circumference (cm) 88.0 (12.7) 79.6 (9.3) 87.8 (10.3) 96.5 (12.1) 

<.0001 
Fasting plasma glucose (mg/dL) 93.2 (14.1) 88.9 (8.3) 91.4 (8.8) 99.4 (19.8) 
HDL-cholesterol (mg/dL) 63.2 (17) 73.9 (17) 62.8 (13.6) 52.7 (12.8) 
Triglycerides (mg/dL) 107.2 (88.1) 71.4 (27.8) 96.5 (48.4) 153.7 (129.1) 
Systolic blood pressure (mmHg) 128.3 (15.7) 121.5 (13.9) 129 (14.1) 134.4 (16.4) 

Environmental-level characteristics 
Relocation, n (%) 165 (32.4) 61 (35.7) 50 (30.0) 54 (31.8) 0.478 
Built environment components 
Baseline UDI 0 (0.8) 0 (0.8) 0 (0.8) 0 (0.7) 0.556 
Change in UDI 0 (0.6) − 0.1 (0.6) − 0.1 (0.6) 0.1 (0.5) 0.006 
Baseline street connectivity 90 (49.3) 91 (49.1) 91 (49.1) 84.2 (45.6) 0.133 
Change in street connectivity 2.2 (35.2) − 2.2 (38.1) − 2.2 (38.1) 9.3 (27.5) 0.005 
Baseline population density 1857.8 (1685.2) 1952.5 (1807.6) 1952.5 (1807.6) 1678.5 (1506.7) 0.236 
Change in population density 146.2 (1252.2) − 2.9 (1365.3) − 2.9 (1365.3) 322.6 (1001.2) 0.053 
Baseline density of amenities 11.2 (12.6) 11 (11.4) 11 (11.4) 10.3 (11.6) 0.312 
Change in density of amenities 0.2 (10.8) − 1.7 (10.6) − 1.7 (10.6) 2.9 (10.8) <0.001 
Baseline distance to the nearest bus station 288.8 (213.2) 291.9 (197.4) 291.9 (197.4) 279.2 (237.5) 0.764 
Change in distance to the nearest bus station − 4.1 (188.9) − 5.1 (157.6) − 5.1 (157.6) − 5.9 (222.1) 0.972 
Baseline density of public transport stations 5.7 (4.4) 5.7 (4.4) 5.7 (4.4) 5.4 (4.1) 0.368 
Change in density of public transport stations 0.6 (3.8) 0.4 (4) 0.4 (4) 1.2 (3.8) 0.028 
Baseline land use mix 0.7 (0.1) 0.7 (0.1) 0.7 (0.1) 0.7 (0.2) 0.793 
Change in land use mix 0 (0.1) 0 (0.1) 0 (0.1) 0 (0.1) 0.327 
Baseline housing price in the municipality of residencec 

Low 170 (33.3) 57 (33.3) 51 (30.2) 62 (36.5) 
0.479 Intermediate 179 (35.1) 63 (36.8) 56 (33.1) 60 (35.3) 

High 161 (31.6) 51 (29.8) 62 (36.7) 48 (28.2) 
Baseline healthiness of the retail food environmentd 

No RFE 212 (41.6) 66 (38.6) 73 (43.2) 73 (42.94) 

0.878 
mRFEI = 0 82 (16.1) 29 (16.96) 27 (15.98) 26 (15.29) 
mRFEI ≤50 88 (17.3) 29 (16.96) 26 (15.38) 33 (19.41) 
mRFEI >50 128 (25.1) 47 (27.49) 43 (25.44) 38 (22.35) 

RFE: retail food environment; mRFEI: Modified Retail Food Environment index. 
a Data is presented as means and standard deviations or numbers and percentages where appropriate. 
b P-value for ANOVA test of equality of means (continuous variables) or χ2 test for dependency (categorical variables). 
c Categorization based on tertile (low: housing price ≤3317 €/m2; intermediate: 3317 €/m2 < housing price ≤3889 €/m2; high: housing price >3889 €/m2). 
d Estimated by the Modified Retail Food Environment index (mRFEI). mRFE = 100 x (# of Healthy Food Retailers)/(# of Healthy Food Retailers + # of Less Healthy 

Food Retailers). 
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baseline influence level of urbanization over time and trajectory in the 
cardiometabolic outcomes. In case of significant triple interactions, 
baseline UDI was dropped off the model and stratification by tertile of 
baseline UDI was performed. Second, we explored potential effect mod
ifications by sex, housing price by adding a multiplicative interaction 
term between baseline and change in UDI and these variables in the fully 
adjusted model. Third, we rerun the main models on specific sub
populations, by stratifying the models on: 1) relocation status (movers vs 
non-movers), and 2) level of urbanity, categorized as dense cities 
(Luxembourg and Esch-sur-Alzette), peri-urban areas (first and second- 
ring suburbs), and lower-density areas, based on previous classifica
tions (Carpentier, 2006). Fourth, we examined sensitivity to buffer size by 
testing different road-network buffer sizes of 500 m, 800 m and 2000 m. 

ArcGIS (Version 9.3.1; ESRI, Redlands, CA, USA, 2010) was used to 
geocode participant’s home address, delineate neighborhood bound
aries and handle the residential built environment variables. Z score 
transformation, creation of the UDI and data analysis were conducted in 
SAS 9.4 software (SAS Institute, Inc., Cary NC). An α of 0.05 or less was 
used to determine statistical significance. 

3. Results 

3.1. Descriptive statistics 

The characteristics of the study participants at baseline are shown in 
Table 2. Mean baseline age of participants was 43.8 years and 50.6% 
were female. Mean siMS score was 2.3 (SD: 0.9; range: 0.3–11.8) at 
baseline and increased by 0.2 units over the 9-year period (p < 0.0001). 
MetS components worsened over the 9-year (p < 0.0001), with the 
exception of triglyceride levels and blood pressure, which remained 
stable over time (data not shown). A third of the participants (n = 165) 
had relocated between the two waves. Compared with the rest of the 
sample, participants in the upper tertile of the siMS score at wave 2 were 
older, less educated, and more likely to be male. Median UDI was -0.17 
(range: -3.0 – 3.3; IQR: 1.45) at baseline and increased by 0.03 units over 
the 9-year period (p = 0.019). Participants in the upper tertile of the 
siMS score at wave 2 had a higher increase in UDI, street connectivity, 
density of amenities and density of public transport stations than the rest 
of the sample. 

3.2. Urban densification, siMS score and MetS components 

There were no significant interactions between baseline UDI or change 
in UDI with time, so the interaction terms were removed from the models. 
Table 3 shows the associations of baseline measures and change in UDI 
with the siMS score and MetS components. In the fully adjusted model, 
one-SD increase in UDI over time was associated with a slightly higher 
siMS score (β = 0.07, 95% CI: 0.02, 0.13), greater triglyceride levels (β =
0.05, 95% CI: 0.02, 0.09) and with lower HDL-c levels (β = − 1.29, 95% CI: 
− 2.20, − 0.38). A higher value of UDI at baseline was also associated with 
higher waist circumference (β = 1.28, 95% CI: 0.14, 2.42). There was no 
statistically significant relationship between UDI, fasting plasma glucose 
and systolic blood pressure. Restricted cubic spline regressions showed no 
evidence of non-linear association between UDI and cardiometabolic 
outcomes (data not shown). The associations of each of the six built 
environment variables with the siMS score and MetS components are 
provided in Supplementary Table 2. One-SD increase in the density of 
amenities over 9-year was associated with greater siMS score (β = 0.09, 
95% CI: 0.03, 0.14), greater triglyceride levels (β = 0.05, 95% CI: 0.01, 
0.08), and lower HDL-c levels (β = − 1.47, 95% CI: − 2.32, − 0.62). One-SD 
increase in the density of public transport stations was associated with 
greater siMS score (β = 0.07, 95% CI: 0.01, 0.13) and lower HDL-c levels 
(β = − 1.45, 95% CI: − 2.32, − 0.59). One-SD increase in street connec
tivity, population density and land use mix were associated with greater 
triglyceride levels (β = 0.05, 95% CI: 0.01, 0.08), lower HDL-c levels (β =
− 1.09, 95% CI: − 2.11, − 0.06) and greater waist circumference (β = 0.94, Ta
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95% CI: 0.19, 1.68), respectively. 

3.3. Sensitivity analysis 

A triple interaction between baseline UDI, change in UDI and time 
was observed for HDL-c (p = 0.041). Stratification on tertile of baseline 
UDI, revealed that the negative association between change in UDI and 
HDL-c was significant only for participants in the upper tertile of base
line UDI at baseline (β = − 1.34, 95% CI: − 2.36, − 0.32) (Fig. 2). 
Moderation analyses showed no significant interactions between change 
in UDI, sex and housing price (data not shown). In stratified analyses by 
relocation status, the negative associations between increase in UDI and 
HDL-c, and the positive associations between UDI (both baseline and 
increase) and waist circumference were significant only in those who 
relocated between the two waves (Supplemental Table 3). Stratification 
by degree of urbanity showed the positive association between increase 
in UDI and triglyceride levels to be significant only in those living in 
dense cities (Supplemental Table 4). Main results tended to be consistent 
across buffer sizes with higher effect size observed for the 1000 m buffer, 
except for the association between baseline UDI and waist circumfer
ence, which was stronger when considering a 2000 m buffer size (Sup
plemental Table 5). 

4. Discussion 

To our knowledge, this is the first study to investigate the longitu
dinal associations between neighborhood environmental features and 
MetS in an EU setting. The effect of change in urban density on the 
trajectory of the outcomes was not significant (interaction terms be
tween UDI and time were not significant), therefore we cannot interpret 
the results as the effect of UDI on the change in the cardiometabolic 
outcomes, but rather as overall long-term association between change in 
UDI and the outcomes. Overall, the results did not confirm our initial 
hypothesis that urban densification has a protective effect against MetS. 
By contrast, we found that urban densification assessed by a composite 
index of six built environment variables (UDI) was associated with a 
worsened continuous MetS score, lipid levels (for triglycerides and HDL- 
c) and waist circumference. There were no associations between UDI, 
fasting plasma glucose and systolic blood pressure. 

The literature on the long-term relationships between the built 
environment and cardiometabolic outcomes remains limited, and to 
date is dominated by US and Australian longitudinal observational 
studies, relying mainly on walkability index (consisting typically of 
objectively measured residential density, street connectivity, and access 
to resources) to describe the residential built environment (Chandrabose 
et al., 2019c). To the best of our knowledge, only three previous studies 

have investigated the longitudinal association between urban densifi
cation and MetS (treated as a binary or an ordinal variable) in adult 
populations, and they found no direct association (Braun et al., 2016a; 
Daniel et al., 2019; Fong et al., 2019). Although these studies used the 
common categorization of MetS as the presence/absence of its compo
nents, this classification has been criticized for not fully capturing the 
continuous spectrum of metabolic abnormalities (Aguilar-Salinas et al., 
2005). This might have concealed associations with the built neigh
borhood environments. Contrary to our results, longitudinal observa
tional studies treating MetS components as a continuous variable found 
higher neighborhood walkability to be associated with lower blood 
pressure at one-year follow-up in an older US population (Li et al., 
2009), and smaller increases in weight, systolic blood pressure, and 
HDL-cholesterol over 12 years in the Australian population (Chan
drabose et al., 2019a). However, bias from neighborhood self-selection 
cannot be excluded, as exposure measurements were made at a single 
time point (Lamb et al., 2020), and the few studies that have assessed the 
dynamics of urbanization over time have found inconsistent associations 
with MetS components (Braun et al., 2016a, 2016b; Lang et al., 2022). 

Our results suggest an adverse effect of urban densification on MetS, 
lipid levels and waist circumference. There is nevertheless substantial 
evidence that neighborhoods with enhanced walkability, compact 
design, and good transportation infrastructure are supportive of active 
transportation and physical activity (Prince et al., 2022), which in return 
could reduce the risk of cardiometabolic diseases (Lear et al., 2017; 
Wahid et al., 2016). Cardiometabolic health being a more distal outcome 
than physical activity, it is more likely to be influenced by a variety of 
individual and environmental factors that could explain some of the 
inconsistencies in the association with built environments (Braun et al., 
2016a). In our study, the adverse effect of densification on triglyceride 
levels was found to be significant only for participants living in dense 
cities at baseline. These participants had the lowest triglyceride levels at 
baseline and the highest increase over time (data not shown), and 
therefore the risk of regression to the mean in this population cannot be 
ruled out (Barnett et al., 2005). Similarly, the negative association be
tween UDI and HDL-c levels was significant only for participants with 
high UDI at baseline, these participants having the greatest decrease in 
HDL-c over time (data not shown). For participants living in a dense 
neighborhood at baseline, change of urban features is less likely to in
fluence health behaviors, and worsening of cardiometabolic outcomes 
over time could be due to factors other than the built environment. For 
example, growing evidence suggests that ambient air pollution could 
contribute to lipid profile dysregulation, inflammation, metabolic 
imbalance and obesity (Gaio et al., 2019; Shi et al., 2022). Other 
contextual factors such as education or social environment may also play 
an important role in shaping cardiometabolic health (Letellier et al., 
2022). For participants who did not live in a dense neighborhood at 
baseline, the limited change in UDI over time may have contributed to 
the lack of effect on measured outcomes. Modelling the densification of 
cities, by increasing land use density and diversity and reducing average 
distance to public transport by 30%, was found to reduce the burden of 
diabetes, cardiovascular disease, and respiratory disease with overall 
health gains of 420–826 disability-adjusted life-years (DALYs) per 
100 000 population (Stevenson et al., 2016). Yet, in Luxembourg, 
densification over 9 years was very moderate and far from a 30% in
crease, questioning the ecological validity of this compact city scenario 
in the country. 

Stratification by relocation status showed the adverse effect of UDI on 
waist circumference and HDL-c levels to be only significant among 
movers. While movers tended to stay in communes with similar degree of 
urbanity and socio-residential contexts, about 7% of them moved from 
urban areas to suburbans and low density-areas (data not shown), leading 
to a global decrease of UDI among movers. Residential self-selection is a 
well-known confounding factor in neighborhood and health studies, as the 
selection of a neighborhood may be related to both the neighborhood 
exposure and the health outcome of interest (Boone-Heinonen et al., 2011; 

Fig. 2. Estimates (β) and 95% Confidence Intervals (CI) for associations be
tween change in UDI and HDL-cholesterol (HDL-c), stratified by baseline 
standardized UDI, n = 510 adults from ORISCAV-LUX study (2007–2017). 
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McCormack and Shiell, 2011). Self-selection into neighborhoods for 
various reasons (e.g. house price, neighborhood design, closeness to spe
cific amenities, school/work, parks, family/friends) is likely to support 
both health-related behaviors (Boone-Heinonen et al., 2011; McCormack 
and Shiell, 2011), and consequently better cardiometabolic health, which 
may bias the results and explain the unexpected association between UDI, 
waist circumference and HDL-c. 

Even though composite indices have commonly been used to account 
for the synergic effect of the joint presence of urban features (Chan
drabose et al., 2019c), they do not allow the identification of which 
urban characteristics are most likely to influence health outcomes. We 
found the associations to vary by both the characteristics of the built 
environment and the MetS components, supporting previous recom
mendations to further disentangle the effect of built environment fea
tures to better inform future urban planning and design (Chandrabose 
et al., 2019c). Nevertheless, relatively few studies have attempted to 
isolate the effect of specific built characteristics of neighborhoods on 
cardiometabolic risk factors (Carroll et al., 2020; Chandrabose et al., 
2019b; Hirsch et al., 2014; Lee et al., 2017). In accordance with our 
results, an Australian cohort found that population densification over 12 
years had an adverse effect on HDL-c, and no effect on fasting plasma 
glucose and triglyceride levels (Chandrabose et al., 2019b). An increase 
in dwelling density over 10 years was also found to be predictive of 
greater waist circumference in the Australian NWAH study (Carroll 
et al., 2020). Conversely, in US cohorts, the intensity of development 
over time (including higher density of walking destinations, greater 
population density and lower proportion of residential areas) was 
associated with decreases in waist circumference (Hirsch et al., 2014), 
and higher intersection density was associated with smaller increases in 
abdominal visceral adipose tissue and fasting plasma glucose (Lee et al., 
2017). The heterogeneity of study designs, environmental measure
ments, and findings makes it difficult to draw definitive conclusions, and 
additional longitudinal evidence is needed to clarify inconsistencies and 
to draw firmer conclusions on the pathway by which the built envi
ronment may affect cardiometabolic health. 

Our study has several strengths, including its longitudinal design; the 
9-year evaluation period; its national scale; the use of objective 
anthropometric, biological, and environmental measurements; the 
definition of neighborhoods using fine-scale road network buffers rather 
than larger pre-defined administrative units as in most studies on the 
built environment and cardiometabolic health (Chandrabose et al., 
2019c; Leal and Chaix, 2011); and the ability to adjust for various in
dividual and neighborhood-level confounders. We also nevertheless 
acknowledge some limitations of the study. First, the ORISCAV-LUX 
study has only one follow-up. Two-wave studies lack temporal granu
larity to assess curvilinear change, which may distort effect sizes and 
reliability (Ployhart and MacKenzie Jr, 2015). Second, participants who 
completed the two waves of the ORISCAV-LUX were slightly more 
educated than the baseline population, and therefore may have had 
better cardiometabolic health (Raghupathi and Raghupathi, 2020). 
Nevertheless, prevalence of MetS was similar in our sample and 
ORISCAV-LUX I study (20 and 23% respectively) (Alkerwi et al., 2011). 
Third, the study was limited to the built environment in the neighbor
hood of residence, and thus does not fully capture exposure to 
non-residential environmental characteristics experienced over the 
course of a day. For example, specific features of the workplace envi
ronment might also shape cardiometabolic health (Sarkar et al., 2022). 
Fourth, housing price might not fully capture all the socio-economic, 
physical, and social aspects of neighborhood deprivation, although it 
has been found to be a reliable variable to assess spatial socio-economic 
disparities (Coffee et al., 2020; Drewnowski et al., 2016; Ware, 2019). 
Lastly, although we adjusted for key socio-demographic and environ
mental covariates, the possibility of residual confounding cannot be 
excluded. For example, a previous observational study showed that the 
unfavorable total effects of several built environment features on spe
cific cardiometabolic risk factors vanished after adjustment for air 

pollution (Cerin et al., 2022), which is recognized as a major risk factor 
for cardiovascular diseases (Al-Kindi et al., 2020). 

5. Conclusion 

Overall, we observed a small increase in urban density in 
Luxembourg over the past decade, associated with worsening of MetS 
and lipid levels (for triglycerides and HDL-c). A higher level of urban 
density at baseline was associated with greater waist circumference and 
urban densification over time with greater waist circumference only for 
participants who relocated during the two waves. Associations between 
UDI, triglyceride and HDL-c levels were significant only for participants 
living in dense areas at baseline, and therefore with limited increase in 
densification over time, suggesting that environmental factors other the 
built environment may have contributed to the worsening of MetS and 
its components. There was no association with fasting plasma glucose 
and systolic blood pressure. While the model of compact cities is put 
forward as a way to sustainably enhance urban population health, more 
longitudinal studies accounting for potential biases and conducted in 
different contexts are needed to support evidence-based urban planning 
and policies that foster cardiometabolic health. 
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