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Understanding the mechanisms by which transcriptional regulatory
networks (TRNs) change through evolution is a fundamental problem.
Here, we analyze this question using data from Escherichia coli and Bacillus
subtilis, and find that paralogy relationships are insufficient to explain the
global or local role observed for transcription factors (TFs) within regulatory
networks. Our results provide a picture in which DNA-binding specificity, a
molecular property that can be measured in different ways, is a predictor of
the role of transcription factors. In particular, we observe that global
regulators consistently display low levels of binding specificity, while
displaying comparatively higher expression values in microarray experi-
ments. In addition, we find a strong negative correlation between binding
specificity and the number of co-regulators that help coordinate genetic
expression on a genomic scale. A close look at several orthologous TFs,
including FNR, a regulator found to be global in E. coli and local in B.
subtilis, confirms the diagnostic value of specificity in order to understand
their regulatory function, and highlights the importance of evaluating the
metabolic and ecological relevance of effectors as another variable in the
evolutionary equation of regulatory networks. Finally, a general model is
presented that integrates some evolutionary forces and molecular proper-
ties, aiming to explain how regulons grow and shrink, as bacteria tune their
regulation to increase adaptation.
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Introduction
The expression of genes can be controlled by
transcriptional regulatory mechanisms in response
to cellular stimuli. Transcriptional regulation in
prokaryotes depends generally upon the recognition
of specific DNA operator sites (bsDNA) by tran-
scription factors (TFs). These protein-DNA interac-
tions affect the synthesis of messenger RNA
molecules of target genes (TG), which can be
activated or repressed. Overall, the set of transcrip-
tional regulatory interactions in a given organism is
often called a transcriptional regulatory network
(TRN). Genomic and statistical analysis of TRNs has
shown that transcriptional proteins have a differ-
ential connectivity, in which a small set of TFs
regulates a much larger set of TGs.1–3 Even though
different criteria have been proposed to define the
property of connectivity,4 it is possible to assign TFs
one of two functional roles, being either local or
global regulators. On the basis of the number of TGs
that a TF might regulate, and additional features
such as the different sigma-classes of promoters, the
number of co-regulators and the number of condi-
tions, highly connected TFs are called global
regulators. In contrast, a large proportion of TFs in
a network affect the expression of only one or few
genes, and these are called local regulators.5,6

It is thought that genetic duplication might be the
main evolutionary mechanism rewiring transcrip-
tional networks,7 and could explain the origin of
global and local regulators. In particular, Teichmann
and Babu have proposed that TRNs evolve by
duplication of TFs and TGs, which might conserve
their regulation or rather gain new regulatory
interactions.8 Genetic duplication indeed accounts
for 52% of the TRN in Escherichia coli.8 However,
Cosentino and co-workers have concluded that the
contribution of this mechanism to the network
architecture is maximum within local regulators and
TGs, and otherwise minimal when global TFs are
considered.9 Besides, although duplication events
have been recognized in many different species,
TRNs are poorly conserved across bacterial spe-
cies,10,11 because global regulators do not necessarily
share similar evolutionary histories, and because they
do not necessarily regulate similar metabolic res-
ponses in different organisms.3,12–17 Therefore, we
find that there are still important questions to be
answered regarding the evolution of regulatory net-
works. Here, we take the two best annotated prokar-
yotic transcriptional networks, the Gram-negative E.
coli K1218 and the Gram-positive Bacillus subtilis,19

with remarkably different niches20 and evolutionary
histories,21,22 in order to address this subject. This
work re-evaluates the contribution of genetic duplica-
tion by asking how paralogous TFs acquire different
roles in regulatory networks. More explicitly, we aim
at identifying distinctive properties required for TFs
to evolve as global or local regulators.
Firstly, we take the collection of TFs from E. coli

and B. subtilis in order to estimate their specificity,
defined as the ability to discriminate binding sites
along DNA molecules. The results obtained demon-
strate that binding specificity is strongly correlated
with the hierarchical role of TFs within regulatory
networks, with global regulators consistently dis-
playing low levels of specificity (LS), while local
regulators show high levels of specificity (HS), as
anticipated by different groups. This observation
suggests that the ability of TFs to conserve or gain
new TGs might depend on this biochemical prop-
erty. In addition, we find that LS regulatory proteins
show higher expression values in microarray experi-
ments, perhaps as expected, since they bind to more
DNA sites. Furthermore, we find that the degree of
co-regulation by more than one TF in E. coli is
negatively correlated with the specificity of DNA
binding, and we discuss several biological processes
that might explain this observation. To examine our
findings, we compare orthologous TFs for which
sets of experimentally verified bsDNAs are available
in both bacteria, with detailed insight into the FNR
(fumarate and nitrate reduction) regulatory protein,
confirming that the calculated specificity values are
in agreement with their global or local roles. Finally,
a general model is presented that summarizes some
mechanisms that affect how regulons grow and
shrink; in other words, how TFs might gain or lose
regulatory interactions as bacteria tune their reg-
ulatory networks in order to better respond to their
environmental and metabolic requirements. We
present evidence about the importance of binding
specificity and co-regulation, and the model
includes two variables that must be involved in
this evolutionary process: the rate of genomic
mutations, and the effectors sensed by bacterial TFs.

Results and Discussion

Contribution of genetic duplication to the
evolution of transcriptional networks

There is compelling evidence to suggest that gene
duplication is a major force explaining the growth of
TRNs,8 and it is expected that this process will affect
the connectivity distribution of these networks,23,24

as has been seen in other biological networks. Here,
we evaluate this hypothesis using data from E. coli
and B. subtilis by asking whether there is any
coupling between the occurrence of TF duplication
events and the role of transcription factors within
regulatory networks. To accomplish this goal, it was
first necessary to classify TFs in terms of paralogy. As
explained in Materials and Methods, in E. coli we
predicted 24 groups of complete paralogs from a set
of 85 TFs for which experimentally characterized
bsDNAs are available. In B. subtilis, we found 25
paralogous groups out of 91 TFs. In both cases there
were a few TFs labeled as singletons, since no
duplication evidencewas found for them (15 inE. coli
and 26 in B. subtilis).
Figure 1 tells that duplication events have oc-

curred at all levels of TRNs, although they seem to
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be more frequent towards the low connectivity end
of the regulatory hierarchy. This means that most TF
duplication events have resulted in adding nodes to
the base of the network, in agreement with recent
observations.9 Furthermore, this figure shows that
Fig. 1. Paralogous groups of transcriptions factors in the TR
on the top row, while local regulators are on the bottom row
between TFs, only for cases with evidence reported in Regulon
25 for B. subtilis are circumscribed in shady rectangles. Para
yellow ovals. Paralogous groups in which only one member o
ovals. Finally, 15 TFs in E. coli and 26 TFs in B. subtilis predicted
are shown as blue ovals. This figure highlights the importance
networks, since there are many paralogous groups. Note that
groups in which other TFs are not global or are singletons (i.
shows that recognizing paralogy gives little information abou
most global regulators belong to different paralo-
gous groups in the two species that are the subject of
this study. With the exception of CRP and FNR in E.
coli, most global regulators have paralogs in the
network, which in contrast have local regulatory
Ns from E. coli (a) and B. subtilis (b). Global regulators are
. Black lines indicate directed transcriptional regulation
DB and DBTBS. The 24 paralogous families for E. coli and
logous families involving global regulators are shown as
f the family has experimental evidence are shown as green
to be singletons, with no paralogous copy in the genome,

of duplication/horizontal transfer events across regulatory
several global regulators in both species either are part of
e., CodY and ComK in B. subtilis). This is important, as it
t the evolutionary fate of TFs.
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roles. For instance, ArcA has eight known related
TFs in the E. coli network, all of them thought to be
local regulators. In B. subtilis, CcpA is another
remarkable example, with five other known regula-
tory proteins supposed to be paralogously related. It
is important to note that this methodology relies
entirely on finding paralogous TFs and cannot
separate duplication events from possible horizontal
transfer events.
On the basis of these results, it can be stated that

identifying paralogy relationships neither helps us
to understand the role of TFs nor does it explain how
network nodes become regulatory targets of pre-
viously existing TFs. In other words, we still need to
knowwhich distinctive properties of TFs make them
more or less likely to gain or lose regulatory
interactions, which is known to be happening in
evolution.25,26 For this reason, we focused on TF
binding specificity, defined here as the ability of
DNA-binding proteins to discriminate a small sub-
set of DNA sequences from the vast repertoire of
sequences found in a genome. There are different
ways of approximating the specificity of DNA-
binding proteinsinstant.27–29 As explained in the
next section, we tried different measures and ob-
tained compatible results with all of them.
Fig. 2. Scatter plot of normalized information content versu
linear fit is plotted to illustrate the observed correlation coeffi
regulates respiration in both species; labeled as global in E. co
Specificity estimated through the observed
diversity of DNA-binding sites

Anatural way of estimating the specificity of TFs is
shown in Fig. 2, provided that collections of binding
sites are available. The actual property measured is
the unadjusted information content (UIC) of se-
quence motifs, which is known to be a valid estimate
of the relative specificity of DNA-binding proteins,30

commonly calculated for sequence logo representa-
tions of binding motifs. Both scatter plots show that
the information content of sequence motifs is strong-
ly correlated with the number of sites recognized by
each TF. In other words, translating information
content to specificity, proteins able to recognize
manyDNA sites show lower levels of specificity than
local regulators, which have high levels of specificity.
This result agrees with the observations made by
Sengupta and collaborators in E. coli.29 Since some
TFs bind only to one or two sites, and others to more
than 100 different genomic positions, this variable
was log-transformed for convenience. In addition, as
sequence motifs have different widths, the informa-
tion content in these figures was normalized by
dividing the raw IC by the motif width, as explained
inMaterials andMethods. The correlation coefficient
s number of binding sites in E. coli (a) and B. subtilis (b). A
cient of −0.81. The red dot highlights FNR, a protein that
li (a) and as local in B. subtilis (b).



Table 1. Normalized information content (specificity) of
transcription factors in B. subtilis and E. coliwith 7 or more
reported binding sites

Sites normUIC Sampled_normUIC

A. Bacillus subtilis
ComK 120 0.72 0.75
PhoP 65 0.62 0.68
CcpA 48 0.84 0.88
MtrB 41 1.1 1.2
SpoIIID 39 0.69 0.86
Spo0A 38 0.64 0.8
TnrA 37 0.98 1.03
AbrB 34 0.52 0.78
CodY 34 0.66 0.9
DegU 37 0.94 0.91
GerE 31 0.71 0.88
Fur 26 0.85 0.95
PurR 24 0.78 1
SpoVT 16 1.4 1.4
DnaA 16 1.06 1.28
Hpr 14 0.75 1.21
PerR 13 0.81 1.25
ResD 12 0.85 1.25
GlnR 12 1.07 1.35
SnR 12 0.99 1.35
CssR 12 0.95 1.34
YlbO 12 0.89 1.39
AraR 11 0.91 1.28
RocR 11 1.22 1.35
CtsR 10 1.06 1.28
ComA 10 0.97 1.35
GlpP 10 1.2 1.35
LexA 10 0.94 1.38
Rok 10 1.34 1.34
CcpC 9 1.26 1.27
Fnr 8 1.26 1.38
YycF 8 1.2 1.32
CitT 8 0.91 1.27
PucR 7 0.83 1.28

B. Escherichia coli
CRP 207 0.36 0.39
Fis 121 0.29 0.35
IHF 78 0.5 0.57
ArcA 77 0.48 0.57
NarL 76 0.71 0.78
FNR 75 0.56 0.63
Lrp 54 0.28 0.42
Fur 47 0.8 0.9
H-NS 34 0.45 0.64
CpxR 33 0.55 0.71
LexA 23 0.69 0.84
MetJ 23 1.04 1.16
OmpR 20 0.55 0.78
ArgR 18 0.66 0.88
SoxS 18 0.57 0.79
GlpR 18 0.55 0.8
PhoP 18 0.58 0.82
PhoB 17 0.54 0.81
TyrR 17 0.6 0.82
PurR 16 0.83 1.06
MarA 16 0.44 0.81
MalT 15 0.55 0.83
NarP 14 0.93 1.12
AraC 13 0.59 0.98
FruR 12 0.78 1.04
TrpR 10 1.03 1.14
Nac 10 0.66 1
CytR 10 0.51 0.85
NagC 10 0.68 0.97
GntR 10 0.71 0.99
FadR 10 0.7 0.98
IclR 10 1.02 1.25
OxyR 9 0.5 1.03

Table 1 (continued)

Sites normUIC Sampled_normUIC

CysB 8 0.68 1.14
DnaA 8 0.71 1.12
IscR 8 0.62 1.09
Mlc 7 0.9 1.16
DeoR 7 0.73 1.15
GalR 7 0.83 1.15
GalS 7 0.93 1.21

The left-hand column for each species shows mean IC values com-
putedafter sampling 100 timesusing only 30%of the available sites.

B. Escherichia coli
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obtained for the E. coli data was −0.81 (67 pairs; R2=
0.66; Pb10E−16). For B. subtiliswe found a significant
correlation coefficient of −0.81 (70 pairs; R2=0.66;
Pb10E−17). The results obtained with these two
species, only remotely related to each other, suggest
that this functional correlation between binding
specificity and regulon size might be found in other
bacterial species. However, other variables might be
affecting the interpretation of these results, as
discussed in the following paragraph.
For instance, the catalogue of TF binding sites is

probably incomplete for most TFs and biased
towards regulatory proteins that have a role in
physiological conditions that are more easily repro-
duced in experimental laboratories. How would this
affect the analysis? We approached this question by
randomly sampling the collection of available sites in
both model organisms. The idea was to repeat the
analysis shown in Fig. 2 after 100 rounds of
resampling using only 30% of the reported sites for
each TF. Of course, this could only be done for TFs
with at least seven sites, but the resulting correlation
coefficients are very similar in both species: −0.86 in
E. coli (40 pairs; R2=0.74; Pb10E−12) and −0.89 in B.
subtilis (34 pairs; R2=0.79; Pb10E−11). While this
experiment shows that the number of available
bsDNAs does not change the previously observed
correlation between regulon size and TF specificity, it
proves that the actual IC measurements (i.e. specifi-
cities) may change, depending on the collection of
sites we have at hand. As an illustration, inspecting
the data in Fig. 2 we may conclude that DnaA has an
IC of 0.71 in E. coli. However, if we take the mean IC
after 100 random samples (Table 1)wemight say that
the specificity of DnaA is actually 1.12. If we must
take these IC measurements as absolute values, then
probably it is wiser to take the values compiled after
sampling. Table 1 shows the specificity estimates in
Fig. 2 next to the mean IC after sampling.
The next variable considered was the geometry of

the binding sites. Since TFs can bind to DNA in
different ways— i.e as monomers or dimers, with or
without spacers — only the ten most informative
columns in eachmotif were taken in order to calculate
the IC, ensuring a fair comparison of motifs. This
approach would also compensate for potential errors
in the annotation of motif widths. The analysis of the
E. coli dataset yields a correlation coefficient of −0.82
(63 pairs; R2=0.67; Pb10E−15). The picture is similar
when using B. subtilis data, with a correlation
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coefficient of −0.79 (27 pairs; R2=0.63; Pb10E−6).
Again, a very significant correlation was found,
reinforcing the initial observations.
Finally, we tried to estimate binding specificity

using exactly two sites for each TF: the best and the
worst sites when aligned to the corresponding
sequence motif, in the form of a position-weight
matrix. Here, the idea was to approximate the
variability of sites recognized by any TF, expecting
that highly specific proteins would bind to sites with
similar scores, while LS regulators would recognize a
broad range of sites. Thus, we calculated the PWM
score variability for every TF, once again finding
significant correlations in both bacterial species with
respect to the number of binding sites. InB. subtiliswe
find a correlation coefficient of 0.74 (46 pairs; R2=0.54;
Pb10E−8), compared to a coefficient of 0.91 (55 pairs;
R2=0.83; P=0) inE. coli. It is important to note that the
same picture holdswhen coefficients of variation, less
sensitive to outliers, are calculated for each TF.

Diversity of DNA-binding structural potentials as
a measure of binding specificity

A rather different method for estimating binding
specificity is shown in Fig. 3, where the crystal-
lographic structures of 11 E. coli protein-DNA
complexes were used to thread the collection of
RegulonDB binding sites for each of them. This
collection includes TrpR, Rob, PurR, PhoB, NarL,
MetJ, MarA, FadR, DnaA, CRP and LacR. As
explained in Materials and Methods, each sequence
was scored in terms of an estimate of the structural
binding potential, and the observed score diversity
was plotted against the number of recognized
binding sites. Despite the small number of com-
plexes available, we observe a correlation coefficient
of 0.92 (11 pairs; R2 =0.85; P=0.0004) between
connectivity and the observed energy variability,
supporting the hypothesis that global regulators are
able to bind a larger collection of sites, at the cost of
being less specific. These results provide new
insights into the molecular recognition of DNA-
binding sites, suggesting that the array of interface
contacts between protein and DNA counterparts, as
captured in crystallographic complexes, can be
utilized in order to estimate the specificity of TFs.
Unfortunately, we cannot perform this analysis on B.
subtilis due to the lack of structural data.
Contact-based estimations of binding specificity

Inspired by earlier work by Luscombe,31 we at-
tempted to classify TFs according to their ratio of
specific to non-specific protein-DNA contacts. A key
difference in this approach is that no binding site
knowledge is used. Instead, a large collection of
protein-DNA complexes is required in order to build
comparative models of TFs, which are then used to
identify amino acid residues that are likely to contact
nitrogen bases at the interface (specific contacts), as
opposed to non-specific contacts, which usually
include phosphate and sugar atoms. Despite the
fact that this approach ignores indirect DNA readout
mechanisms, it was used to estimate the specificity of
82 transcription factors (49 from E. coli and 33 from B.
subtilis), yielding no correlation between contact-
based specificity and connectivity, presumably as a
result of using approximate theoretical models,
instead of crystallographic structures. However,
global TFs display low levels of specificity and
therefore these somewhat low-resolution results give
further support to our previous observations and are
important, as they show that similar conclusions
might be reached using different data sources.

Adding co-regulation to binding specificity

So far, these results suggest that highly connected
TFs, those expected to have a larger impact on
regulation, display relatively low levels of binding
specificity. However, by analyzing the curated data
in RegulonDB,18 a more complex picture emerges,
since a large fraction of E. coli promoters are subject
to regulation by several TFs. Therefore, we should be
studying binding specificity in the context of
combinatorial regulation (no data are available for
B. subtilis).32 Fig. 4 shows a scatter plot of the number
of co-regulators of TFs and the number of target
genes in E. coli, revealing a correlation coefficient of
0.94 (153 pairs; R2=0.90; P=0). This clearly means
that highly connected TFs, those that seem to be less
able to discriminate DNA sequences, co-regulate
more often than other TFs.
However, can this distribution of co-regulating

TFs be explained in terms of random combinations?
We find that 839/2861 (29%) of E. coli genes are
subject to regulation by only one transcription
factor. Conversely, 71% of the total number of
Fig. 3. Scatter plot of binding
energy variability versus log (num-
ber of binding sites), obtained from
11 E. coli TF-DNA complexes. The
most variable transcription factor is
CRP, whilst the most specific reg-
ulators are LacR and Rob.



Fig. 4. Scatter plot of co-regulators versus the number
of regulated target genes in E. coli for each transcription
factor. Data are taken from RegulonDB 5.5, removing
regulatory interactions without experimentally deter-
mined binding sites associated with them.

Fig. 5. Mean expression value of E. coli transcription
factors (across 60 non-redundant microarray experiments)
plotted versus the number of reported binding sites within
the genome. As expected, in general, local regulators are
relatively less expressedwhen compared toglobal regulators.
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genes are regulated by two or more TFs. We can use
these proportions in order to calculate the expected
number of co-regulated TGs for any one TF.
Consider the transcription factor NarL, known to
affect the expression of 98 target genes. We should
expect that around 70 of those genes are co-
regulated by other TFs. However, RegulonDB tells
that 96 of those TGs are actually co-regulated. What
does this difference mean? If this calculation is done
with all TFs in E. coli we fill a table and can then
calculate the statistical significance of the differences
between the expected and the observed co-regula-
tion frequencies by means of the χ2 test. Using this
test, we find a very small probability (Pb10E−7) that
the observed differences happen by chance (if we
take all TFs with five or more expected co-regulated
TGs the probability is still b10E−7). Please note that
most global regulatory proteins (with the exception
of FIS) actually co-regulate more genes than could
be expected by chance.
Since we have shown that highly connected TFs

are less specific, these results can be interpreted as a
sort of compensation mechanism: regulators with
low levels of specificity have regulatory partners
and, even if they can potentially bind to many DNA
sequences, they will still need nearby co-regulating
proteins in order to have an influence over transcrip-
tion at several levels of the regulatory network.
However, there are alternate ways of reading these
results. Let us consider catabolite repression, which
involves the preferential use of certain carbon sour-
ces over otherswhen amixture of them is available to
the microorganism for growth, by means of co-
regulation mechanisms.33 In E. coli, the transcrip-
tional regulation of catabolite repression is carried
out by CRP, a global regulator showing a low level of
specificity (sampled normUIC values of 0.39); how-
ever, 83% of its TGs are co-regulated by other TFs.
This high rate of co-regulation may be explained by
at least three mechanisms. Firstly, when complexed
with its effector cAMP, CRP binds to binding sites in
the promoter of some TGs, interacting directly with
RNA polymerase to initiate transcription.34 Sec-
ondly, suboptimal cAMP-CRP binding sites may
also be targeted by CRP homologues responding to
other signals, for example the redox-sensor FNR and
vice versa, thus permitting a degree of cross-talk
between bsDNAs belonging to promoters controlled
by proteins of the same family.35 Thirdly, the cAMP-
CRP complex may also interact with promoter-
specific TFs, such as the nucleoside-regulator CytR,
increasing the DNA-binding specificity of its co-
regulator (i) by providing additional contacts
through its surface, (ii) by creating a DNA con-
formation that is better recognized by the coregu-
lator, or (iii) by inducing a conformational change in
the co-regulator that promotes its interaction with
the bsDNA.36,37 To summarize, the complexity of co-
regulation in prokaryotes prevents the formulation
of a more general hypothesis that would explain the
observed correlation with binding specificity, parti-
cularly when bacterial regulators usually include,
apart from the DNA-binding domain, an effector-
sensing domain that responds to particular ecologi-
cal cues.

Low-specificity transcription factors show high
expression levels

Different sources of evidence presented here sug-
gest that binding specificity is an important property
of transcription factors that might help explain their
biology. One prediction is that LS regulatory proteins
are more likely to bind to genomic DNA sites, since
their repertoire of recognized sequences is compara-
tively larger. However, the concentration of these
proteins must also be considered, as this will ulti-
mately limit the number of genomic sites bound.38

The set ofmicroarray experiments collected by Faith39

allows us to check this prediction in E. coli, as they
provide data for 60 non-redundant conditions.
Indeed, these data seem to support this hypothesis,
as shown in Fig. 5, in which mean normalized
expression values for E. coli transcription factors are
plotted against their number of reported binding
sites, with a significant correlation coefficient of 0.66
(65 pairs; R2=0.43; Pb10E−8). This scatter plot shows
that regulators such as CRP, with 207 binding sites



Table 2. Orthologous TFs shared between Escherichia coli and Bacillus subtilis

Species Name(s) ID(s) bsDNAs (#) Role Effectors/others Domains TF-DNA contacts Specificity

E. coli FNR b1334
16129295

75 GLOBAL 1 O2
2,3 PF00325.11

PF00027.18
SF46785
SF51206

197-G, 207-V,
208-E

0.63

B. subtilis FNR BG11343
16080784

8 LOCAL4 O2
4 178-Q, 188-R,

189-E
1.38

E. coli Lrp
(AlsB, LstR)

b0889
16128856

54 GLOBAL5 Leucine, alanine6 PF01037.10

SF46785
SF54909

– 0.42

B. subtilis AzlB
(YrdG)

BG11914
16079725

1 LOCAL7 Unknown7 24-L, 34-P, 35-S –

E. coli CytR b3934
16131772

10 LOCAL8 Cytidine9 PF00356.11
PF00532.11

23-A, 33-D,
61-V, 62-K

0.85

B. subtilis CcpA
(GraR, AlsA)

BG10376
16080026

48 GLOBAL10,11 [HPr (Ser-P)] and [Crh
(Ser-P)]12, Frc 1,6-P2

and Glc-6P13
SF47413
SF53822

15-S, 16-G, 17-A,
21-R, 55-L, 56-A

0.88

E. coli Fur b0683
16128659

47 LOCAL Fe2+14

PF01475.9
SF46785

– 0.9

B. subtilis Fur
(YqkL)

BG11766
16079409

26 LOCAL15,16 Fe2+17 – 0.95

E. coli LexA
(ExrA,LexA,

Spr,Tsl,UmuA)

b4043
16131869

23 LOCAL Self-cleavage18

(in vivo requires recA)
PF01726.7
PF00717.13

SF46785
SF51306

– 0.84

B. subtilis LexA
(DinR)

16078848
BG10678

10 LOCAL Self-Cleavage19

(in vivo requires recA)
– 1.38
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E. coli DnaA b3702
16131570

8 LOCAL ATP and ADP20,21
PF08299.1
PF00308.8

SF48295
SF52540

398-R, 422-P, 432-D,
433-H, 434-T, 435-T,

437-L, 438-H

1.12

subtilis DnaA
(DnaH, DnaJ,

DnaK)

BG10065
16077069

16 LOCAL ATP and ADP22 378-R, 402-P, 412-D,
413-H, 414-T, 415-T,

417-I, 418-H

1.28

coli CpxR
(YiiA)

b3912
16131752

33 LOCAL Phosphorylated by
CpxA (Cu ions — e.i
CuSO4)

23; pH and
EDTA 30 ⁎[two-
components]

PF00072.13
PF00486.18

SF52172

194-R, 195-A,
198-M, 202-N, 221-R

0.71

subtilis YycF BG10001
16081093

8 LOCAL Phosphorylated by
YycG (Not yet
determinated24)

[two-components]

195-R, 196-T,
199-V, 203-R,

222-R

1.32

coli PhoB
(PhoT)

b0399
16128384

17 LOCAL Phosphorylated by 1)
PhoR (ATP)25

[two-components]
PF00072.13
PF00486.18

SF52172

192-R, 193-T,
196-V, 200-R,

218-R

0.81

subtilis ResD
(YpxD)

BG10534
16079369

12 LOCAL Phosphorylated by ResE
(O2? and NO)26

[two-components]

200-R, 201-T,
204-T, 208-R,

228-W

1.25

ght orthologous transcription factors with experimentally verified DNA-binding sites available were found in both bacteria. Name(s), identification number(s) and the number of bsDNA were
mpiled from RegulonDB and DBTBS. Information concerning the global27 and local28 roles of TFs was taken from the literature. TF-DNA contacts were predicted using the TFmodeller software,29

arking conserved interface residues in bold. PFAM (PF) and SUPERFAMILY (SF) DNA-binding domains are marked in bold type. Information about effectors was compiled from the literature: O2,
ygen; [HPr (Ser-P)], histidine-containing protein (Ser46-phosphorylated); [Crh (Ser-P)], catabolite repression HPr (Ser46-phosphorylated); Frc-1,6-P2, fructose-1,6-bisphosphate; Glc-6P, glucose
phosphate; Fe2+, ionic iron (II); ATP, adenosine triphosphate; ADP, adenosine diphosphate; Cu, copper ions (i.e., copper sulfate -CuSO4-); NO, nitric oxide. ⁎Other inducers for the CpxR-A two-
mponent system have been identified, such as the accumulation of misfolded pilus subunits PapG and PapE and of lipid II ECA intermediate, as well as decreased levels of phosphatidylethanolamine;
wever, it is not known if these inducers generate a unique signal that is sensed by Cpx system.30 Specificity data are given in Table 1. References for this table are included in supplementary material.
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reported in the genome, are expressed at higher levels
than AraC, with only 13 sites reported. This coupling
between mRNA expression levels and regulon size is
a novel observation in bacteria, and was also
predicted, although with little support from the
data, in recent experiments in yeast.40 However, this
can only be indirect evidence, since we can merely
infer transcription levels, not protein concentrations.
Additional data, such as the rate of occupation of
operator sites in the genome,wouldbe required to test
the hypothesis further.

DNA-binding specificity of orthologous
transcription factors in E. coli and B. subtilis

The use of two bacterial models with remarkably
different life-styles,20 and long phylogenetic dis-
tance,21,22 gives us the opportunity to explore our
findings by comparing orthologous TFs. As given in
Table 2,we found eight pairs of orthologous TFswith
two or more experimentally verified DNA-binding
sites. Here, we examine these orthologous pairs in
order to test whether global and local TFs really
exhibit different specificities that can be compared
across species. If we skip Lrp, a global regulatory
protein in E. coli for which only one binding site is
available in B. subtilis (AzlB), it is found that in five
out of seven cases the specificity estimates are con-
gruent, as lower values correspond to more binding
sites. The values for DnaA are not congruent, but in
both genomes it is clearly a highly specific transcrip-
tion factor, with values greater than 1.1. However,
CytR and CcpA have very similar specificity values
in both species, while the regulon sizes are 10 and 48,
respectively. We now look at these examples in more
detail.
The first cases are LexA and DnaA, two regulators

that respond to DNA cleavage in both bacteria and
bind DNA with high specificity, suggesting that
indeed there are local TFs with similar roles in
different genomes. The second case is Fur, a local
regulator in E. coli and B. subtilils that coordinates
the expression of iron uptake and homeostasis
pathways in response to available iron.41–43 Fur
shows high specificity values in both organisms, as
expected for such a specialized regulatory role.
The next cases are two orthologous TFs that are

part of two-component regulatory systems. The first
system, CpxR (CpxA) in E. coli, responds to several
conditions associated with envelope stress, such as
alkaline pH and overproduction of secreted proteins,
and to attachment of cells to surfaces or the assembly
of structures on the cell surface, folding or degrada-
tion of misfolded proteins in the periplasm and pili
subunits, as well as monitoring porin status.44 This
system also responds to exposure to copper45 and
EDTA46 in E. coli, while its B. subtilis counterpart
YycF (YycG) is involved in the control of genes for
cell-wall metabolic processes, cell membrane com-
position and cell division.47 The second, PhoB
(PhoR), regulates the phosphate regulon in E. coli,48

while its counterpart in B. subtilis, ResD (ResE), is
involved in nitrate respiration in response to oxygen
limitation or nitric oxide.49 Both orthologous TFs
have high specificity values, as expected for local
regulators, even when they can respond to different
effectors.
The remaining orthologous TFs have different

positional roles in both organisms. CcpA is a global
regulator in B. subtilis, controlling carbon catabolite
repression (like CRP in E. coli)50 with a specificity
estimate of 0.88, while the orthologous CytR, a local
regulator in E. coli,37 has a similar specificity value of
0.85. As mentioned earlier, these appear to be
incongruent specificity estimates, as CcpA is
known to bind to 48 sites, while CytR binds to ten.
However, it should be mentioned that CytR, in co-
regulation with CRP, has been described as the most
promiscuous DNA-binder of the LacI familiy.37

Finally, we analyze the transcription factor FNR
(fumarate and nitrate reduction), a global TF in E.
coli (FNReco) that is local in B. subtilis (FNRbsu).
FNReco has been annotated extensively in Regu-
lonDB, while Reents and co-workers have studied
the FNRbsu regulon exhaustively via transcriptomic
analysis in combination with bioinformatics-based
binding site prediction.16 From 35 TGs identified as
part of the FNR regulon during the transition of B.
subtilis to anaerobic growth conditions, only eight
genes are seen to be regulated via a cis-acting
FNRbsu box in the corresponding promoter regions
as demonstrated by Cruz-Ramos and co-workers
via construction of fusions and mutant strains.51,52

Indeed, the red dots in Fig. 2 show that FNR has
relatively low specificity in E. coli (sampled nor-
mUIC values of 0.63 for FNReco and 1.38 for
FNRbsu), in agreement with the fact that FNR
regulates a much larger set of genes in E. coli than
in B. subtilis. The amino acid residues presumed to
be recognizing specific FNR sites change from E. coli
to B. subtilis and, as a consequence, the sequence
logos are partially different. However, we still
ignore why this protein, which senses O2 via a
cysteine-[4Fe-4S]2+ cluster located in the amino
terminus in FNReco,

53 and the carboxyl terminus
in FNRbsu,

16 has a major regulatory role in E. coli
and only a minor effect in the TRN of B. subtilis (see
Table 2). We believe that the answer to this question
lies on the ecological niches of both bacteria. E. coli
has adapted to live inside the host's gut and must be
able to grow rapidly in the ileum under aerobic
conditions but also in competition for limited nu-
trients under anaerobic conditions in the colon.54

Therefore, it seems that shifting between these two
environments is part of the species lifestyle, and FNR
regulates this by affecting the expression of 135
genes in E. coli.18 In contrast, B. subtilis usually
dwells in the soil, where fluctuations in the avail-
ability of oxygen are not particularly frequent or
periodic, depending mostly on the soil's water
content.20 Presumably this is why in this species
FNR regulates the transcription of only eight genes
required for adaptation to low oxygen tension.16,19

To summarize, although orthologous proteins are
generally thought to have the same function in
different species, it has been reported that TFs are
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not conserved between phylogenetically distant
species, especially the global regulators, that are
gained or lost rapidly through evolution.10,11,55 Even
in small phylogenetic distances, such as Proteobac-
teria for E. coli or Firmicutes for B. subtilis, it has been
found that global regulators do not necessarily share
similar evolutionary histories nor do they regulate
similar metabolic responses.3,12–17 In this section we
have presented a DNA-binding specificity assess-
ment of the set of orthologous TFs present in E. coli
and B. subtilis, suggesting that the correlations
described throughout the paper can be of practical
use for the task of characterizing the role of
regulatory proteins in prokaryotes. Our data allow
us to claim that it is possible to infer the function of a
TF as global or local if we can confidently measure
its binding specificity. However, the DNA-binding
domain can only tell us about one-half of the
evolutionary and functional history of a bacterial
TF. The sensing/allosteric domain is most likely the
result of several evolutionary processes, perhaps
dominated by the environmental relevance of the
corresponding effector, as illustrated by the FNR
analysis. In some cases, the evolutionary history of
allosteric domains might be a much better guide in
order to define the functional role of a TF, as perhaps
the cases of CytR and CpxR suggest.
Fig. 6. Theoretical estimates of the probability of random
subtilis (b). Note that probabilities vary by up to two orders of m
A conceptual model for the evolution of
transcriptional regulatory networks

The presented here provide a picture of bacterial
regulatory networks in which binding specificity is a
predictor of the hierarchy of any TF. Our data suggest
that the ability of TFs to conserve or gain new TGs is
not inherited from their paralogous counterparts, but
it is at least correlated to their power to discriminate
DNA sequences. Here, we approximated the specifi-
city of transcription factors using three different
approaches, observing that global regulators (includ-
ing nucleoid-associated proteins56) from two bacterial
models with remarkably different life-styles and long
phylogenetic distance consistently display low levels
of binding specificity, and that specificity values of
most orthologous TFs between E. coli and B. subtilis
are congruent with their global or local role.We found
that low-specificity regulators are transcribed at
relatively high levels in E. coli, perhaps as a conse-
quence of these proteins not being co-localized with
their TGs in the genome, suggesting that an efficient
occupancy of binding sites may be achieved by high
copy number instead.38,40,57 In addition, it is clear
from Fig. 4 that less specific TFs have more co-
regulators, other TFs that help translate their global
control to more specialized subsets of target genes,
generation of genomic binding sites in E. coli (a) and B.
agnitude between specific and low specific DNA binders.
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adding one more variable to this evolutionary
scenario. However, it seems obvious that other
variables will be conditioning the evolution of regula-
tory networks. Of special interest are variables that
might be restricting or enhancing the ability of TFs to
gain, conserve or even lose regulatory interactions.
For instance, the mechanisms that generate or

delete genomic binding sites should also be con-
sidered in order to fully understand this question, as
already envisaged by Sengupta and collaborators.29

In this respect, Fig. 6 shows a scatter plot of the
theoretically estimated probability of site generation
Fig. 7. Evolutionary model for regulatory networks. Plot A
factors and their regulons. Two main variables are considered
normalized in a 0–1 scale. Note that a scatter plot of these tw
(plotted in red) from the other regulatory proteins, highli
summarizes the main observations of this work, together with
relevance, which we anticipate can have an important role here
an indirect measure of effector relevance, similar to mutat
proportional to binding specificity. This evolutionary model le
more realistically as a function of different evolutionary force
importance of TFs.
and the number of cognate binding sites of trans-
cription factors in both E. coli and B. subtilis, predic-
ting that LS regulators are more likely to bind to
DNA sites appearing as a result of point mutations.
A protein such as CRP, able to recognize 90 different
oligonucleotides, will bind a randomly generated
sequence with a probability roughly two orders of
magnitude larger than CaiF, able to discriminate
only two sequences. A different route to the same
numbers could be that poor DNA sequence dis-
criminators, with large sets of targets genes, are less
vulnerable to random genomic mutations, since
shows variables that affect the evolution of transcriptions
here, binding specificity and frequency of co-regulation,
o variables clearly separates global transcription factors
ghting their potential diagnostic value. The subplot B
a theoretical variable that is not easily measured, effector
. The model proposes to use the degree of co-regulation as
ion resistance, which is represented as being inversely
ts us define the functional (global or local) role for any TF
s, rather than isolated properties that can misestimate the
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more mutations are needed to disable a binding site.
Moreover, it should be noted that bacterial genomes
are plastic and experience genomic rearrangements
that modify the composition and orientation of
operons, providing the means for creating or
destroying binding sites beyond point muta-
tions.27,58 Our specificity estimations might be indi-
cating that local regulators, in evolutionary time
scales, aremore likely to gain binding sites as a result
of such genomic rearrangement events. However,
this hypothesis would require further testing andwe
have no direct evidence to support it.
In addition, as bacterial regulators usually include

a signal-sensing allosteric domain, it is likely that the
metabolic and ecological relevance of these effectors
will largely affect the evolution of TFs and their
regulons. In other words, as introduced in the
previous section, the evolutionary fate of transcrip-
tion factors will depend on both the DNA-binding
and the allosteric domains. We anticipate two ways
in which sensing domains might have an impact on
network evolution. Firstly, they might induce con-
formational changes on the attached DNA-binding
domains upon binding of effector molecules. For
instance, it has been demonstrated that CRP
increases its specificity after binding to cyclic AMP
molecules.34 Similar evidence has been found for
LacI59 or Cbl.60 In this sense, it seems that allosteric
domains might be regulating specificity, somewhat
compensating for the intrinsic promiscuity of some
DNA-binding domains. Secondly, not all signals
sensed by regulatory proteins are equally relevant
for the species adaptation, nor do they evenly
describe the species’s ecological niche. This con-
ceptual model predicts that TFs are more likely to
conserve or gain new target genes if they increase
adaptation by logically linking allosteric effectors to
the expression of new regulatory targets or operons.
In summary, the model in Fig. 7 attempts to

summarize the evolutionary variables that make
regulons grow and shrink between species, such as
FNR in E. coli and B. subtilis, as bacteria tune their
regulatory networks in order to better respond to
their environment and their metabolic requirements.
Materials and Methods

Regulatory network collection

We downloaded the transcriptional regulatory interac-
tions of E. coli K12 from RegulonDB release 5.5.18 We also
obtained the regulatory interactions of B. subtilis from the
Database of transcriptional regulation in B. subtilis
(DBTBS) release 4.1.19 Both databases compile experi-
mental information curated from the literature. We
considered only regulatory interactions where the DNA-
binding sites have been characterized experimentally. For
E. coli, we collected a total of 85 transcription factors
regulating 1593 target genes through 1314 DNA-binding
sites, while we collected a total of 91 TFs regulating 732
TGs through 944 bsDNA in B. subtilis (see Table S1 of
Supplementary Data).
Detection of paralogy and orthology of transcription
factors

Search for paralogues

In order to detect possible TF duplication events in the
genomes of E. coli and B. subtilis, we used both sequence
and three-dimensional structural domain assignments of
the proteins in the network as a measure of paralogy.
Therefore, if two proteins had exactly the same domain
composition and the same number of domains, we
assumed that they were derived from genetic duplication
of a common ancestor. As bacterial regulators usually have
at least two protein domains, conservation of the DNA-
binding domain was not considered sufficient to detect
paralogy. We defined domains according to the structural
annotation system of the SUPERFAMILY database,61

based on the domain classification scheme of SCOP,62

and according to the sequence annotations of the PFAM
database.63 Both assignment schemes rely on the use of
libraries of hidden Markov models (HMM) to represent
domains.
We searched for protein domains in the complete

genomes of E. coli and B. subtilis using HMMs taken from
PFAM version 20.0 and SUPERFAMILYversion 1.69, using
the HMMER 2.3.1 program,64 with an expectation value
≤10−3. This cut-off value has been used previously to
define TFs families in bacteria,3,65,66 although it is less
stringent than the E-value ≤10−4 used to reduce the total
number of superfamilies assigned tomajor clades (Archaea,
Bacteria, and Eukarya) by Yang and co-workers.21 E-values
here also serve as a confidence level for every candidate
identified as a paralogue within an organism.
Thus, we predict groups of paralogues that include the

set of 85 known TFs and 1593 TGs of E. coli from
RegulonDB release 5.5 and the set of 91 known TFs and
732 TGs of B. subtilis from BDTBS release 4.1. In order to
group putative paralogous regulatory proteins, we
required that each group included the same resulting
members after both PFAM and SUPERFAMILY domain
assignments, except in the cases of seven E. coli and one B.
subtilis TFs that have no SUPERFAMILY assignment with
our cut-off value. In those cases, only PFAM assignments
were considered in order to group them.
Search for orthologues

The search for orthologues was carried out as des-
cribed,10 assigning functional roles to TFs in other
genomes by first filtering intraspecific paralogues and
then using an intersection of three criteria for the detection
of orthology: (i) bi-directional best hits (BDBHs); (ii)
coverage of BLASTP67 pairwise alignments; and (iii)
conservation of PFAM domains. Accordingly, we identi-
fied orthologues as pairs of B. subtilis and E. coli proteins
that satisfy the following conditions:

(i) Sequences of the target genome that have a BDBH in
the query genome with a significant BLASTP E-
value (b10−3).

(ii) At least 70% of the query sequence is included in the
BLASTP alignment.

(iii) Target sequences share the PFAM domains of their
query counterparts. Target sequences having one or
more domains that match the orientation and arrange-
ment to that of the query sequence and do not
increment the total size of the protein in more than 100
residues were also considered in the analysis.
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Estimation of transcription factor specificity based on
the information content of DNA sequence motifs

Here, we describe a way to estimate the observed DNA-
binding specificity of transcription factors for which we
have at least two experimentally characterized binding
sites. The process is essentially the same for our two
bacterial datasets, with minor differences justified by the
different annotation detail of E. coli and B. subtilis sites.
For E. coli, we had a collection of 67 TFs with at least two

reported sites, with 25 having more than ten annotated
sites. We used the computer program CONSENSUS68

to build optimized sequence motifs with equiprobable
prior nucleotide frequencies. We used the motif widths
defined in RegulonDB 5.5 for each TF. CONSENSUS
returns the unadjusted information content for each motif
(UIC), which can be width-normalized so that different
motifs can be compared directly, using the expression
ICnorm=IC/width. This is necessary as the motifs used in
this work have widths that range from seven (for instance
NarL) to more than 20, and this variable ultimately limits
the information content of motifs.
For B. subtilis we had a collection of 70 TFs with a

minimum of two known sites, of which 23 have more than
ten associated sites, all extracted from DBTBS 4.1. Since
sites for the same TF can have different widths in this data
source, we used the program WCONSENSUS68 to build
sequence motifs with a prior G+C content of 43%. This
program attempts to find the optimal motif width in terms
of information content.
In order to estimate the variability of scores for sites

recognized by every TF we took the position weight
matrices (PWM) generated by CONSENSUS (E. coli) and
WCONSENSUS (B. subtilis) and aligned all available sites
for each TF against them, by running the program PATSER
and recording the scores.68 The highest and lowest scores
were kept, as well as the standard deviation, and the
variability calculated with Eq. (1):

variabilityðscoresÞ
¼ maxðscoresÞ �minðscoresÞ
=standard�devðscoresÞ ð1Þ

Note that these variability measurements are normalized
by the standard deviation of scores for a given TF, so they
are comparable for different TFs.

Estimation of transcription factor specificity by
estimating DNA-binding potential

A modified version of the DNASITE program,69 which
uses full atom detail and identifies hydrogen bonds and
hydrophobic interactions, was used to estimate DNA-
binding potentials (manuscript under review). Briefly, the
program threads experimentally characterized DNA
binding sites from RegulonDB 5.5 into crystallographic
protein-DNA complexes for 11 transcription factors in E.
coli and scores each site using H-bond and van der Waals
weight matrices. These matrices give log-likelihood scores
to pairs of interacting atoms in the protein-DNA interface
and were compiled on a set of non-redundant protein-
DNA complexes. The sum of weights over a protein-DNA
interface, linearly combined with indirect readout DNA
deformation, is regarded as the potential of binding of a
given site. As before, we calculate score variability for a TF
using Eq. (1). These are the 11 TFs used here, with the
number of binding sites for each indicated in parentheses:
TrpR (10), Rob (6), PurR (15), PhoB (16), NarL (73), MetJ
(23), MarA (13), FadR (10), DnaA (8), CRP (182) and LacR
(3). The corresponding Protein Data Bank complexes are:
1TRO,70 1D5Y,71 2PUA,72 1GXP,73 1JE8,74 1CMA,75 1XS9,76
1H9T,77 1J1V,78 1CGP,79 and 1EFA.80

Estimation of mean expression values from
microarray experiments

A set of 60 published non-redundant expression profiles
for E. coli was provided by the authors,39 already
normalized using the robust multi-array analysis (RMA)
procedure, that allows direct comparisons between them.
Most of these conditions are independent single-gene
over-expression experiments. The mean expression value
across 60 conditions was then calculated for all those E. coli
transcription factors for which an information content
estimate of specificity was available, to produce the scatter
plot shown in Fig. 7.

Calculation of correlation coefficients

All correlation coefficients mentioned reported here
correspond to Pearson coefficients calculated using the
function cor.test in the R package for statistical computing∥.

Calculation of probabilities of site generation

The collection of binding sites for every TF was aligned
using CONSENSUS with a fixed motif width of ten
columns, to make them all directly comparable. Align-
ments are then parsed in order to count the number of
different sites of length ten found, a number called diffN,
that is an approximation of the sequence space recog-
nized by any TF. The probability of generating sites for
any one TF is then calculated by dividing diffN by 410,
the total number of possible oligonucleotides of that
length.
Acknowledgements

We thank Heladia Salgado and Sarath Chandra
Janga for their help in obtaining RegulonDB and
microarray expression data. We are grateful to the
Computational Genomics Group and an anon-
ymous referee for comments and suggestions to
improve this work. The Computational Genomics
group is supported by NIH grant RO1-GM071962.
B.C.M. was funded by a postdoctoral fellowship
from Universidad Nacional Autónoma de México
and by Fundación Agencia Aragonesa I+D. V.E.A.
was supported by Red Iberoamericana de Bioin-
formática and CYTED, and is now recipient of a
doctoral fellowship awarded by Banco Santander
Central Hispano, Fundación Carolina and Univer-
sidad de Zaragoza.

http://www.rproject.org


641TF Specificity in Bacterial Regulatory Networks
Supplementary Data

Supplementary data associated with this article
can be found, in the online version, at doi:10.1016/
j.jmb.2008.04.008

References
1. Thieffry, D., Huerta, A.M., Perez-Rueda, E. &Collado-

Vides, J. (1998). From specific gene regulation to
genomic networks: a global analysis of transcriptional
regulation in Escherichia coli. BioEssays, 20, 433–440.

2. Guelzim, N., Bottani, S., Bourgine, P. & Kepes, F.
(2002). Topological and causal structure of the yeast
transcriptional regulatory network. Nat. Genet. 31,
60–63.

3. Moreno-Campuzano, S., Janga, S. C. & Perez-Rueda,
E. (2006). Identification and analysis of DNA-binding
transcription factors in Bacillus subtilis and other
Firmicutes — a genomic approach. BMC Genomics, 7,
147–156.

4. Barabasi, A. L. & Albert, R. (1999). Emergence of
scaling in random networks. Science, 286, 509–512.

5. Gottesman, S. (1984). Bacterial regulation: global
regulatory networks. Annu. Rev. Genet. 18, 415–441.

6. Martinez-Antonio, A. & Collado-Vides, J. (2003).
Identifying global regulators in transcriptional regula-
tory networks in bacteria. Curr. Opin. Microbiol. 6,
482–489.

7. Foster, D. V., Kauffman, S. A. & Socolar, J. E. (2006).
Network growth models and genetic regulatory net-
works. Phys. Rev. E, 73, 031912:1-8.

8. Teichmann, S. A. & Babu, M. M. (2004). Gene
regulatory network growth by duplication. Nature
Genet. 36, 492–496.

9. Cosentino Lagomarsino, M., Jona, P., Bassetti, B. &
Isambert, H. (2007). Hierarchy and feedback in the
evolution of the Escherichia coli transcription network.
Proc. Natl Acad. Sci. USA, 104, 5516–5520.

10. Lozada-Chavez, I., Janga, S. C. & Collado-Vides, J.
(2006). Bacterial regulatory networks are extremely
flexible in evolution. Nucleic Acids Res. 34, 3434–3445.

11. Madan Babu, M., Teichmann, S. A. & Aravind, L.
(2006). Evolutionary dynamics of prokaryotic trans-
criptional regulatory networks. J. Mol. Biol. 358,
614–633.

12. Tobisch, S., Zuhlke, D., Bernhardt, J., Stulke, J. &
Hecker, M. (1999). Role of CcpA in regulation of the
central pathways of carbon catabolism in Bacillus
subtilis. J. Bacteriol. 181, 6996–7004.

13. Morales, G., Linares, J. F., Beloso, A., Albar, J. P.,
Martinez, J. L. & Rojo, F. (2004). The Pseudomonas
putida Crc global regulator controls the expression of
genes from several chromosomal catabolic pathways
for aromatic compounds. J. Bacteriol. 186, 1337–1344.

14. Friedberg, D., Midkiff, M. & Calvo, J. M. (2001). Global
versus local regulatory roles for Lrp-related proteins:
Haemophilus influenzae as a case study. J. Bacteriol.
183, 4004–4011.

15. Suh, S. J., Runyen-Janecky, L. J., Maleniak, T. C.,
Hager, P., MacGregor, C. H., Zielinski-Mozny, N. A.
et al. (2002). Effect of vfr mutation on global gene
expression and catabolite repression control of Pseu-
domonas aeruginosa. Microbiology, 148, 1561–1569.

16. Reents, H., Munch, R., Dammeyer, T., Jahn, D. &
Hartig, E. (2006). The Fnr regulon of Bacillus subtilis.
J. Bacteriol. 188, 1103–1112.

17. Derouaux, A., Dehareng, D., Lecocq, E., Halici, S.,
Nothaft, H., Giannotta, F. et al. (2004). Crp of
Streptomyces coelicolor is the third transcription
factor of the large CRP-FNR superfamily able to bind
cAMP. Biochem. Biophys. Res. Commun. 325, 983–990.

18. Salgado, H., Gama-Castro, S., Peralta-Gil, M., Diaz-
Peredo, E., Sanchez-Solano, F., Santos-Zavaleta, A.
et al. (2006). RegulonDB (version 5.0): Escherichia
coli K-12 transcriptional regulatory network, operon
organization, and growth conditions. Nucleic Acids
Res. 34, D394–D397.

19. Makita, Y., Nakao, M., Ogasawara, N. & Nakai, K.
(2004). DBTBS: database of transcriptional regulation
in Bacillus subtilis and its contribution to comparative
genomics. Nucleic Acids Res. 32, D75–D77.

20. Nakano, M. M. & Zuber, P. (1998). Anaerobic growth
of a “strict aerobe” (Bacillus subtilis). Annu. Rev.
Microbiol. 52, 165–190.

21. Yang, S., Doolittle, R. F. & Bourne, P. E. (2005).
Phylogeny determined by protein domain content.
Proc. Natl Acad. Sci. USA, 102, 373–378.

22. Ciccarelli, F. D., Doerks, T., von Mering, C., Creevey,
C. J., Snel, B. & Bork, P. (2006). Toward automatic
reconstruction of a highly resolved tree of life. Science,
311, 1283–1287.

23. Amoutzias, G. D., Weiner, J. & Bornberg-Bauer, E.
(2005). Phylogenetic profiling of protein interaction
networks in eukaryotic transcription factors reveals
focal proteins being ancestral to hubs. Gene, 347,
247–253.

24. Madan Babu, M. & Teichmann, S. A. (2003). Evolution
of transcription factors and the gene regulatory net-
work inEscherichia coli.Nucleic Acids Res. 31, 1234–1244.

25. Moses, A. M., Pollard, D. A., Nix, D. A., Iyer, V. N., Li,
X. Y., Biggin, M. D. & Eisen, M. B. (2006). Large-scale
turnover of functional transcription factor binding
sites in Drosophila. PLoS Comput. Biol. 2, e130.

26. Doniger, S. W. & Fay, J. C. (2007). Frequent gain and
loss of functional transcription factor binding sites.
PLoS Comput. Biol. 3, e99.

27. Espinosa, V., Gonzalez, A. D., Vasconcelos, A. T.,
Huerta, A. M. & Collado-Vides, J. (2005). Compara-
tive studies of transcriptional regulation mechanisms
in a group of eight gamma-proteobacterial genomes.
J. Mol. Biol. 354, 184–199.

28. Rajewsky, N., Socci, N. D., Zapotocky, M. & Siggia, E.
D. (2002). The evolution of DNA regulatory regions
for proteo-gamma bacteria by interspecies compar-
isons. Genome Res. 12, 298–308.

29. Sengupta, A.M.,Djordjevic,M.& Shraiman, B. I. (2002).
Specificity and robustness in transcription control
networks. Proc. Natl Acad. Sci. USA, 99, 2072–2077.

30. Stormo, G. D. & Fields, D. S. (1998). Specificity, free
energy and information content in protein-DNA
interactions. Trends Biochem. Sci. 23, 109–113.

31. Luscombe, N. M. & Thornton, J. M. (2002). Protein-
DNA interactions: amino acid conservation and the
effects of mutations on binding specificity. J. Mol. Biol.
320, 991–1009.

32. Bilu, Y. & Barkai, N. (2005). The design of transcrip-
tion-factor binding sites is affected by combinatorial
regulation. Genome Biol. 6, R103.

33. Cases, I. & de Lorenzo, V. (1998). Expression systems
and physiological control of promoter activity in
bacteria. Curr. Opin. Microbiol. 1, 303–310.

34. Garges, S. & Adhya, S. (1988). Cyclic AMP-induced
conformational change of cyclic AMP receptor protein
(CRP): intragenic suppressors of cyclic AMP-indepen-
dent CRP mutations. J. Bacteriol. 170, 1417–1422.

35. Sawers, G., Kaiser, M., Sirko, A. & Freundlich, M.



642 TF Specificity in Bacterial Regulatory Networks
(1997). Transcriptional activation by FNR and CRP:
reciprocity of binding-site recognition. Mol. Microbiol.
23, 835–845.

36. Kallipolitis, B. H., Norregaard-Madsen, M. & Valentin-
Hansen, P. (1997). Protein-protein communication:
structural model of the repression complex formed by
CytR and the global regulator CRP. Cell, 89, 1101–1109.

37. Pedersen, H. & Valentin-Hansen, P. (1997). Protein-
induced fit: the CRP activator protein changes
sequence-specific DNA recognition by the CytR
repressor, a highly flexible LacI member. EMBO J.
16, 2108–2118.

38. Evangelisti, A. M. & Wagner, A. (2004). Molecular
evolution in the yeast transcriptional regulation net-
work. J. Expt. Zool. B, 302, 392–411.

39. Faith, J. J., Hayete, B., Thaden, J. T., Mogno, I.,
Wierzbowski, J., Cottarel, G., Kasif, S. et al. (2007).
Large-scale mapping and validation of Escherichia coli
transcriptional regulation from a compendium of
expression profiles. PLoS Biol. 5, e8.

40. Aurell, E., d'Herouel, A. F., Malmnas, C. & Vergassola,
M. (2007). Transcription factor concentrations versus
binding site affinities in the yeast S. cerevisiae. Phys.
Biol. 4, 134–143.

41. Bagg, A. & Neilands, J. B. (1987). Ferric uptake
regulation protein acts as a repressor, employing
iron (II) as a cofactor to bind the operator of an iron
transport operon in Escherichia coli. Biochemistry, 26,
5471–5477.

42. Baichoo, N., Wang, T., Ye, R. & Helmann, J. D. (2002).
Global analysis of the Bacillus subtilis Fur regulon
and the iron starvation stimulon. Mol. Microbiol. 45,
1613–1629.

43. Ollinger, J., Song, K. B., Antelmann, H., Hecker, M.
& Helmann, J. D. (2006). Role of the Fur regulon in
iron transport in Bacillus subtilis. J. Bacteriol. 188,
3664–3673.

44. Batchelor, E., Walthers, D., Kenney, L. J. & Goulian, M.
(2005). The Escherichia coliCpxA-CpxR envelope stress
response system regulates expression of the porins
ompF and ompC. J. Bacteriol. 187, 5723–5731.

45. Yamamoto, K. & Ishihama, A. (2006). Characterization
of copper-inducible promoters regulated by CpxA/
CpxR in Escherichia coli. Biosci. Biotechnol. Biochem. 70,
1688–1695.

46. DiGiuseppe, P. A. & Silhavy, T. J. (2003). Signal
detection and target gene induction by the CpxRA
two-component system. J. Bacteriol. 185, 2432–24340.

47. Howell, A., Dubrac, S., Noone, D., Varughese, K. I. &
Devine, K. (2006). Interactions between the YycFG
and PhoPR two-component systems in Bacillus sub-
tilis: the PhoR kinase phosphorylates the non-cognate
YycF response regulator upon phosphate limitation.
Mol. Microbiol. 59, 1199–1215.

48. Makino, K., Shinagawa, H., Amemura, M., Kawa-
moto, T., Yamada, M. & Nakata, A. (1989). Signal
transduction in the phosphate regulon of Escherichia
coli involves phosphotransfer between PhoR and
PhoB proteins. J. Mol. Biol. 210, 551–559.

49. Baruah, A., Lindsey, B., Zhu, Y. & Nakano, M. M.
(2004). Mutational analysis of the signal-sensing
domain of ResE histidine kinase from Bacillus subtilis.
J. Bacteriol. 186, 1694–1704.

50. Lulko, A. T., Buist, G., Kok, J. & Kuipers, O. P. (2007).
Transcriptome analysis of temporal regulation of
carbon metabolism by CcpA in Bacillus subtilis reveals
additional target genes. J. Mol. Microbiol. Biotechnol. 12,
82–95.

51. Cruz Ramos, H., Hoffmann, T., Marino, M., Nedjari,
H., Presecan-Siedel, E., Dreesen, O. et al. (2000).
Fermentative metabolism of Bacillus subtilis: physiol-
ogy and regulation of gene expression. J. Bacteriol.
182, 3072–3080.

52. Cruz Ramos, H., Boursier, L., Moszer, I., Kunst, F.,
Danchin, A. & Glaser, P. (1995). Anaerobic transcrip-
tion activation in Bacillus subtilis: identification of
distinct FNR-dependent and -independent regulatory
mechanisms. EMBO J. 14, 5984–5994.

53. Khoroshilova, N., Popescu, C., Munck, E., Beinert, H.
& Kiley, P. J. (1997). Iron-sulfur cluster disassembly in
the FNR protein of Escherichia coli by O2: [4Fe-4S] to
[2Fe-2S] conversion with loss of biological activity.
Proc. Natl Acad. Sci. USA, 94, 6087–6092.

54. Schaechter, M. (2000). Escherichia coli, General Biol-
ogy. In Encyclopedia of Microbiology (Lederberg, J., ed),
2nd edit., vol. 1 A–C, pp. 260–269. Academic Press,
New York.

55. Price, M. N., Dehal, P. S. & Arkin, A. P. (2007).
Orthologous transcription factors in bacteria have
different functions and regulate different genes. PLoS
Comput. Biol. 3, 1739–1750.

56. Dame, R. T. (2005). The role of nucleoid-associated
proteins in the organization and compaction of
bacterial chromatin. Mol. Microbiol. 56, 858–870.

57. Kolesov, G., Wunderlich, Z., Laikova, O. N., Gelfand,
M. S. & Mirny, L. A. (2007). How gene order is
influenced by the biophysics of transcription regula-
tion. Proc. Natl Acad Sci. USA, 104, 13948–13953.

58. Watanabe, H., Mori, H., Itoh, T. & Gojobori, T. (1997).
Genome plasticity as a paradigm of eubacteria
evolution. J. Mol. Evol. 44, S57–S64.

59. Daber, R., Stayrook, S., Rosenberg, A. & Lewis, M.
(2007). Structural analysis of lac repressor bound to
allosteric effectors. J. Mol. Biol. 370, 609–619.

60. Stec, E., Witkowska-Zimny, M., Hryniewicz, M. M.,
Neumann, P., Wilkinson, A. J., Brzozowski, A. M. et al.
(2006). Structural basis of the sulphate starvation
response in E. coli: crystal structure and mutational
analysis of the cofactor-binding domain of the Cbl
transcriptional regulator. J. Mol. Biol. 364, 309–322.

61. Gough, J. & Chothia, C. (2002). SUPERFAMILY:
HMMs representing all proteins of known structure.
SCOP sequence searches, alignments and genome
assignments. Nucleic Acids Res. 30, 268–272.

62. Murzin, A. G., Brenner, S. E., Hubbard, T. & Chothia,
C. (1995). SCOP: a structural classification of proteins
database for the investigation of sequences and
structures. J. Mol. Biol. 247, 536–540.

63. Bateman, A., Birney, E., Cerruti, L., Durbin, R.,
Etwiller, L., Eddy, S. R. et al. (2002). The Pfam protein
families database. Nucleic Acids Res. 30, 276–280.

64. Eddy, S. R. (1996). Hidden Markov models. Curr.
Opin. Struct. Biol. 6, 361–365.

65. Perez-Rueda, E. & Collado-Vides, J. (2000). The reper-
toire of DNA-binding transcriptional regulators in
Escherichia coli K-12. Nucleic Acids Res. 28, 1838–1847.

66. Perez-Rueda, E., Collado-Vides, J. & Segovia, L.
(2004). Phylogenetic distribution of DNA-binding
transcription factors in bacteria and archaea. Comput.
Biol. Chem. 28, 341–350.

67. Lopez, R., Silventoinen, V., Robinson, S., Kibria, A.
& Gish, W. (2003). WU-Blast2 server at the
European Bioinformatics Institute. Nucleic Acids
Res. 31, 3795–3798.

68. Hertz, G. Z. & Stormo, G. D. (1999). Identifying DNA
and protein patterns with statistically significant
alignments of multiple sequences. Bioinformatics, 15,
563–577.



643TF Specificity in Bacterial Regulatory Networks
69. Contreras-Moreira, B. & Collado-Vides, J. (2006).
Comparative footprinting of DNA-binding proteins.
Bioinformatics, 22, e74–e80.

70. Otwinowski, Z., Schevitz, R.W., Zhang, R.G., Lawson,
C. L., Joachimiak, A., Marmorstein, R. Q. et al. (1988).
Crystal structure of trp repressor/operator complex at
atomic resolution. Nature, 335, 321–329.

71. Kwon, H. J., Bennik, M. H., Demple, B. & Ellenberger,
T. (2000). Crystal structure of the Escherichia coli Rob
transcription factor in complex with DNA. Nature
Struct. Biol. 7, 424–430.

72. Schumacher, M. A., Choi, K. Y., Zalkin, H. & Brennan,
R. G. (1994). Crystal structure of LacI member, PurR,
bound to DNA: minor groove binding by alpha
helices. Science, 266, 763–770.

73. Blanco, A. G., Sola, M., Gomis-Ruth, F. X. & Coll, M.
(2002). Tandem DNA recognition by PhoB, a two-
component signal transduction transcriptional activa-
tor. Structure, 10, 701–713.

74. Maris, A. E., Sawaya, M. R., Kaczor-Grzeskowiak, M.,
Jarvis, M. R., Bearson, S. M., Kopka, M. L. et al. (2002).
Dimerization allows DNA target site recognition by the
NarL response regulator.Nature Struct. Biol. 9, 771–778.
75. Somers, W. S. & Phillips, S. E. (1992). Crystal structure
of the met repressor-operator complex at 2.8 A
resolution reveals DNA recognition by beta-strands.
Nature, 359, 387–393.

76. Dangi, B., Gronenborn, A.M., Rosner, J. L. &Martin, R.
G. (2004). Versatility of the carboxy-terminal domain
of the alpha subunit of RNA polymerase in transcrip-
tional activation: use of the DNA contact site as a
protein contact site forMarA.Mol. Microbiol. 54, 45–59.

77. van Aalten, D. M., DiRusso, C. C. & Knudsen, J.
(2001). The structural basis of acyl coenzyme A-
dependent regulation of the transcription factor FadR.
EMBO J. 20, 2041–2050.

78. Fujikawa, N., Kurumizaka, H., Nureki, O., Terada, T.,
Shirouzu, M., Katayama, T. & Yokoyama, S. (2003).
Structural basis of replication origin recognition by
the DnaA protein. Nucleic Acids Res. 31, 2077–2086.

79. Schultz, S. C., Shields, G. C. & Steitz, T. A. (1991).
Crystal structure of a CAP-DNA complex: the DNA is
bent by 90 degrees. Science, 253, 1001–1007.

80. Bell, C. E. & Lewis, M. (2000). A closer view of the
conformation of the Lac repressor bound to operator.
Nature Struct. Biol. 7, 209–214.


	The Role of DNA-binding Specificity in the Evolution of Bacterial Regulatory Networks
	Introduction
	Results and Discussion
	Contribution of genetic duplication to the �evolution of transcriptional networks
	Specificity estimated through the observed �diversity of DNA-binding sites
	Diversity of DNA-binding structural potentials as �a measure of binding specificity
	Contact-based estimations of binding specificity
	Adding co-regulation to binding specificity
	Low-specificity transcription factors show high �expression levels
	DNA-binding specificity of orthologous �transcription factors in E. coli and B. subtilis
	A conceptual model for the evolution of �transcriptional regulatory networks

	Materials and Methods
	Regulatory network collection
	Detection of paralogy and orthology of transcription �factors
	Search for paralogues
	Search for orthologues

	Estimation of transcription factor specificity based on �the information content of DNA sequenc.....
	Estimation of transcription factor specificity by �estimating DNA-binding potential
	Estimation of mean expression values from �microarray experiments
	Calculation of correlation coefficients
	Calculation of probabilities of site generation

	Acknowledgements
	Supplementary Data
	References


