
Vol.: (0123456789)

Environ Biol Fish 
https://doi.org/10.1007/s10641-024-01590-7

Depth, hard coral, and turf cover as predictors 
of micro‑scale spatial distribution of fishes in a subtropical 
rocky reef

Thiago E. Rodrigues   · Vinícius J. Giglio   · Fernando Z. Gibran   · Fernanda A. Rolim   · 
Leonardo M. Neves   · Guilherme Henrique Pereira‑Filho   · Gustavo Shintate   · Gabriel R. S. Souza   · 
Domingos Garrone‑Neto   · Fabio S. Motta 

Received: 21 June 2023 / Accepted: 15 August 2024 
© The Author(s), under exclusive licence to Springer Nature B.V. 2024

Abstract  The combination of the physical structural 
heterogeneity of the environment, oceanographic char-
acteristics, and the benthic assemblage composition 
structures the habitat, consequently shaping the associ-
ated diversity of fish. Understanding the spatial variabil-
ity of fish assemblages and how it relates to environmen-
tal factors is essential to identify potential variables that 
determine spatial patterns and predict impacts on fish 
assemblage metrics, thus providing valuable information 
for management. Here, we investigated reef fish micro-
scale spatial distribution around Alcatrazes Island in 
the subtropical region of the Southwest Atlantic, Brazil. 
Multivariate Regression Trees were fitted to explore the 

effects of structural heterogeneity, wave power, depth, 
water temperature, and benthic cover on the structure of 
reef fish assemblages, addressing composition, richness, 
density, biomass, trophic groups, mobility, and conser-
vation status. Our results suggest that depth, turf, and 
coral cover were the main predictors of fish assemblages 
in rocky reefs at Alcatrazes Island, revealing five dis-
tinct fish assemblages with different habitat preferences. 
These results provide additional insights into the rela-
tionship between reef fishes and their environment, pro-
viding empirical evidence for decision-makers to imple-
ment spatially based management policies, especially to 
prioritize zones for conservation along the island.
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Introduction

Reef fish assemblages respond to changes in environ-
mental conditions with fluctuations in richness and 
abundance at different spatial and temporal scales 
(Parravicini et  al. 2013). The dynamics of commu-
nity structure in marine environments at the local 
level are influenced by population relationships to 
biotic and habitat characteristics. In reef systems, 
biochemical and physical factors with the potential to 
shape biological assemblages include water tempera-
ture (Floeter et al. 2001; Bellwood et al. 2005), wave 
exposure (Friedlander et al. 2003; Maia et al. 2018), 
depth gradient (Teixeira-Neves et  al. 2015; Pereira 
et al. 2018; Matheus et al. 2019), and nutrient produc-
tion (Williams et al. 2015). Such environmental fea-
tures shape the geomorphology, which influences ses-
sile benthic communities by affecting reef organism 
recruitment and settlement (Carleton and Sammarco 
1987; Mallela 2018), thus influencing key structural 
features of fish habitats (Sale 2013; Teixeira-Neves 
et al. 2015; Russ et al. 2021). For instance, increasing 
reef structural complexity has been described as ben-
eficial to species richness by providing more space in 
quantity and types of shelters (e.g., Friedlander et al. 
2003; Darling et al. 2017). Therefore, the spatial con-
text can influence the structure of reef fish assem-
blages, with relevant mechanisms involved directly 
related to the scale of analysis.

Identifying the variables influencing the spatial 
distribution of reef fishes is important to understand 
the forces that shape assemblage structure, providing 
data to guide management strategies such as spatial 
planning (Haupt et al. 2017). Variations in local envi-
ronmental conditions can influence feeding, metabo-
lism, growth rates, pelagic larvae duration, and even 
species survival (O’Connor et  al. 2007). However, 
in many sites, disentangling the importance of envi-
ronmental variables in the structure of fish commu-
nities has been challenging when they occur syn-
ergistically with sources of anthropogenic impacts 
such as fishing and tourism (Richards et al. 2012). To 
reduce the potential bias, studying sites with minimal 
human interference at the local level, such as effec-
tive and well-enforced no-take marine protected areas 
(MPAs), can be ideal.

Studies investigating spatial patterns of the ichthyo-
fauna based on environmental predictors have been 
conducted at large (i.e., > 50  km; Bender et  al. 2013; 

Endo et  al. 2019; Quimbayo et  al. 2019) and small 
spatial scales (Friedlander and Parrish 1998; Arias-
González et al. 2006; Brokovich et al. 2006; Cvitanovic 
and Hoey 2010; Agudo-Adriani et al. 2019), with most 
studies focusing on tropical reefs. However, patterns of 
variation in reef fish assemblages over micro-spatial 
scales (i.e., from meters to < 2 km) in subtropical reefs 
remain less explored (García-Charton et al. 2004; Teix-
eira-Neves et al. 2015; Neves et al. 2016; Ferrari et al. 
2018; Nanami 2022; Barreto et al. 2024).

In this study, we investigated the spatial distribu-
tion of reef fish assemblages at Alcatrazes island, a 
subtropical coastal island off Brazil, Southwestern 
Atlantic. More specifically, we explored the poten-
tial effects of structural heterogeneity, wave power, 
depth, water temperature, and benthic cover on reef 
fish assemblages’ structure, composition, richness, 
density, biomass, trophic groups, mobility, and con-
servation status.

Material and methods

Study area

Alcatrazes is the largest island of the Alcatrazes 
Archipelago, formed by six islands located 33  km 
away from the coast of the São Paulo state, South-
eastern Brazil (Southwestern Atlantic; Fig.  1). Alc-
atrazes Island encompasses two no-take MPAs: the 
Tupinambás Ecological Station (ESEC–IUCN Cat-
egory Ia), created in 1987, and the Alcatrazes Archi-
pelago Wildlife Refuge (REVIS–IUCN Category III), 
established in 2016. The Archipelago features rich 
terrestrial and marine biodiversity with several terres-
trial endemic and threatened species (ICMBio 2017). 
Regarding oceanographic conditions, the region is 
influenced by three water masses transported by the 
Brazil Current, one of which, the South Atlantic 
Coastal Water, is associated with coastal upwelling 
(Castro et al. 2008). The upwelling occurs mainly in 
the austral summer, changing the physicochemical 
parameters with consequences for biological pro-
cesses in the region (Pires-Vanin et al. 1993).

The sublittoral rocky bottom is characterized by its 
range of structural features, from flat plateaus of large 
and uniform rock walls (exhibiting little to no structural 
complexity), to large boulders up to 15 m in diameter, 
spaced a few meters apart, and featuring numerous 
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crevices and holes. The leeward side of the island, with 
less hydrodynamic energy, harbors the richest benthic 
sessile cover, while encrusting calcareous algae domi-
nate the windward sites, susceptible to waves and cur-
rents, with lower habitat complexity and lower benthic 
cover richness (Gibran and Moura 2012).

Data collection

The present study was authorized by the Brazilian Min-
istry of Environment through the Brazilian System of 
Information and Authorization in Biodiversity (SISBIO 
No. 46206–8) and approved by the Federal University of 
São Paulo Ethics Committee (CEUA No. 1015170420).

Reef fish assemblages

Data on reef fish abundance was collected around 
Alcatrazes Island in October 2018 (during the South 
Hemisphere Spring season), through 218 station-
ary visual censuses using scuba diving (adapted 
from Minte-Vera et al. 2008) at eight reef sites (Baba 
de Boi n = 27; Geladeira n = 35, Jardim dos Corais 
n = 34; Matacões n = 30; Paredão n = 26; Raia n = 25; 
Saco do Oratório n = 30; Tartaruga, n = 11). All sites, 
separated by at least 300  m, were differentiated and 
selected during the monitoring of the archipelago 
based on the range of habitats found, primarily influ-
enced by topography and benthic composition. There-
fore, the main aim of this study was to investigate the 

Fig. 1   The study area is located within the Wildlife Refuge of 
the Alcatrazes Archipelago (blue polygon), on the north coast 
of the State of São Paulo. The green circles represent the Tupi-
nambás Ecological Station, a no-take marine protected area 
created in 1986, covering areas of the Alcatrazes Archipelago 

(south sector 1) and Palmas and Cabras Islands (north sector 
2). The detailed map shows Alcatrazes Island with the eight 
sample sites. 1 Matacões, 2 Raia, 3 Baba de Boi, 4 Tartaruga, 
5 Paredão, 6 Oratório, 7 Geladeira, and 8 Jardim dos Corais
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variations in fish assemblages across these distinct 
sites to inform management decisions.

The abundance of every fish species and individual 
body size were estimated within an observer-centered 
cylinder with 4-m radius for 5 min. Individuals with 
total length (TL) smaller than 10  cm were counted 
within a nested cylinder with a 2-m radius in two 
size classes (≤ 2  cm and 2–10  cm), while individu-
als > 10 cm TL were counted within a 4-m radius in 
four size classes (10–20; 20–30; 30–40; and > 40 cm). 
Stationary visual census has been historically used 
as a method for monitoring this no-take MPA (Motta 
et al. 2021; Rolim et al. 2024), as well as other marine 
reserves in Brazil (e.g., Moura and Francini-Filho 
2005; Freitas et al. 2019). They are particularly useful 
for large reefs with high structural heterogeneity with 
diverse and abundant fish populations (Bohnsack 
and Bannerot 1986; Minte-Vera et  al. 2008). Sam-
pling was conducted between 9 a.m. and 5 p.m. BRT 
(GMT–3) to avoid bias due to changes in fish activity 
between day and night periods (Hobson 1965; Amaral 
et al. 2023). The minimum horizontal transparency of 
the seawater during data collection was 5 (i.e., larger 
than the sample unit radius).

Environmental variables

Structural features of the reef were examined to 
assign a broad structural complexity score for each 
fish sampling, following Wilson et  al. (2007). The 
scores were 1 for the lowest, 2 for intermediate, and 
3 for the highest structural complexity. Flat substrates 
with low potential to provide shelter for the reef biota 
receive scores of 1, whereas those with rocks, holes, 
and crevices with homogenous sizes receive scores 
of 2. Reefs with high complexity with many rocks, 
holes, and crevices of different sizes were assigned 
score 3. The standard deviation of structural com-
plexity was calculated based on the scores averaged 
across all sampling units at each site (eight levels). 
This average served as a measure of heterogeneity, 
with higher heterogeneity values indicating sites with 
greater variation in structural complexity.

Data on wave power was gathered from Takase 
et  al. (2021). These authors investigated the level 
of exposure to wave power distribution around Alc-
atrazes Island by applying a numerical model from 
a 14-year time series (2005–2018) extracted from 
the Global Wave Watch III model. Wave power 

was estimated through the relation that consid-
ers the synergistic effect between wave height and 
period (Takase et  al. 2021). Data on wave power 
were extracted during springs (average for years 
2005–2018) for each site (eight levels), the same sea-
son we sampled reef fish assemblages in 2018.

Depth and water temperature were collected in 
each sampling unit, i.e., census (218 levels) through a 
dive computer (Puck Pro Model–Mares®) with preci-
sion levels of ± 0.2 m and ± 2 °C, respectively. During 
data collection, depths ranged from 2 to 24 m and the 
water temperature ranged from 20 to 25 °C.

The characterization of the benthic cover was con-
ducted through 10 photoquadrats of 70 × 70 cm distrib-
uted randomly in each sampling site. Each photoquad-
rat was composed of a mosaic of 15 digital images. 
The percentage cover was estimated using the software 
photoQuad (Trygonis and Sini 2012). In this software, 
twenty randomly located points were generated per 
digital image, thus totaling 300 points per photoquad-
rat. The organisms or colonies immediately below each 
point were classified into 12 major benthic categories: 
sand, bare rock, crustose coralline algae (CCA), fron-
dose algae, coral, tunicate, soft coral (Zoantharia), 
cenocytic algae, Octocorallia, Echinodermata, Porifera, 
bivalve, Hydrozoa, and turf algae. Subsequently, the 
average of the percentage cover of each benthic cate-
gory was calculated by site (n = 8). The dominant broad 
benthic categories (> 5%) were selected for the analysis, 
resulting in turf, frondose algae, soft corals (i.e., Cari-
joa riisei and Palythoa caribaeorum), and corals (i.e., 
Madracis decactis and Mussismilia hispida).

Data analysis

Fish species were categorized according to Pinheiro 
et al. (2018) in trophic groups as herbivores (HERB), 
macrocarnivores (MCAR), mobile invertebrate feed-
ers (MINV), sessile invertebrate feeders (SINV), 
omnivores (OMNI), and planktivores (PLANK), as 
well as in mobility as highly mobile or migratory 
(HMO), roving (ROV), and sedentary or territorial 
(SED). The species were also assigned a conserva-
tion status based on the International Union for the 
Conservation of Nature Red List and the Brazilian 
Red List, as either Least Concern (LC), Near Threat-
ened (NT), or Vulnerable (VU) (IUCN 2023). Fish 
biomass was estimated using length–weight relation-
ships available in FishBase (Froese and Pauly 2020). 
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The calculations were done using the midpoint val-
ues for each length category (i.e., individuals in the 
10–20 cm class were calculated as measuring 15 cm). 
When coefficient values were not available for a spe-
cies, we used coefficients of the closest related species 
or genus. For each species, the relative abundance 
and relative biomass were calculated by dividing its 
number of individuals and total biomass by the cor-
responding totals for all species in the community. 
Mean density and biomass were then determined by 
dividing the species-specific abundance and biomass 
by the census area, yielding data in individuals and 
grams per square meter.

Multivariate regression trees (MRT) were fitted for 
the fish census data (n = 218 levels) using the R pack-
age mvpart to explore the influence of environmental 
variables (standard deviation of structural heterogene-
ity, wave power, depth, water temperature, and benthic 
cover) on the spatial distribution of reef fishes con-
sidering species as taxonomic level. The MRT allows 
recursive partitioning of quantitative or categorical 
environmental variables, determining the formation 
of clusters. The calculation occurs from repeated divi-
sions of different sample groups, producing “nodes” 
as homogenous as possible concerning the response 
variable. Homogeneity is measured by finding the best 
division that minimizes the sums of squares over the 
multivariate average within each node (De’Ath 2002). 
The best tree was selected by choosing the highest 
cross-validation value and lowest value of the relative 
cross-validated error (De’Ath 2002). For analysis pur-
poses, each category of benthic organism was added as 
an independent variable in the MRT.

Hellinger’s pre-transformation was used on the 
species matrix, where the abundance values of each 
fish species are divided by the total abundance of the 
site. To explore patterns in an assemblage’s segrega-
tion according to environmental variables, a non-met-
ric multidimensional scaling (nMDS) over Euclidian 
dissimilarity matrices was calculated. This procedure 
allowed us to corroborate the explanatory potential 
of the outputs from the tree generated by the MRT. 
Differences in richness and biomass between assem-
blages revealed by the MRT were tested using the 
Kruskal–Wallis test and the post hoc Dunn test.

Boosted regression trees (BRT) were fitted for the 
census data (218 levels) using the R package gbm 
(Greenwell et  al. 2019) to understand the drivers of 
the abundance of the most important fish species that 

contributed to splitting assemblages revealed by the 
MRT. Boosted regression tree (BRT) models are a mod-
eling approach whereby a succession of regression trees 
is developed using machine learning models. To avoid 
model overfitting and attain the highest accuracy, as indi-
cated by the lowest values of cross-validation deviance 
and standard error, optimal BRT models were selected 
by examining all possible combinations of values for bag 
fraction (0.5 and 0.75), learning rate (0.001, 0.005, 0.01, 
and 0.05), and tree complexity (1 to 5). BRT procedures 
were conducted following the protocol described by Elith 
et al. (2008). All analyses were conducted in the R soft-
ware version 3.0.3 (R Core Team 2011).

Results

Fish assemblage structure and conservation aspects

We recorded a total of 14,524 individuals of 75 spe-
cies, 49 genera, and 31 families at Alcatrazes Island. 
The ten most abundant fish species accounted for 
88.9% of total fish abundance and for 69.5% of bio-
mass (Table 1). The most common species, Haemu-
lon aurolineatum, was found in 88.7% of censuses, 
representing 60.9% of the total abundance and 17.8% 
of the sampled biomass (Table  1). Haemulidae was 
the family with the largest abundance, followed by 
Pomacentridae, Holocentridae, Kyphosidae, Labri-
dae, and the others (Fig.  2A). The most speciose 
families were Labridae with 12 species, Pomacentri-
dae with seven species, followed by Carangidae and 
Haemulidae with six species each. The average rich-
ness per sampling was 8.3 ± 3.6 (± s.d.) with a maxi-
mum of 19 species. The average abundance of speci-
mens per sampling was 65.7 ± 57.7, ranging from 0 
to 377 fishes. The average biomass per census was 
112.5 ± 125.5 g/m2, ranging from 0 to 804 g/m2.

Regarding trophic groups, most fish sampled were 
mobile invertebrate feeders, accounting for 74.3% of 
all individuals counted and for 46.5% of total bio-
mass (Fig. 2B), followed by omnivores (11.3% of bio-
mass), herbivores (10.5%), planktivores (1.4%), ses-
sile invertebrate feeders (1.4%), and macrocarnivores 
(1.1%). Mobile invertebrate feeders were the most 
speciose group, with 26 species, followed by macro-
carnivores (n = 18; Fig. 2B).

Seven fish species recorded in Alcatrazes Island are 
listed in the Brazilian Red List of Threatened Species 
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as Vulnerable. Three threatened species were macro-
carnivores of the Epinephelidae family (i.e., Epinephe-
lus marginatus, Mycteroperca bonaci, and Epinephe-
lus morio), where Epinephelus marginatus was the 
most abundant of the three species. Three species were 
herbivores of the Labridae family (Sparisoma axil-
lare, Sparisoma frondosum, and Scarus zelindae). One 
species was a mobile invertebrate feeder, Elacatinus 
figaro. Threatened species represented 1.64% of total 
fish abundance and 8.26% of fish biomass.

Influence of environmental variables on the spatial 
distribution of reef fish

The most parsimonious MRT model, presenting greater 
explanatory power, lower error, and low number of 
nodes, was selected, resulting in five distinct assem-
blages (Supplementary Fig.  1; Fig.  3A,B). The MRT 
model selected explained 18.9% of data variability, with 
a cross-validated relative error (CVRE) of 0.88.

Three explanatory variables (depth, coral cover, 
and turf) were identified as the most important factors 
influencing the spatial distribution of reef fish assem-
blages. The nMDS ordination shows a clear overlap 
among three reef fish assemblages (Fig. 3C).

Assemblage A represented 79 censuses (Fig.  3B; 
Table  2), being dominated by the mobile inverte-
brate feeder Haemulon aurolineatum (33.2 ± 34.2 ind. 
census−1), but the discriminating species was the omni-
vore Diplodus argenteus (2.8 ± 3.3 ind. census−1). In 
this assemblage, areas of intermediate depth (6.45  m 

and 10.75  m) were grouped into five sites with coral 
coverage of less than 4.16% (Fig. 3A, B).

Assemblage B (8 censuses) was represented by the 
mobile invertebrate feeder Coryphopterus glaucofrae-
num (7 ± 4 ind. census−1), but the discriminating spe-
cies was the herbivore Stegastes fuscus (2.25 ± 1.83 
ind. census−1) which was related to greater coral 
cover (≥ 4.16%) at depths greater than 10.75  m and 
grouped into samples from two sites.

Assemblage C (27 censuses) was most repre-
sented by Haemulon aurolineatum (63.2 ± 56.8 ind. 
census−1). This assemblage was driven by a higher 
coral cover (≥ 4.16%) and intermediate depths (≥ 6.45 
to < 10.75  m). Here, samples from three sites were 
grouped (Fig. 3A).

The two remaining assemblages, D and E, featured 
the omnivore Abudefduf saxatilis and the herbivore 
Kyphosus spp. as discriminator species, the first spe-
cies contributing with greater abundance and the sec-
ond with greater biomass.

Assemblage D (six censuses) was most represented 
by the omnivore Abudefduf saxatilis (27.8 ± 10.5 
ind. census−1), at depths shallower than 6.45 m, and 
higher turf cover (≥ 82.84%). Here, samples were 
found only in one site, the most windward location, 
called “Paredão” (Fig. 3A, B).

Assemblage E (98 censuses) was dominated by Hae-
mulon aurolineatum (50.3 ± 58.8 ind. census−1), fol-
lowed by Abudefduf saxatilis (15.3 ± 12.8 ind. census−1). 
It was characteristic for shallower reefs (< 6.45 m) and 
turf cover lower than 82.84%. Here, samples from shal-
lower reefs of seven sites were grouped.

Table 1   Ten most abundant reef fishes from Alcatrazes Island, 
Brazil. Trophic groups: herbivores (HERB), macrocarnivores 
(MCAR), mobile invertebrate feeders (MINV), sessile inver-

tebrate feeders (SINV), omnivores (OMNI), and planktivores 
(PLANK). The full table with all species sampled is provided 
in Table S1

Family Species Trophic category Average density 
(fish/m2)

Relative 
frequency (%)

Relative 
abundance (%)

Relative 
Biomass (%)

Haemulidae Haemulon aurolineatum MINV 1.50 88.7 60.9 17.8
Pomacentridae Abudefduf saxatilis OMNI 0.54 40.3 8.5 7.9
Pomacentridae Stegastes fuscus HERB 0.28 51.6 4.5 1.9
Holocentridae Holocentrus adscensionis MINV 0.07 65.6 3.4 7.2
Kyphosidae Kyphosus spp. HERB 0.11 38.9 3.2 15.2
Haemulidae Anisotremus virginicus MINV 0.07 59.7 2.9 11.7
Sparidae Diplodus argenteus OMNI 0.09 40.3 1.6 1.6
Acanthuridae Acanthurus chirurgus HERB 0.11 23.1 1.4 4.1
Haemulidae Haemulon atlanticus MINV 0.66 9.5 1.3 0.4
Ephippidae Chaetodipterus faber MINV 0.09 16.3 1.2 1.7
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Fig. 2   Abundance by fam-
ily (A) and trophic group 
(B). Numbers associated 
with each bar indicate 
total species richness 
within each fish family 
or trophic group. Trophic 
groups: mobile invertebrate 
feeders (MINV), omni-
vores (OMNI), herbivores 
(HERB), planktivores 
(PLANK), sessile inverte-
brate feeders (SINV), and 
macrocarnivores (MCAR)
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Fig. 3   A Sampled sites (numbers) around Alcatrazes Island 
and fish assemblages (colored circles) revealed by the mul-
tivariate regression tree (MRT). B MRT showing reef fish 
assemblages on Alcatrazes Island according to environmental 
variables: depth, hard coral cover, and turf. The variables are 
divided by the nodes (black circles), and the discriminating 
fish species responsible for the node and their relative contri-
bution from the division to the total explained variance of the 

model are given at the bottom. Discriminant species: ABUSAX, 
Abudefduf saxatilis; KYPSP, Kyphosus spp.; DIPARG​, Dip-
lodus argenteus; HAEAUR​, Haemulon aurolineatum; and 
STEFUS, Stegastes fuscus. “N” is the number of correspond-
ing censuses for each assemblage distinguished by the MRT 
(colored circles labeled A, B, C, D, and E). C Principal com-
ponents analysis (PCA) of five assemblages revealed by the 
MRT, illustrated through different colors

Table 2   Description 
(richness and biomass 
density) of each 
assemblage revealed by 
the multiple regression 
tree model, in terms of 
number of censuses in 
each assemblage (N), as 
well as minimum (Min), 
mean, standard deviation 
(Std Dev), median, and 
maximum (Max) values

Assemblages A B C D E

N 79 8 27 6 98

Richness Min 1 1 5 3 2
Mean 6.94 3.88 9.15 7.67 9.91
Std Dev 2.90 2.75 3.02 2.66 3.48
Median 7 3 8 9 10
Max 14 9 15 10 19

Biomass (g/m2) Min 0.00 0.01 0.42 1.25 0.27
Mean 2.49 0.35 2.14 2.83 3.52
Std Dev 2.67 0.37 1.16 2.33 2.51
Median 1.60 0.23 1.94 1.53 2.91
Max 16.00 1.02 4.75 6.84 12.26
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Concerning assemblages’ richness, the assem-
blages C and E presented the higher values, but 
were not significantly different from assemblage D 
(Fig.  4A, Table  2). The lowest richness values were 
registered in assemblages A and B (Fig. 4A, Table 2), 
but not significantly different from D. In terms of bio-
mass (g/m2), assemblage B presented significantly 
lower values (Fig.  4B, Table  2). Assemblages A, C, 
and D were not significantly different and assemblage 
E presented the highest biomass values, although not 
differing from assemblage D (Fig. 4B, Table 2).

The composition of trophic groups varied among 
assemblages, indicating a higher density of mobile 
invertebrate feeders in the deeper assemblages A, B, 
and C. The assemblages D and E, located in shallower 
areas, had a higher omnivore density, particularly D, 
which is exclusive to the reef area more exposed to 
wave action (Fig. 5). Despite showing similar density, 

the biomass of sessile invertebrate feeders and mac-
rocarnivores was higher in deeper assemblages, while 
shallower assemblages displayed higher biomass of 
herbivores and omnivores (Fig. 5).

Regarding mobility, assemblages were dominated 
by roving species. Only assemblage B featured a higher 
density of sedentary or territorial species (78%), com-
posed mainly by Coryphopterus glaucofraenum and 
Stegastes fuscus, but most of the biomass was of roving 
species (85%; Fig. 5; Supplementary Table 1).

Within the assemblages, according to the Brazilian 
Red List of Threatened Species, assemblage B com-
prised a higher density of Vulnerable species, repre-
sented mainly by Elacatinus figaro and Epinephelus 
marginatus. Assemblage E featured greater biomass 
of the Vulnerable species Mycteroperca bonaci 
and Sparisoma frondosum. Regarding biomass, the 
assemblages B and E comprised a higher amount of 
Vulnerable and Near Threatened species, representing 
11% and 15% of biomass, respectively.

The BRT models corroborated patterns observed 
in the MRT and add more insights on the main envi-
ronmental drivers shaping the spatial distribution 
of the most abundant species of reef fishes (Fig. 6). 
Depth was the most important predictor for Abu-
defduf saxatilis and Kyphosus spp., which were 
most abundant at depths < 6.45  m. Stegastes fuscus 
was more abundant at low turf cover and at depths 
between ≥ 6.45 and < 10.75 m. Higher abundances of 
Haemulon aurolineatum were mostly correlated with 
high coral cover and low turf, with the opposite being 
observed for Diplodus argenteus (Fig. 6).

Discussion

Our results revealed that the combination of depth, 
turf, and coral cover is an important predictor of 
fish assemblages at a micro-scale in the subtropi-
cal reefs of Alcatrazes Island, in the Southwestern 
Atlantic Ocean. The analysis revealed five distinctive 
fish assemblages with different habitat preferences 
around the island.

Fish assemblages’ structure in a regional context

The reef fish fauna recorded in Alcatrazes Island, 
comprising 75 species, represents approximately 
10% of the total reef fish fauna found in the 

Fig. 4   A Reef fish richness (number of species) by census. 
B Total biomass (g/m2) of the sampled censuses in each of 
the five assemblages revealed by the MRT model. The violin 
shape represents the distribution of data, the boxplot within the 
violins represents first and third quartiles of the data, vertical 
lines are the 95% inferior and superior limits, and the dots are 
the outliers. Letters above assemblages represent differences 
between groups detected by a Dunn test (P < 0.05)
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Brazilian province (733 species) and 18% of resi-
dent reef fishes (73 out of 405 species) according 
to Pinheiro et  al. (2018). This region encompasses 
the east-southeast subprovince, characterized by a 
transition from biogenic reefs to rocky reefs (Floeter 
et al. 2001; Pinheiro et al. 2018). It serves as an area 
of convergence for species from both environments 
(Floeter et  al. 2001; Pinheiro et  al. 2018). Indeed, 
the species list compiled in this study includes rep-
resentatives from tropical waters, such as haemulids 
and labrids, and temperate waters, i.e., serranids and 
scarids (Supplementary Table 1, Floeter et al. 2001; 
Pinheiro et al. 2018).

The overall reef fish richness and trophic group 
composition in Alcatrazes Island resembled those 
of reefs in nearby coastal islands, as indicated by 

studies conducted by Souza et al. (2018) and Rolim 
et  al. (2019), but were higher than those observed 
in sites closer to shore (Gibran and Moura 2012). 
This discrepancy underscores the importance of 
geographical factors, such as distance from the 
coast, in shaping reef fish assemblages in the region 
(Teixeira-Neves et al. 2015; Silva et al. 2021). Fur-
thermore, coastal sites experience greater pressure 
from both legal and illegal human activities, includ-
ing fishing (Imoto et  al. 2016) and pollution (von 
Glasow et al. 2013) especially near megacities, due 
to their accessibility, highlighting the influence of 
sociocultural aspects on reef fish dynamics (Mora 
et al. 2011). The interplay between geographical and 
social characteristics likely contributes to this cross-
shelf gradient in reef fish richness.

Fig. 5   Relative percentage (%) of density (left column) and 
biomass (right column) of reef fishes in the five assemblages 
revealed by the MRT—letters A, B, C, D, and E at the bot-
tom of the figure. The y-axis of each subplot ranges from 0 to 
100% in terms of relative percentage. Trophic groups: MCAR, 
macrocarnivores; MINV, mobile invertebrate feeder; HERB, 

herbivore; OMNI, omnivores; PLANK, planktivore; and SINV, 
sessile invertebrate feeder. Mobility HMO, highly mobile or 
migratory; ROV, roving; and SED, sedentary or territorial. 
Conservation status: LC, Least Concern; NT, Near Threatened; 
and VU, Vulnerable
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Predictors of spatial patterns in rocky reef fish 
assemblages

In the present study, depth was an important predic-
tor for total biomass, in which the lowest values were 
registered in the deepest assemblage (> 10.75 m), as 

well as for some species, such as Abudefduf saxatilis 
and Kyphosus spp., whose abundances decreased with 
depth. Depth has been demonstrated as an important 
environmental variable affecting the structure of reef 
fish assemblages at a local level (Francini-Filho and 
Moura 2008; Pereira-Filho et  al. 2011; Gibran and 

Fig. 6   Partial dependence plots revealed by the boosted regression trees using the three main predictors (depth, hard coral cover, and 
turf cover) and abundance of reef fish species characteristic for the assemblage revealed by the MRT
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Moura 2012; Pereira et  al. 2018; Silva et  al. 2021). 
Depth may influence reef fish assemblages by altering 
physical variables (e.g., wave exposure, temperature, 
luminosity, and salinity) and by modifying benthic 
assemblages’ composition and structural complexity 
(García-Charton et al. 2004; Luiz et al. 2015; Ferrari 
et  al. 2018). At Alcatrazes Island, deeper reefs usu-
ally present lower complexity and lower temperatures 
(Gibran and Moura 2012), which may limit the abun-
dance of species with a preference for more complex 
shallow warm waters.

Intermediate depths seem to favor the territorial-
ist species Stegastes fuscus, probably by providing 
light and exposure in ideal conditions for their food to 
grow, which is mainly composed of red filamentous 
algae (Ferreira et  al. 1998). Turf cover was also an 
important predictor for the species, with higher abun-
dances associated with less turf. This is not expected, 
since turfs are composed of multiple species of algae, 
usually including filamentous algae (Ferreira et  al. 
1998). As turf in the present study was not analyzed 
carefully, the composition of the algae species may 
change across habitats and depths along the reef. 
This topic needs further investigation concerning the 
different compositions of the turf in the Alcatrazes 
Island to properly investigate the relationship with 
Stegastes fuscus abundance.

Wave exposure is known to influence reef fish 
vertical distribution. More exposed reefs usually 
harbor lower richness and abundance of species 
(Luiz et  al. 2015). In Alcatrazes Island, only one 
reef sampled was on the windward side exposed to a 
higher wave power, and the assemblage D occurred 
exclusively at this site, being predicted by shal-
low depths and higher turf cover. Despite the more 
extreme wave conditions, this assemblage did not 
show significant differences in species richness and 
biomass compared to leeward sites, yet it consti-
tuted a distinct assemblage specialized for such an 
environment. Assemblage D was characterized by 
a higher density of the omnivore species Abudefduf 
saxatilis, followed by Diplodus argenteus and Ani-
sotremus virginicus. Such species have a diversified 
diet and do not present a well-established distribu-
tion pattern in the rocky shore habitats (Luiz et al. 
2008; Anderson et al. 2015). With increased levels 
of exposure, the composition of benthic assem-
blages is also influenced, leading to the selection 
of species more resistant to challenging conditions 

(Matheus et al. 2019). Consequently, it is expected 
that higher abundances of fish species with less spe-
cialized resource demands will be recorded in such 
environments.

Regardless of the combination of predicted envi-
ronmental variables, Haemulon aurolineatum was the 
most abundant species associated with higher coral 
cover (≥ 4.16%). In tropical coral reefs, the species 
is associated with middle-depth sites and intermedi-
ate to higher levels of coral cover (Francini-Filho and 
Moura 2008). However, at Alcatrazes Island, depth 
appears to not be a predictor of this species’ occur-
rence, which was more related to benthic cover. Hae-
mulon aurolineatum is dominant in subtropical rocky 
shores of the Western Atlantic, inhabiting reef slopes, 
reef-sand interfaces, and sandy bottoms, across a range 
of depths, and usually corresponding to more than 50% 
of fish species abundance (Luiz et al. 2008; Daros et al. 
2012; Anderson et al. 2020). Juveniles of this species 
form large schools with more than 100 individuals and 
are associated with the reef at all life stages (Quimbayo 
et al. 2021). The preference for areas with high coral 
cover is likely related to foraging activities, with juve-
niles (< 10 cm) exploring food resources suspended in 
the water column above the reef, mostly copepods and 
amphipods, while adults (> 15  cm) primarily forage 
in the sand around the reef, usually feeding on poly-
chaetes and crabs (Pereira and Ferreira 2013; Pereira 
et al. 2015). This close association with reef environ-
ments elucidates the positive effect of coral cover on 
the abundance of Haemulon aurolineatum at Alc-
atrazes Island, without a corresponding depth effect. 
The absence of a depth effect suggests that the species’ 
foraging behavior is predominantly influenced by the 
availability of resources within reef habitats.

Turf algae, representing a multitude of short turf-
forming species of macroalgae belonging to the 
orders Corallinales, Ceramiales, and other green and 
reef filamentous algae, is the dominant group of ben-
thic organisms in most subtropical reefs (Aued et al. 
2018). These communities play key roles in the ecol-
ogy and trophodynamics of reef systems, occupying 
substantial areas of the reef from shallow habitats 
to the interface with soft bottoms in deeper reefs. 
At Alcatrazes Island, the distribution of D. argen-
teus was related to turf cover, a pattern observed in 
other subtropical rocky shores of the Brazilian prov-
ince (Teixeira-Neves et al. 2015). Turf is usually not 
related to increased structural reef complexity, but it 
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does support a diverse and abundant associated mac-
rofauna that lives in the turf matrix and detritus, being 
an important resource for invertivore and herbivore 
species (Ferreira et al. 2004; Liuzzi and Gappa 2008).

The MRT model accounted for 18.9% of the vari-
ability in the data, and supplementary analytical 
approaches (PCA and BRT) supported the differen-
tiation of reef fish assemblages and the significance 
of environmental variables in predicting reef fish 
fauna composition. We propose that variables beyond 
those we investigated may serve as predictors of reef 
fish assemblages on rocky shores, such as biotic fac-
tors like primary productivity in the water column. 
The abundance of plankton can significantly impact 
the distribution and abundance of reef fish species. 
According to the Resource Availability Theory, fluc-
tuations in resource availability can influence the 
intensity of resource competition, potentially leading 
to evolutionary changes in life-history traits (Endara 
and Coley, 2011). Plankton constitute a crucial food 
source during the juvenile stages of certain reef fish 
species, such as Haemulon spp. and Kyphosus spp., 
which undergo ontogenetic shifts in their diet. While 
younger individuals predominantly consume plank-
tonic items in the water column, adult Haemulon spp. 
favor invertebrates associated with reefs, and Kypho-
sus spp. specialize as herbivores (Silvano and Güth 
2006; Pereira et al. 2015).

In addition, assemblages may vary temporally, influ-
enced by seasonal wave exposure and water masses 
waters that cause a seasonal thermocline in the region. 
Further investigation is encouraged to verify if the spa-
tial variation changes temporally (i.e., spatiotemporal 
patterns). Temporal changes in fish abundance can be 
relevant, for instance, after recruitment pulses (Lewis 
1997), or under the influence of seasonal upwelling 
(Cordeiro et  al. 2016), or communities may even 
remain spatially consistent over time (Anderson and 
Millar 2004; Sánchez-Caballero et al. 2019).

Anthropogenic drivers have been increasingly 
described as predictors of patterns in biodiversity. 
For instance, fishing has changed fish assemblages 
in subtropical Brazilian reefs by reducing the density 
of macrocarnivores and herbivores (Anderson et  al. 
2014; Bender et  al. 2014). Sites with increased pro-
tection levels and distant from the coast or in remote 
areas contain higher species richness and biomass 
(Quimbayo et  al. 2019; Fonseca et  al. 2021). Alc-
atrazes Island was used by the Brazilian Navy for 

over two decades for military training, which has 
possibly decreased the occurrence of fishing activi-
ties in the region, but with insufficient enforcement. 
Since 2015, the MPAs of Alcatrazes Archipelago 
have increased enforcement levels compared to most 
Brazilian MPAs. Outcomes of the protection were a 
high reef fish abundance compared to other coastal 
sites (Morais et  al. 2017; Motta et  al. 2021) and an 
increase in body size and abundance of fisheries 
target species of groupers and jacks compared to 
nearby fished areas (Rolim et  al. 2019; Motta et  al. 
2021). The enhancement in management effective-
ness (Giglio et  al. 2019) and enforcement in marine 
reserves of the Alcatrazes Archipelago are expected 
to increase the conservation effects for reef communi-
ties. Since 2018, part of the Alcatrazes Archipelago is 
open for a guided visitation through diving and, more 
recently, boating through a strict code of conduct 
(Marconi et al. 2020; Giglio et al. 2022). Systematic 
monitoring was implemented to evaluate the potential 
effects of human presence on rocky reef biota. Such 
data has been used in the adaptive management of 
public use in Alcatrazes Wildlife Refuge (Giglio et al. 
2022). The continuation of the monitoring is essential 
to inform adaptive management on possible shifts in 
reef fish assemblages from local and regional anthro-
pogenic activities. In addition, effective management 
of partially protected MPAs surrounding the Alc-
atrazes Archipelago is important to ensure its effec-
tiveness since fish biomass inside marine reserves 
declines with increasing human impacts outside of 
reserves (Cinner et al. 2018).

At the same site, two or more assemblages were 
structured by depth and environmental characteris-
tics. Assemblages in shallow reefs were more homog-
enous, composed of assemblage D and E, while at 
depths greater than 6.45  m, assemblages A and C 
were the most common. Interestingly, on reefs located 
in the no-entry area inside the Tupinambás Ecologi-
cal Station (“Saco do Oratório” and “Paredão”) and 
border sites (“Geladeira” and “Tartaruga”), reef fish 
assemblages were structured differently. These sites 
harbor the highest coral cover at Alcatrazes Island 
and a higher density and biomass of threatened and 
sedentary species. Such findings highlight the impor-
tance and suitability of the spatial zonation of use 
in Alcatrazes Island MPAs because the assemblages 
with distinct and important attributes are in the most 
protected area and at its border.
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Conclusion

Depth, coral cover, and turf cover were important 
predictors of the spatial distribution of resident fish 
assemblages in subtropical rocky reefs of the Alc-
atrazes Island. Our results showed that two or more 
distinct fish assemblages can be identified in the same 
site in rocky reefs, varying according to local attrib-
utes. The outcomes of our study provide baseline data 
that can be useful for conservation use through spa-
tial management approaches, considering local reef 
fish assemblage variation at local scales shaped by an 
assembly of processes, which is particularly important 
to improve the effectiveness of management strategies.
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