Intestinal and Extra-Intestinal Pathogenic Escherichia coli in **Rainwater Tanks**

Ahmed W¹, Hodgers L¹, Masters N², Sidhu JPS¹, and Toze S¹

¹ CSIRO Land and Water, Ecosciences Precinct, 41 Boggo Road, Brisbane 4102; ² Faculty of Science, Health and Education, University of the Sunshine Coast, Maroochydore, DC, Queensland 4558

Introduction

E. coli has been used as an indicator of faecal contamination in rainwater tanks.

E. coli can be pathogenic and responsible for both intestinal and extraintestinal infections.

Results

□ Among the 20 VGs tested, 10 (50%) genes were detected in 17 (77%) rainwater tanks.

□ *eaeA* belonging to EPEC and STEC and ST1 belonging to ETEC were detected in 36% and 23% tanks. VGs belonging to ExPEC were detected in 68% of the tanks.

Warm-blooded animals may contain high numbers of *E. coli* carrying virulence genes (VGs) which allow *E. coli* to cause infections.

Aim

□ The presence of 20 VGs associated with intestinal (InPEC) and extra-intestinal (ExPEC) pathogenic *E. coli* in rainwater tanks in Southeast Queensland (SEQ), Australia was investigated.

Materials and Methods

Up to 10 *E. coli* isolates were selected from each of 22 rainwater tanks (total of 200 isolates).

 \Box 40 faecal samples were collected from possums (*n*=20) and various species of birds (*n*=20).

Table 1: List of *E. coli* Virulence genes (VGs) tested in this study

Pathotypes	Virulence genes								
	Adhesins	Toxins ^a	Invasins	Sidephores	Capsule synthesis	Additional virulence genes			

100

Figure 2: Percentage of rainwater tanks positive for InPEC and ExPEC VGs

STEC	eaeA*	stx ₁				
		stx ₂				
		hlyĀ*				
ETEC		LT1				
		ST1				
EPEC	eaeA*	cdtB*				
		hlyA*				
ExPEC	bmaE	cdtB*	ibeA	iutA	<i>kpsMT</i> III	PAI
	<i>papG</i> alleleII	cvaC			<i>kpsMT</i> K1	traT
	<i>papG</i> allele III					
	рарАН					
	papEF					
	focG					

*Indicates genes shared by more than one *E. coli* pathotype. ^a Animal faecal samples were tested for these genes.

 \Box stx₂ and cdtB toxin genes were detected in 5% and 10% possum faecal samples, respectively.

□15%, 5%, 5% and 15% bird faecal samples were positive for *stx₂, stx₁,* ST1 and *cdtB* toxin genes.

Conclusions

□ The significance of these strains in terms of health implications needs to be assessed by comparing strains from rainwater tanks and feces of the householders drinking rainwater.

□ Better characterisation of these strains is required by serotyping, genotyping or testing for multiple drug resistance from rainwater and stools from the householders.

Figure 1: Rainwater tanks sampled in this study

National Research **FLAGSHIPS** Water for a Healthy Country CSIRO

This research was undertaken and funded as part of the urban Water Security Research Alliance, a scientific collaboration in Southeast Queensland Government, CSIRO, The university of Queensland and Griffith University.

Further information

Contact: Dr. Warish Ahmed Phone: +61 7 3833 5582 E-mail: Warish.Ahmed@csiro.au

www.csiro.au