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This article presents a new approach to derive fine-scale socioeconomic informa-
tion of urban areas using very high resolution satellite data. The rationale behind
the method is to use high resolution satellite data, capable of resolving urban mor-
phology details, to derive a classification of the image. Thus, it is assumed that there
is a relationship between the socioeconomic profile and the urban morphology of
an area in terms of availability of green areas, sport facilities, private swimming
pools or pavement conditions. The method is tested using a case study of Lima,
Peru. Using a sample of ground data, a neural network classifier was applied to a
pre-classified image in which entropy had been used to mask extensive, non-built
up areas that would otherwise have inserted spurious information into the classifier.
The result shows a high correlation (0.70 R2) when compared with validation data.
The good performances also show that a physiographic satellite view of the city
reflects the socioeconomic layout of their inhabitants, thus making remote sensing
a complementary tool for social research and urban planning. While the param-
eterization of the problem may differ from one area to another, it is shown that
an a priori choice of a few parameters may help to automatically characterize large
areas in social terms, thus allowing social inequality and its evolution to be mapped
in those areas with limited availability of data. In order to make the method widely
applicable, the possibilities and limitations of applying the procedure to other large
cities are discussed.

1. Introduction

Remote sensing can be used to provide up-to-date spatial information of a wide vari-
ety of urban phenomena at multiple resolutions (Jensen and Cowen 1999, Herold
et al. 2007, Wang and Quattrochi 2007). To that end, both active and passive sen-
sors have been used: satellite data can be used to detect settlements using synthetic
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6438 F. J. Tapiador et al.

aperture radar (SAR, Henderson and Xia 1997) while high-resolution, passive sen-
sors such as Landsat Thematic Mapper (TM)/Enhanced Thematic Mapper (ETM)
or Satellite pour l’Observation de la Terre (SPOT) have also been widely used to map
socioeconomic parameters. Strategies for characterizing urban/non urban areas and
urban characteristics include the use of nocturnal city lights (Doll et al. 2000), vegeta-
tion indexes (Lo 2002, Jensen et al. 2004), and Net Primary Production (NPP, Brown
2006). The advantages of satellite data for urban studies are obvious: images offer wide
coverage, providing objective, cost-effective physical measurements over an extended
period of time.

Nonetheless, the accurate classification of urban land cover and land use categories
from very high resolution (higher than 1 m) imagery data remains a challenge (Fox
et al. 2003). One of the reasons is the difficulty in defining suitable training sets for
a supervised classification, since various land cover types co-exist and alternate fre-
quently, for example, roads, sidewalks, houses, trees, bare soil and swimming pools,
and their elements themselves present heterogeneity, such as a road with cars, result-
ing in distinct spectral variation within areas of homogeneous land cover classes
(Taubenbock et al. 2006). In spite of recent advances (Wu 2004, Fauvel et al. 2006)
additional difficulties arise when considering the dissimilarity of functions for infer-
ring urban land use, such as residential or industrial areas, parks or agricultural fields.
The distinction between land cover and land use has often been overlooked in urban
studies (Mesev 2003): the correspondence between land use and land cover is not a
one-to-one relationship as for example the land use classes of gardens, houses, and
canals may refer to land cover classes of vegetation, buildings, and water, respectively.
This makes assigning classified images to land uses a non trivial task (Foody 2002,
Huang et al. 2002).

The task of deriving socioeconomic information from satellite imagery is also paved
with obvious difficulties, as any relationship between radiometric values and social
characteristics has to rely on an indirect procedure. Nevertheless, successful attempts
to extract socioeconomic information from satellites or to link imagery with census
data have been described. Thus, Li and Weng (2007) measured quality of life using
Landsat ETM and the US census 2000 as did Lo and Faber (1997), the former using
geophysical parameters such as the Normalized Difference Vegetation Index (NDVI)
and surface temperature. Another approach was followed by Jensen et al. (2004) by
using urban leaf area and population density to infer quality of life using a sim-
ple least-square regression, which illustrates the existence of an indirect relationship
between social well-being and satellite data. The relevance of satellite data for land-
scape and urban planning studies is clear: the integration of satellite imagery with
population census data has been used for studying the present human environment
(Martinuzzi et al. 2007), and the usefulness of satellite technology for modelling the
future trends in city growth has been explored by Weber (2003). The potential links
between socioeconomic classes and land cover have been analysed by Avelar et al.
(2009).

This article presents an attempt to derive socioeconomic information from satel-
lite data using a new methodology. The aim is to derive a fine-scale socioeconomic
classification of urban areas with a minimum set of a priori information to make
the procedure as general as possible. This can help to apply the method to different
areas, especially in large cities of developing countries, where contrasting socioeco-
nomic classes co-exist and can be correlated to different urban conditions and spatial
patterns.
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Socioeconomic information from satellite imagery 6439

2. Data

A QuickBird satellite image was used as the empirical basis for a case study in Lima,
Peru. The image was taken on 28 February 2005. The radiometric resolution of
QuickBird data is 11 bits thus allowing 211 digital counts for each pixel. The spatial
resolution of this satellite is 0.6 m for a panchromatic image and 2.4 m for multispec-
tral bands. The high spatial resolution of the panchromatic image makes it possible
to distinguish small elements such as small swimming pools or tennis courts that
multispectral bands cannot fully resolve. QuickBird multispectral images have three
visible bands (b1, blue: 0.45–0.52 µm, b2, green: 0.52–0.60 µm, b3, red: 0.63–0.69
µm) and one near-infrared band (b4 at 0.76–0.90 µm). Therefore, a b3/b2/b1 RGB
(red/green/blue) combination gives a real colour view of the ground. Pan-sharpened
products are available only from imagery acquired after 9 April 2002.

Figure 1 depicts an overview of the study area with some zooms identifying
urban areas with different socioeconomic characteristics. The area corresponds to the
Santiago de Surco sector of Lima city in Peru. Ground data were uniformly sampled
around the city using Global Positioning System (GPS) to geolocate the estimates. The
information collected was representative for an approximate radius of 50 m around the
assigned coordinate while the GPS precision was about 15 m. In the end, 500 sample
points were taken, 100 for each socioeconomic class. Figure 2 shows representative
ground pictures of some of those classes.

While general social classifications in urban systems exist (e.g. Seto and Kaufman
2003, Pozzi and Small 2005), the official classes used by the city planners were used
here. Thus, a nominal scale from A to E is used to categorize the inhabitants, with the
A social class representing the most accommodated people and E for the poorest social
class. The five A, B, C, D, E socioeconomic classes are assigned based upon the obser-
vations of existing buildings, including dwelling size, number of floors, build density,
presence or absence of green areas, street pavement and land use. These characteristics
are the physiographic characteristics corresponding to the standard statistical census
categories on social classes of Lima, which are described in table 1.

The ground data were collected on 21–27 August 2005, in a 9 × 10 km area in the
south of Lima. The study area was divided into six equal sectors that were surveyed
by two female and two male geography students working in pairs. Sample points were
selected in homogeneous social areas, independent of the land use, and in critical areas
such as slopes, unpaved streets, and non-built up areas. However, homogeneity was
sometimes difficult to obtain because of the variety of constructions, building materi-
als, surfaces, etc. The sample points were reached by car or walking, depending on the
accessibility and safety to move freely around specific areas of the district.

3. Methods

Figure 3 schematically describes the methodology. The procedure is as follows. (1)
First, improve the spatial resolution of the multispectral data by inserting the phys-
iographic information of the panchromatic band through a data-fusion method
(section 3.1). (2) Then, classify the fused image using a Mahalanobis distance algo-
rithm. Within this step, a consistency matrix is used to check that each socioeconomic
class has a unique signature in terms of satellite observables (section 3.2). (3) The next
step is to calculate the entropy of the image (section 3.3). (4) The following step is
to use a sample of the ground points to create a buffer in which the relative percent-
age of the classes of vegetation, swimming pools and bare soil are estimated from the
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Figure 1. Location of the Lima QuickBird scene featuring some samples of typical urban
layouts for socioeconomic classes. All five snapshots have the same relative size (960 ×
960 m).

satellite image (section 3.4). Within this step, the entropy image is used to mask homo-
geneous, non urban areas, thus refining the selection. (5) The relationship between
socioeconomic classes and the satellite observables are then modelled using a neural
network (section 3.5). (6) Finally, the trained net is applied to every pixel of the image
to generate the socioeconomic classification of the satellite image (section 4).

3.1 Data fusion

Several previous tests (not shown) demonstrated the need to improve the spatial res-
olution of the image to reduce errors in the classification algorithms. This can be
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Socioeconomic information from satellite imagery 6441

Figure 2. Ground truth of the five major socioeconomic classes used in this study.

achieved using a data fusion procedure. The rationale of fusing multispectral and
panchromatic QuickBird imagery is to take advantage of the high spatial resolution
of the single panchromatic band and the discrimination capabilities of the multispec-
tral bands, which are of coarser spatial resolution. In other words, the idea is to insert
the fine-scale detail provided by the panchromatic band in the multispectral colourful
combination, so a new synthetic high-resolution colour image can be generated.

Principal Components Spectral Sharpening (Welch and Ahlers 1987) was used to
improve the multispectral image data with the high spatial resolution panchromatic
data. This method performs a principal component (PC) transformation of the mul-
tispectral data, then replaces the first component, which is the component that has
the most variance of image, with the panchromatic image. The panchromatic image
is normalized using the histogram of the first PC and conserving the range of this
component, aiming to conserve radiometry. Then, the result is resampled to the
panchromatic resolution using a cubic convolution algorithm.

While other data fusion methods have been described (Mangolini et al. 1995, Wald
1999), the PC technique has the advantage of simplicity and speed, being imple-
mented on many remote sensing packages such as ENVI (ITT Visual Information
Solutions, Boulder, CO, USA) or ERDAS Imagine (ERDAS, Inc., Norcross, GA,
USA). Examples of PC use are found in El-Askary et al. (2005) and in Karathanassi
et al. (2007), where principal component analysis (PCA) is compared with intensity-
hue-saturation (IHS) and Brovey transforms, the Gram–Schmidt fusion method, local
mean matching, least square fusion; and discrete wavelet fusion methods including
Daubechies, Symlet, Coiflet and biorthogonal spline amongst others. The results in
that article for QuickBird imagery showed that PCA had similar performances to local
mean matching (LMM), Brovey, Brovey-Colour Normalized (CN), Gram–Schmidt
and IHS methods in terms of correlation.

Figure 4 illustrates the visual improvement of the RGB image when the panchro-
matic data are embedded into the multispectral bands. The results for the PCA fusion
are convincing. With the panchromatic image alone (figure 4, left column) it is impos-
sible to distinguish many elements of the image. As an example, it would be hard to
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Socioeconomic information from satellite imagery 6443

Figure 3. Flow diagram of the methodology proposed in this article.

distinguish swimming pools from other squared elements on the image. Also, lawns
can easily be mistaken for bare, flat soil. The multispectral imagery (middle column
images) permits us to differentiate such elements thanks to the colour provided by the
RGB combination of the bands, but the detail is poor. By contrast, the fused image
(figure 4, right column) combines the high-resolution physiographic characteristics of
the panchromatic with the radiometric capabilities of the multispectral, producing an
improved image that is suitable for classification.
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6444 F. J. Tapiador et al.

Figure 4. Fused multispectral+panchromatic imagery using the principal component (PC)
data-fusion technique. Information from the single, high resolution (0.6 m) panchromatic han-
nel (left) is embedded into the multispectral, lower resolution (2.4 m) red-green-blue (RGB)
colour combination (middle) to generate a simulated high resolution (0.6 m) multispectral image
(right).

3.2 Prior classification

3.2.1 Classification step. Most of the techniques relating remote sensing data and
socioeconomic information rely on some sort of prior classification of the satellite
data. Thus, several techniques have been employed or developed to classify urban
images that take into account various class boundaries and within-class variances.
They include segmentation algorithms (Taubenbock et al. 2006), neural networks
(Benediktsson et al. 1990, Zhang and Foody 2001, Tapiador and Casanova 2003),
non-linear regression (Landis and Koch 1977), support vector machines (Cristianini
and Shawe-Taylor 2000), random forests (Breiman 2001), spectral mixture analysis
(first described by Adams and Smith 1986, Lu et al. 2003) and statistical algorithms
such as maximum likelihood (Stefanov et al. 2001).

After several tests, the Mahalanobis distance algorithm (described in Richards
1999) was used. This is a supervised technique requiring a few training samples for
each class, and a qualitative comparison with other methods concluded that it had a
good ability to distinguish classes in the Lima case.

3.2.2 Satellite observables. The aim of this classification stage is to transform
satellite radiances to satellite observables that could be related with socioeconomic
parameters. Those satellite observables include land use categories and spatial struc-
ture variables such as isotropy. Knowledge of the local specificities is needed to select
those observables. Thus, for example, Lima lies in a very dry environment (less than
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Socioeconomic information from satellite imagery 6445

2 mm/month of rainfall in August, the rainiest month) so urban vegetation can only
be associated with irrigation and thus linked to moderate or high-income areas. Private
swimming pools are a luxury that characterizes the upper socioeconomic segment of
the population, and slums do not have paved roads. Satellite observables have also to
be chosen in a way that they reflect key differences between classes. The matrix relating
satellite observables and socioeconomic classes has to pass a consistency check con-
sisting in that the signature of every socioeconomic class has to be different to every
other socioeconomic class. The consistency matrix for the Lima case is illustrated in
figure 3. The consistency check is required to extrapolate the method presented here
to other areas. The procedure is first to choose a sensible set of satellite observables
and then fill out the matrix, deciding whether or not the socioeconomic class relates to
the satellite observable. If so, then every column has to be compared with each other
to confirm that they are all different. If this is not the case, then a different set of
observables is needed.

In some cases the observables would differ from the ones used here. Vegetation,
however, seems to be an element to look at. Emmanuel (1997) showed the usefulness of
satellite-derived vegetation change and demographic trends in cities, also illustrating
the usefulness of this element to trace health relationships. Also, Mennis (2006) and
Jensen et al. (2004) have highlighted vegetation as a relevant element to investigate
varied socioeconomic parameters such as population density or home price structure.
It has to be noted here that the data fusion procedure was crucial to improve the
definition of street vegetation and paved streets.

3.3 Entropy calculation

Entropy analysis was used to help the classification algorithm by masking non-built
up areas and to calculate the anisotropy of the image. The entropy of (S) the image is
defined as:

S ≡ −
∑

x∈B((i,j),r)

f (x) log [f (x)]. (1)

where f(x) is the occurrence (frequency) of the digital level x in a r-radius neighbour-
hood B centred at coordinates (i, j). Therefore, in an urban area entropy is high in
inhomogeneous areas and low in homogeneous areas such as soccer fields, bare soils
or parks.

The entropy image is built by applying equation (1) in a moving average across
the panchromatic image using a 150 m r-radius. This particular distance is chosen
taking into account that the variance in the semivariogram at QuickBird resolution
is stable well before 150 m, so the distance represents a large value above which it is
extremely unlikely to find large spatial variability. A subsample of the entropy image
is depicted in figure 5(b). No quantitative accuracy assessment was conducted on this
mask. In terms of qualitative analysis, dark blues to greens represent areas with low
entropy, whereas orange, red and white areas are of high entropy. Comparison with
the panchromatic image (figure 5(a)) shows that dwelling areas correspond to high
entropy areas.

The idea behind using entropy for masking is to help the classification algorithm by
removing data that do not introduce useful information into the classification algo-
rithm. That is, entropy is used to differentiate features that are only distinguishable on
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0
(a) (b)
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Figure 5. Panchromatic sector of Lima, (a) Peru and (b) its corresponding spatial entropy.

a textural and not on a radiometric basis. As the multispectral image has only four
bands, this pre-processing is crucial to avoid contradictory samples. While hyperspec-
tral sensors would allow a best discrimination of urban morphology (Benediktsson
et al. 2005), the four bands of the QuickBird have a more limited capability of dis-
tinguishing the actual fabrics and a coarse-grain approach is needed. The entropy
layer allows discrimination between individual trees and gardens associated with high
income dwellings and parks or playgrounds using a threshold value of 3.8. The entropy
also allows us to filter out motorways near low income dwellings, which may intro-
duce a distorting effect if they are counted as paved surface. The same applies for
large official buildings, industries or stores. Several tests showed that this screening of
non-housing areas is critical to avoid misclassifications.

3.4 Assignation

The next step was to assign socioeconomic characteristics to the classified image.
Given the uncertainties in the ground data collection due to subjective expert
appraisal, and the high spatial resolution of the imagery, a naïve pixel-by-pixel
approach would not yield the appropriate results, so a strategy has to be devised.
Therefore, buffers of 150 m around each ground sample point were defined. This
procedure is equivalent to defining a 7-dimensional phase space for each buffer, as
the polar diagram (also known as a spiderweb) in figure 6 illustrates for a random
case. The spiderweb shows the nature of the heterogeneity within the buffer zone
around each target pixel, and represents the link between satellite observables and
socioeconomic classes. In practice, this diagram is a large numerical matrix containing
the relative proportions of satellite observables and the entropy within a buffer from
every pixel in the image. Figure 6 is a graphical representation of the logic behind
the buffering procedure. Each socioeconomic class has its own fingerprint in this dia-
gram, but the large number of possible situations and conflicting cases hinder a direct
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Fused image (panchromatic+multispectral) 
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Figure 6. Diagram illustrating a specific pixel-centred buffer and its signature in the polar
diagram (step 5 in figure 3). The polar diagram shows the nature of the heterogeneity within the
buffer zone around each target pixel.

match between observables and census classes. Therefore, it is necessary to use a robust
classification method to resolve mixed cases.

3.5 Neural network classifier

The resulting 7-dimensional buffers and the ground data samples were then used as the
input/output for a neural network. Thus, the relative percentages of each classification
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6448 F. J. Tapiador et al.

class were used as the NN input dataset, and the socioeconomic characterizations of
that area, as given by the census estimate, were used as the output dataset.

To analyse the performances of the neural net, the dataset was split into training
and validation sets. Census class A would be associated with the presence of many
green areas and many water bodies (mainly swimming pools in the study area); class B
is related to the presence of some green areas and a few water bodies; class C has some
green areas, but no water bodies and a limited number of paved roads. Classes D and E
correspond to few green areas, no water bodies and more slums than houses; and with
few green areas, no water bodies and absence of paved roads, respectively. Nonetheless,
this information was not directly used. Rather, the neural network was allowed to
freely relate the classification results with the census classes using a training dataset.
This allows the NN to find nonlinear relationships between satellite observables and
socioeconomic classes.

The neural network used was a simple multilayer perceptron. This particular choice
is motivated by the generalization capabilities of this structure and the possibility of
calculating the Jacobian of the transformation and thus to perform sensitivity analyses
if required. The net consisted of 4 layers, with a 7-6-6-5 arrangement. This structure
permits a good generalization capability and the existence of nonlinear relationships
between inputs. Training time is below one minute, with an R2 correlation above 0.80
for the validation data. The trained net was then applied to every pixel of the image
to generate the classified image. Given that a buffer has to be generated for each pixel,
this step takes about 1 day of computing time in a standard one-processor desktop
computer. The NN outputs for the testing dataset were considered as probabilities of
an input belonging to a class, so raw output from the NN was truncated to yield actual
classes.

4. Results and discussion

4.1 Lima case study

The results are shown in figure 7, which extends beyond the ground sampling area
used in the study to cover the whole QuickBird scene. Figure 7 depicts both the
ground-truth data and the classified image. The overall agreement is noticeable given
the simple assumptions made (see section 3.2) and the potential problems regarding
the influence of shadow, recoding angle, recording date and phenology. This pro-
vides empirical evidence about the existence of relationships between socioeconomic
characteristics and the urban layout.

A quantitative appraisal of the results is shown in figure 8. Here, the results at 500 m
resolution were aggregated, calculating the dominant class for each pixel for both the
ground truth validation data and the classified image. The area corresponds with the
location boundary of the ground data shown in figure 7. The correlation for those
non-masked pixels is high (0.70 R2).

Figure 9 shows the histograms of the classes. Within an overall agreement, the
method works better in defining the extreme classes (very rich and very poor) rather
than the middle classes represented by the C class. Calculations include the pro-
ducer and user accuracies, the commission and omission errors, the overall accuracy,
the kappa quadratic weighting coefficient with error, confidence limits and observed
proportion of the maximum possible kappa; and the Spearman’s rank coefficient
(Spearman 1904). Table 2 shows those statistics. It should be noted that these results
have to be taken with caution as such accuracy, commission and omission estimates
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Figure 7. Socioeconomic classification of the multispectral image, with ground-truth data
superimposed. The extent of the image corresponds with the whole satellite image (figure 1,
top-right), with the area of interest being the sampled area.
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Figure 8. Comparison between the satellite-based socioeconomic classification of figure 5
(bottom) and the ground-truth data (top). The colour scale is the same as in figure 6. Each
box represents the predominant class in a 500 m grid.
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Figure 9. Performances of the described procedure in terms of histogram comparison for each
socioeconomic class.

are only suitable for nominal categories (Fleiss 1981). In the case of socioeconomic
classes it is meaningful to consider not only the absolute hits, but also the relative con-
cordances. Kappa quadratic weighting accounts for the classification skill of ranks,
these being therefore more indicative of the relative merits of the method (Agresti
1996). The comparison yields a 0.70 R2 correlation when compared with the vali-
dation data, a moderate value for quantitative data but high for class comparison
with Spearman’s score and kappa statistic. In terms of rank, the value obtained for
Spearman’s coefficient (0.67) indicates a strong and positive rank correlation, and the
same applies to kappa statistics. In terms of Landis and Koch (1977) scores, the kappa
value of 0.60 ± 0.03 (95% confidence limit from 0.54 to 0.66) lies between a moderate
(0.41–0.60) and substantial agreement (0.61–0.80).

To summarize the statistical results, they reflect that the method presents a good
classification skill, but one that is far from perfect. In fact, it would have been surpris-
ing to obtain nearly perfect scores given the small amount of preprocessing required by
the method in order to be as general as possible. The features of the empirical data also
condition the statistics that could be expected from any classification procedure. First,
mixed classes can be found in neighbouring areas. Figure 7 shows that there is little
spatial clustering in the ground data to help any classification procedure. Associated
with this, another problem is the uncertainties in gathering quality ground data. A
third reason is the inherent difficulties in relating satellite information with socioeco-
nomic ground truth. Urban features have proved to be a reasonable proxy for rent but
exceptions exist and similar layouts may encompass widely different situations. The
method assumes minimum class mobility, but people may have chosen not to move
even if they have ascended in the socioeconomic ladder. Also, it is not uncommon to
see close rich and poor houses separated by a simple fence. These issues hinder any

D
ow

nl
oa

de
d 

by
 [

L
ib

4R
I]

 a
t 2

3:
19

 2
4 

O
ct

ob
er

 2
01

1 



Socioeconomic information from satellite imagery 6451

Table 2. Omission/commission errors, accuracies and statistics for the classification
results.

Census class
Errors of

commission
Errors of
omission

Producer
accuracy User accuracy

A 90.35 63.33 36.66 9.64
B 65.33 64.86 35.13 34.66
C 81.66 92.02 7.97 18.33
D 54.54 60.67 39.32 45.45
E 70.51 62.90 37.09 29.48
Overall accuracy 0.30
Observed kappa 0.60 with standard error of 0.03 and 95%

confidence limit from 0.54 to 0.66
Maximum possible kappa given

observed marginals
0.782

Observed proportion of
maximum possible

77.26%

Spearman’s rank order
correlation

0.67

R2correlation 0.70

high-resolution classification method unless an obvious spatial relationship exists or a
raw classification (poor people/rich people) is sought.

4.2 Applicability to large cities in developing countries

The methodology is applicable to other areas by either using the satellite observ-
ables or by defining a new set of observables and ensuring that the consistency check
holds. Unpaved roads in high-entropy urban areas are almost universally linked with
deprived dwellings, and poor people can seldom afford a private swimming pool in
the backyard. The case of vegetation is more critical as it depends on local climate. In
Lima, irrigation is needed, so this element can be used to segment the population into
people who live in areas where public services keep public gardens and avenue vegeta-
tion alive, and those living in areas where public services are limited. Private gardens in
large cities, on the other hand, are more generally related to the middle-upper classes.

As an illustration of the first steps in applying the methodology, figures 10 and 11
depict the corresponding consistency checks for Cairo and Rio de Janeiro. They corre-
spond with an arid and a tropical environment, respectively. QuickBird samples of the
five socioeconomic classes are also depicted in the figures. In those two cases, the satel-
lite observables are the same as in the Lima case, which illustrates the applicability of
the same rationale to other areas. In the tropical climate of Rio de Janeiro, vegetation
is less conspicuously related to social class, which is reflected in the matrix. Another
difference appears in the anisotropic built areas. Even so, the consistency check holds,
as there are other key elements to differentiate between classes. Applying the method
to other areas may require modifying step 4 to account for local specificities. The
only requirement is that every socioeconomic class has to have a different signature in
term of satellite observables. If this is the case, then it is possible for a classification
algorithm to discriminate the classes. Otherwise, the problem has no solution and a
different set of observables has to be used.
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500 m 

Cairo, Egypt

A B

C D

E

Figure 10. An example of the application of the methodology to the city of Cairo. The satellite
observables are the same as in the Lima case. The matrix is consistent as every column has a
different signature. The small matrix illustrates the pairwise differences between classes in terms
of satellite observables. The images are QuickBird views of the areas corresponding to the five
socioeconomic classes.
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500 m 

Rio de Janeiro, Brazil

A B

C

E

D

Figure 11. An example of the application of the methodology to the Rio de Janeiro. The satel-
lite observables are the same as in the Lima case. The matrix is consistent as every column has a
different signature. The small matrix illustrates the pairwise differences between classes in terms
of satellite observables. The images are QuickBird views of the areas corresponding to the five
socioeconomic classes.
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5. Conclusions

Deriving fine-scale social characteristics from satellite imagery is a difficult task.
Satellite images are radiometric measurements of the Earth, and the link between
those and indicators such as quality of life or income can only be an indirect rela-
tionship. Nonetheless, the usefulness of the task has prompted the development of
several procedures over recent years.

Here a procedure aiming to derive fine-scale social characteristics from high-
resolution QuickBird images has been presented. The procedure can be summarized
as a data-fusion merging between panchromatic and multispectral bands aiming to
improve the spatial resolution of an automatic land-cover classification of the image,
which is then followed by a second supervised classification using a neural network and
ground-truth socioeconomic data. While the use of texture measures in urban feature
delineation is not new (Carleer and Wolff 2004, Puissant et al. 2005), one difference
is the use of the entropy to mask out homogeneous areas that would introduce at
best contradictory samples into classifying algorithms. The method relies on a further
neural network class assignation using ground samples of the desired social classes.

Applications of this method range from a quick preliminary classification of large
areas to multitemporal analyses of urban evolution. From a planning perspective, the
method can be used to identify deficiencies in municipal services, to monitor social
policies and as complementary information to decision-making in urban planning.
Nonetheless, deriving socioeconomic information from satellite imagery that might
be useful for planning is far from being a fully automated procedure. The results
presented here show that a relationship can be found between satellite data and socioe-
conomic ground information. The distinctive characteristics of the study area should
to be taken into account when defining the simple parameterization required to link
physiographic features with socioeconomic classes. In the Lima case, swimming pools,
bare soils and vegetation are three important parameters, which may vary in other
megalopolises, especially regarding the role of vegetation.
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