hosted by
publicationslist.org
    
Francesco Lotti

fl2219@columbia.edu

Journal articles

2006
 
DOI   
PMID 
D J Battle, M Kasim, J Yong, F Lotti, C - K Lau, J Mouaikel, Z Zhang, K Han, L Wan, G Dreyfuss (2006)  The SMN complex: an assembly machine for RNPs.   Cold Spring Harb Symp Quant Biol 71: 313-320  
Abstract: In eukaryotic cells, the biogenesis of spliceosomal small nuclear ribonucleoproteins (snRNPs) and likely other RNPs is mediated by an assemblyosome, the survival of motor neurons (SMN) complex. The SMN complex, composed of SMN and the Gemins (2-7), binds to the Sm proteins and to snRNAs and constructs the heptameric rings, the common cores of Sm proteins, on the Sm site (AU(56)G) of the snRNAs. We have determined the specific sequence and structural features of snRNAs for binding to the SMN complex and Sm core assembly. The minimal SMN complex-binding domain in snRNAs (except U1) is composed of an Sm site and a closely adjacent 3'stem-loop. Remarkably, the specific sequence of the stemloop is not important for SMN complex binding, but it must be located within a short distance of the 3'end of the RNA for an Sm core to assemble. This minimal snRNA-defining "snRNP code" is recognized by the SMN complex, which binds to it directly and with high affinity and assembles the Sm core. The recognition of the snRNAs is provided by Gemin5, a component of the SMN complex that directly binds the snRNP code. Gemin5 is a novel RNA-binding protein that is critical for snRNP biogenesis. Thus, the SMN complex is the identifier, as well as assembler, of the abundant class of snRNAs in cells. The function of the SMN complex, previously unanticipated because RNP biogenesis was believed to occur by self-assembly, confers stringent specificity on otherwise potentially illicit RNA-protein interactions.
Notes:
 
DOI   
PMID 
Daniel J Battle, Chi-Kong Lau, Lili Wan, Hongying Deng, Francesco Lotti, Gideon Dreyfuss (2006)  The Gemin5 protein of the SMN complex identifies snRNAs.   Mol Cell 23: 2. 273-279 Jul  
Abstract: The survival of motor neurons protein (SMN) is part of a large complex that contains six other proteins, Gemins2-7. The SMN complex assembles the heptameric Sm protein core on small nuclear RNAs (snRNAs) and plays a critical role in the biogenesis of snRNPs, the major and essential components of mRNA splicing in eukaryotes. For its function, the SMN complex binds Sm proteins and snRNAs, which it distinguishes from other RNAs by specific features they contain. We show here that Gemin5, a 170 kDa WD-repeat protein, is the snRNA binding protein of the SMN complex. Gemin5 binds directly and specifically to the unique features, including the Sm site, of snRNAs. Reduction of Gemin5 results in reduced capacity of the SMN complex to bind snRNAs and to assemble Sm cores. Gemin5 therefore functions as the factor that allows the SMN complex to distinguish snRNAs from other cellular RNAs for snRNP biogenesis.
Notes:
 
DOI   
PMID 
Andrea Menegon, Dario Bonanomi, Chiara Albertinazzi, Francesco Lotti, Giuliana Ferrari, Hung-Teh Kao, Fabio Benfenati, Pietro Baldelli, Flavia Valtorta (2006)  Protein kinase A-mediated synapsin I phosphorylation is a central modulator of Ca2+-dependent synaptic activity.   J Neurosci 26: 45. 11670-11681 Nov  
Abstract: Protein kinase A (PKA) modulates several steps of synaptic transmission. However, the identification of the mediators of these effects is as yet incomplete. Synapsins are synaptic vesicle (SV)-associated phosphoproteins that represent the major presynaptic targets of PKA. We show that, in hippocampal neurons, cAMP-dependent pathways affect SV exocytosis and that this effect is primarily brought about through synapsin I phosphorylation. Phosphorylation by PKA, by promoting dissociation of synapsin I from SVs, enhances the rate of SV exocytosis on stimulation. This effect becomes relevant when neurons are challenged with sustained stimulation, because it appears to counteract synaptic depression and accelerate recovery from depression by fostering the supply of SVs from the reserve pool to the readily releasable pool. In contrast, synapsin phosphorylation appears to be dispensable for the effects of cAMP on the frequency and amplitude of spontaneous synaptic currents and on the amplitude of evoked synaptic currents. The modulation of depolarization-evoked SV exocytosis by PKA phosphorylation of synapsin I is primarily caused by calmodulin (CaM)-dependent activation of cAMP pathways rather than by direct activation of CaM kinases. These data define a hierarchical crosstalk between cAMP- and CaM-dependent cascades and point to synapsin as a major effector of PKA in the modulation of activity-dependent SV exocytosis.
Notes:
2005
 
DOI   
PMID 
Fabrizia Urbinati, Francesco Lotti, Giulia Facchini, Monica Montanari, Giuliana Ferrari, Fulvio Mavilio, Alexis Grande (2005)  Competitive engraftment of hematopoietic stem cells genetically modified with a truncated erythropoietin receptor.   Hum Gene Ther 16: 5. 594-608 May  
Abstract: Transplantation of genetically modified hematopoietic stem cells (HSCs) has therapeutic potential for a variety of blood genetic disorders. Engraftment of HSCs, however, requires toxic myeloablative treatments, which render this approach questionable for non-life-threatening disorders. A potential alternative is the use of transgenes, which allows positive selection of HSCs in vivo. We used retroviral vectors to express a truncated derivative of the erythropoietin receptor (tEpoR) in murine and human hematopoietic cells. Murine HSCs expressing tEpoR at different levels (1500 to 13,000 receptors/cell) acquire a competitive repopulation capacity in vivo upon transplantation into fully or partially myeloablated co-isogenic mouse recipients. Long-term analysis of transplanted mice showed that expression of tEpoR at paraphysiological levels (approximately 1500 receptors/cell) has no effect on steady-state hematopoiesis and induces no further expansion of transduced cells after the engraftment period. Human cord blood-derived CD34+ stem/progenitor cells transduced with a lentiviral vector expressing tEpoR expand their clonogenic capacity in vitro, and significantly increase their marrow repopulation capacity upon xenotransplantation into sublethally irradiated NOD-SCID mice, with no alteration in their phenotype, survival, and differentiation properties. These data indicate that expression of tEpoR is an effective strategy to promote selective engraftment of genetically modified HSCs upon transplantation in both myeloablative and nonmyeloablative conditions, without the use of toxic drugs for selection.
Notes:
2004
 
DOI   
PMID 
Anna Testa, Francesco Lotti, Linda Cairns, Alexis Grande, Sergio Ottolenghi, Giuliana Ferrari, Antonella Ronchi (2004)  Deletion of a negatively acting sequence in a chimeric GATA-1 enhancer-long terminal repeat greatly increases retrovirally mediated erythroid expression.   J Biol Chem 279: 11. 10523-10531 Mar  
Abstract: The locus control region of the beta-globin gene cluster has been used previously to direct erythroid expression of globin genes from retroviral vectors for the purpose of gene therapy. Short erythroid regulatory elements represent a potentially valuable alternative to the locus control region. Among them, the GATA-1 enhancer HS2 was used to replace the retroviral enhancer within the 3'-long terminal repeat (LTR) of the retroviral vector SFCM, converting it into an erythroid-specific regulatory element. In this work, we have functionally studied an additional GATA-1 enhancer, HS1. HS1 participates in the transcriptional autoregulation of GATA-1 through an essential GATA-binding site that is footprinted in vivo. In this work we identified within HS1 a new in vivo footprinted region, and we showed that this sequence indeed binds a nuclear protein in vitro. Addition of HS1 to HS2 within the LTR of SFCM significantly improves the expression of a reporter gene. The deletion of the newly identified footprinted sequence in the retroviral construct further increases expression up to a level almost equal to that of the wild type retroviral LTR, without loss of erythroid specificity, suggesting that this sequence may act as a negative regulatory element. An improved vector backbone, MDeltaN, allows even better expression from the new GATA cassette. These results suggest that substantial improvement of overall expression can be achieved by the combination of multiple changes in both regulatory elements and vectors.
Notes:
2003
2002
 
PMID 
Francesco Lotti, Emilio Menguzzato, Claudia Rossi, Luigi Naldini, Laurie Ailles, Fulvio Mavilio, Giuliana Ferrari (2002)  Transcriptional targeting of lentiviral vectors by long terminal repeat enhancer replacement.   J Virol 76: 8. 3996-4007 Apr  
Abstract: Gene therapy of many genetic diseases requires permanent gene transfer into self-renewing stem cells and restriction of transgene expression to specific progenies. Human immunodeficiency virus (HIV)-derived lentiviral vectors are very effective in transducing rare, nondividing stem cell populations (e.g., hematopoietic stem cells) without altering their long-term repopulation and differentiation capacities. We developed a strategy for transcriptional targeting of lentiviral vectors based on replacing the viral long terminal repeat (LTR) enhancer with cell lineage-specific, genomic control elements. An upstream enhancer (HS2) of the erythroid-specific GATA-1 gene was used to replace most of the U3 region of the LTR, immediately upstream of the HIV type 1 (HIV-1) promoter. The modified LTR was used to drive the expression of a reporter gene (the green fluorescent protein [GFP] gene), while a second gene (a truncated form of the p75 nerve growth factor receptor [DeltaLNGFR]) was placed under the control of an internal constitutive promoter to monitor cell transduction, or to immunoselect transduced cells, independently from the expression of the targeted promoter. The transcriptionally targeted vectors were used to transduce cell lines, human CD34+ hematopoietic stem-progenitor cells, and murine bone marrow (BM)-repopulating stem cells. Gene expression was analyzed in the stem cell progeny in vitro and in vivo after xenotransplantation into nonobese diabetic-SCID mice or BM transplantation in coisogenic mice. The modified LTR directed high levels of transgene expression specifically in mature erythroblasts, in a TAT-independent fashion and with no alteration in titer, infectivity, and genomic stability of the lentiviral vector. Expression from the modified LTR was higher, better restricted, and showed less position-effect variegation than that obtained by the same combination of enhancer-promoter elements placed in a conventional, internal position. Cloning of the woodchuck hepatitis virus posttranscriptional regulatory element at a defined position in the targeted vector allowed selective accumulation of the genomic transcripts with respect to the internal RNA transcript, with no loss of cell-type restriction. A critical advantage of this targeting strategy is the use of a spliced, major viral transcript to express a therapeutic gene and that of an internal, independently regulated promoter to express an additional gene for either cell marking or in vivo selection purposes.
Notes:
2000
 
PMID 
A De Dominicis, F Lotti, P Pierandrei-Amaldi, B Cardinali (2000)  cDNA cloning and developmental expression of cellular nucleic acid-binding protein (CNBP) gene in Xenopus laevis.   Gene 241: 1. 35-43 Jan  
Abstract: The cloning and sequencing of a cDNA corresponding to one of the two Xenopus cellular nucleic acid binding protein (CNBP) genes are presented. Comparison of this cDNA sequence (xCNBP2) with the other previously reported (xCNBP1) reveals that, while the cDNA sequences are somewhat divergent, the amino acid sequences are mostly unchanged. It has been determined that both gene copies can generate a shorter transcript, likely due to alternative splicing, as previously demonstrated in human cells. The comparison of the cDNA sequences of Xenopus and of other species shows that the missing cDNA tract of Xenopus does not coincide with the others, consistent with the utilization of different splicing donor sites. The two gene copies are expressed at comparable levels, since the two corresponding mRNAs are similarly represented both in oocyte and embryo poly(A)(+) RNA. However, the shorter CNBP transcripts are slightly less represented than the longer CNBP transcripts, in both the oocyte and embryo. CNBP mRNA accumulation during development decreases before the mid-blastula stage and increases again thereafter. The polysome association of CNBP mRNA and the binding activity of CNBP to its target sequence of ribosomal protein mRNA 5'UTR have been analysed during development.
Notes:
1998
 
DOI   
PMID 
L Pellizzoni, F Lotti, S A Rutjes, P Pierandrei-Amaldi (1998)  Involvement of the Xenopus laevis Ro60 autoantigen in the alternative interaction of La and CNBP proteins with the 5'UTR of L4 ribosomal protein mRNA.   J Mol Biol 281: 4. 593-608 Aug  
Abstract: In vertebrates the synthesis of ribosomal proteins is co-ordinately regulated at the translational level. The 5'-untranslated region (5'UTR) of this class of mRNAs contains conserved regions that are necessary and sufficient for translational regulation. Recently, we found that two proteins, the Xenopus laevis La autoantigen and the cellular nucleic acid binding protein (CNBP), are able to bind in vitro a pyrimidine tract at the 5' end and a downstream region, respectively. These regions are considered the common cis-acting elements of translational regulation. It was previously observed that the binding of both these putative trans-acting factors to their RNA sequences is assisted by a protease-sensitive factor(s) that dissociates from the complex after its formation. Here we provide evidence that the requirement for an ancillary factor assisting La binding to the pyrimidine tract of ribosomal protein mRNAs is typical of this RNA, and secondly that it may involve an RNA recognition motif of the La protein not clearly characterized previously. We also show that the Ro60 autoantigen is involved in the common factor activity necessary for the binding of La and CNBP proteins to their respective sequences. In addition, our findings suggest that an RNA also participates in this process. We show that CNBP can multimerise and that it binds to the 5'UTR as a dimer. Both La and CNBP compete for the interaction with the factor, and their binding to the 5'UTR is mutually exclusive. Our results from the binding analysis of mutations in the 5'UTR, which are known to disrupt the translational control in vivo, suggest a model in which the protein interactions and the 5'UTR RNA structure may co-operate in regulating the translational fate of ribosomal protein mRNAs.
Notes:
1997
 
DOI   
PMID 
L Pellizzoni, F Lotti, B Maras, P Pierandrei-Amaldi (1997)  Cellular nucleic acid binding protein binds a conserved region of the 5' UTR of Xenopus laevis ribosomal protein mRNAs.   J Mol Biol 267: 2. 264-275 Mar  
Abstract: Vertebrate ribosomal protein mRNAs share structural features in the 5' untranslated region implicated in the control of their translation. A pyrimidine tract, at the 5' end, is considered the common cis-acting element, but the control requires also the integrity of the conserved downstream region. These sequences interact in vitro with proteins, which may represent the trans-acting factors for a common regulation. The protein that binds the pyrimidine tract has been identified as La and its binding in vitro depends on interaction with a protein factor. In the present study, by purification, microsequencing and immunoprecipitation analysis we have identified the protein that interacts with the region downstream of the pyrimidine tract as the Xenopus laevis cellular nucleic acid binding protein (CNBP). The interaction of this protein with the conserved region of various ribosomal protein (rp)-mRNAs suggests a class-specific recognition. The binding of CNBP to the target region requires the assistance of a protease-sensitive factor, that dissociates after complex formation. Some evidence suggests that this may be the same factor that assists the binding of La to the 5' untranslated region (UTR) of the rp-mRNAs. Considering that CNBP and La come in contact with two typical regions of the 5' UTR, essential for regulation, their interaction with the assisting factor may exert a modulating activity on the translational control of ribosomal protein mRNAs.
Notes:
Powered by publicationslist.org.