hosted by
publicationslist.org
    

Francesca Danesi

Campus of Food Science - University of Bologna
Piazza Goidanich, 60
47521 Cesena (FC) Italy
francesca.danesi@unibo.it

Journal articles

2012
Veronica Valli, Ana María Gómez-Caravaca, Mattia Di Nunzio, Francesca Danesi, Maria Fiorenza Caboni, Alessandra Bordoni (2012)  Sugar cane and sugar beet molasses, antioxidant-rich alternatives to refined sugar.   J Agric Food Chem 60: 51. 12508-12515 Dec  
Abstract: Molasses, the main byproduct of sugar production, is a well-known source of antioxidants. In this study sugar cane molasses (SCM) and sugar beet molasses (SBM) were investigated for their phenolic profile and in vitro antioxidant capacity and for their protective effect in human HepG2 cells submitted to oxidative stress. According to its higher phenolic concentration and antioxidant capacity in vitro, SCM exhibited an effective protection in cells, comparable to or even greater than that of α-tocopherol. Data herein reported emphasize the potential health effects of molasses and the possibility of using byproducts for their antioxidant activity. This is particularly important for consumers in developing countries, as it highlights the importance of consuming a low-price, yet very nutritious, commodity.
Notes:
2011
Valeria Righi, Mattia Di Nunzio, Francesca Danesi, Luisa Schenetti, Adele Mucci, Elisa Boschetti, Pierluigi Biagi, Sergio Bonora, Vitaliano Tugnoli, Alessandra Bordoni (2011)  EPA or DHA supplementation increases triacylglycerol, but not phospholipid, levels in isolated rat cardiomyocytes.   Lipids 46: 7. 627-636 Jul  
Abstract: It is well recognized that a high dietary intake of long-chain polyunsaturated fatty acids (LC-PUFA) has profound benefits on health and prevention of chronic diseases. In particular, in recent years there has been a dramatic surge of interest in the health effects of n-3 LC-PUFA derived from fish, eicosapentaenoic (EPA) and docosahexaenoic (DHA) acids. Notwithstanding, the metabolic fate and the effects of these fatty acids once inside the cell has seldom been comprehensively investigated. Using cultured neonatal rat cardiomyocytes as model system we have investigated for the first time, by means of high-resolution magic-angle spinning nuclear magnetic resonance (HR-MAS NMR) spectroscopy in combination with gas chromatography (GC), the modification occurring in the cell lipid environment after EPA and DHA supplementation. The most important difference between control and n-3 LC-PUFA-supplemented cardiomyocytes highlighted by HR-MAS NMR spectroscopy is the increase of signals from mobile lipids, identified as triacylglycerols (TAG). The observed increase of mobile TAG is a metabolic response to n-3 LC-PUFA supplementation, which leads to an increased lipid storage. The sequestration of mobile lipids in lipid bodies provides a deposit of stored energy that can be accessed in a regulated fashion according to metabolic need. Interestingly, while n-3 LC-PUFA supplementation to neonatal rat cardiomyocytes causes a huge variation in the cell lipid environment, it does not induce detectable modifications in water-soluble metabolites, suggesting negligible interference with normal metabolic processes.
Notes:
Francesca Danesi, Federico Ferioli, Maria Fiorenza Caboni, Elisa Boschetti, Mattia Di Nunzio, Vito Verardo, Veronica Valli, Annalisa Astolfi, Andrea Pession, Alessandra Bordoni (2011)  Phytosterol supplementation reduces metabolic activity and slows cell growth in cultured rat cardiomyocytes.   Br J Nutr 106: 4. 540-548 Aug  
Abstract: Besides being cholesterol-lowering agents, phytosterols (PS) can inhibit the growth and development of tumours. The anti-neoplastic activity is accounted for by PS incorporation into cell membranes, resulting in the interference of membrane functionality. The similarity between the PS cholesterol-lowering and anti-neoplastic effective doses deserves attention on the possible adverse effects even in non-neoplastic cells. To date, few studies have addressed the clarification of this important issue. In the present study, we supplemented primary, non-neoplastic neonatal rat cardiomyocytes with two different PS concentrations (3 or 6 μg/ml), both within the range of human plasma concentration. Cardiac cells were chosen as an experimental model since the heart has been reported as the target organ for subchronic toxicity of PS. Following supplementation, a dose-dependent incorporation of PS and a decrease in cholesterol content were clearly evidenced. PS did not induce apoptosis but caused a reduction in metabolic activity (measured as 3-(4,5-dimethyldiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) conversion) and a slowing down of cell growth. The lower MTT conversion and the similar lactate dehydrogenase release could suggest that PS more efficiently target mitochondria than plasma membrane integrity. The replacement of cholesterol by PS could also have caused the observed slowing down of cell growth and the reduction in metabolic activity, which could rely on the PS increase, cholesterol decrease, or both. The present study is the first report on the effect of PS in cardiac cells, and although it is difficult to translate the obtained results to the health of heart tissue, it raises concerns about the safety of long-term exposure to physiologically relevant PS concentrations.
Notes:
Alessandra Bordoni, Gianfranco Picone, Elena Babini, Massimiliano Vignali, Francesca Danesi, Veronica Valli, Mattia Di Nunzio, Luca Laghi, Francesco Capozzi (2011)  NMR comparison of in vitro digestion of Parmigiano Reggiano cheese aged 15 and 30 months.   Magn Reson Chem 49 Suppl 1: S61-S70 Dec  
Abstract: The content of essential amino acids is an important aspect for determining the nutritional value of food proteins, but their digestibility is also a key property, deeply affected by food processing. The production of Parmigiano Reggiano cheese is closely related to the nutritional quality of the final product; in particular the high digestibility of its proteins is claimed to be proportional to cheese aging. Two different kinds of Parmigiano Reggiano, young (aged 15 months) and old (aged 30 months), were separately digested using an in vitro system that simulates digestive processes in the mouth, stomach and small intestine. Samples were collected at different stages of digestion and the process of protein hydrolysis was explored and compared by low-field (LF) and high-resolution (HR) NMR, together with other biochemical methods. HR-NMR allowed to simultaneously observe the quantity of free amino acids, peptides and proteins, also giving for these latter qualitative information about their dimension. LF-NMR, instead, gave the possibility to observe digestion with no treatments whatsoever, thus representing a technique suitable for on-line measurements. The results pointed out that cheeses with different aging times, although starting from distinct initial compositions, conclude digestion in a similar way, in terms of free amino acids and small organic compounds, but evolve with different kinetics of hydrolysis and peptide formation, discriminating the young from the old cheese.
Notes:
Andrea Gianotti, Francesca Danesi, Vito Verardo, Diana Isabella Serrazanetti, Veronica Valli, Alessandra Russo, Ylenia Riciputi, Nadia Tossani, Maria Fiorenza Caboni, Maria Elisabetta Guerzoni, Alessandra Bordoni (2011)  Role of cereal type and processing in whole grain in vivo protection from oxidative stress.   Front Biosci 16: 1609-1618 Jan  
Abstract: The reduced risk of chronic diseases related to whole grain consumption is in part attributed to their high antioxidant content. Many studies have been performed on the in vitro antioxidant capacity of cereals, but in vivo studies are necessary. We have evaluated and compared the effect of whole grain durum wheat bread and whole grain Kamut khorasan bread on the oxidative status in rats. Two different bread-making processes were used for whole grain Kamut khorasan, sourdough and baker's yeast. After 7 weeks on the experimental diets rats were divided into two subgroups, one receiving an oxidative stress by doxorubicin injection. Our results evidenced both wheat durum and Kamut khorasan as good sources of antioxidants, and a lower oxidative state in rats fed the cereal-based diets. Furthermore, Kamut khorasan bread fed animals had a better response to stress than wheat durum fed, especially when a sourdough bread was supplied. Although further studies are needed, data herein reported suggest whole grains, particularly whole ancient grains, as a safe and convenient way of increasing antioxidant protection.
Notes:
2010
Francesca Danesi, Martin Philpott, Claudia Huebner, Alessandra Bordoni, Lynnette R Ferguson (2010)  Food-derived bioactives as potential regulators of the IL-12/IL-23 pathway implicated in inflammatory bowel diseases.   Mutat Res 690: 1-2. 139-144 Aug  
Abstract: The gene-specific modulation of inflammatory cytokines by food bioactives represents a possible approach to the nutritional or pharmaceutical prevention and treatment of inflammatory bowel disease (IBD). There is evidence for a key role of the interleukin-12beta1/23 receptor (IL-12 Rbeta1/23 R) pathway in IBD, and that reduction of the normal expression of the IL-23 R gene may provide a therapeutic target for this disease. The binding of interleukin-23 (IL-23) to its receptor IL-23 R regulates a newly defined effector T-cell subset, Th17 cells, characterised by the production of interleukin-17 (IL-17) and other cytokines, including tumour necrosis factor-alpha (TNF-alpha). In this study we developed an assay that measured IL-17 and TNF-alpha expression after incubation with specific dietary bioactives in the human T-cell Kit 225. It is anticipated that these changes will reflect differences in IL-23 R production, albeit indirectly. The cell line Kit 225 has similarities to Th17 cells, a subset of T cells producing IL-17 and TNF-alpha, and in initial experiments we demonstrated that the cells express both IL-23 receptor subunits, as well as IL-17 and TNF-alpha genes. Upon verification that stimulation of Kit 225 cells with 1ng/mL IL-23 significantly upregulated IL-17 and TNF-alpha gene expression, and IL-17 production, we supplemented cells with selected food bioactives, caffeic acid phenethyl ester (CAPE), epigallocatechin gallate (EGCG), docosahexaenoic acid (DHA), and linoleic acid (LA), and with phorbol myristate acetate (PMA) and sodium salicylate, used as pro-inflammatory and anti-inflammatory controls, respectively. In both unstimulated cells and after IL-23 stimulation, bioactives modulated the pro-inflammatory cytokines involved in IBD, underlining the possible role of foods in this disease. EGCG and DHA, which significantly inhibited both IL-17 and TNF-alpha expression, appeared particularly interesting.
Notes:
2009
Francesca Danesi, Mattia Di Nunzio, Elisa Boschetti, Alessandra Bordoni (2009)  Green tea extract selectively activates peroxisome proliferator-activated receptor beta/delta in cultured cardiomyocytes.   Br J Nutr 101: 12. 1736-1739 Jun  
Abstract: Hypoxia/reoxygenation is one of the causes of the increased expression of inducible NO synthase in cardiomyocytes. In a recent study we demonstrated that a single, high dose of green tea extract (GT) supplemented to the medium of cultured cardiomyocytes just before hypoxia/reoxygenation is able to prevent the increased expression of inducible NO synthase, therefore reducing NO overproduction. In the present study we investigated the mechanism by which GT reduces NO production. Since a molecular mechanism for polyphenol activity has been postulated, and PPAR activation is related to the transcription of the inducible NO synthase gene, we evaluated the activation of PPAR by GT. A moderate GT concentration, supplemented to the cardiomyocyte medium since the initial seeding, selectively activated the PPAR-beta/delta isoform. Furthermore, we observed a reduction in NO production and an increase in total antioxidant activity, indicating that GT components may act on both reactive oxygen species, via an antioxidant mechanism, and NO overproduction. PPAR-beta/delta activation could represent the key event in the reduction of NO production by GT. Although PPAR activation by GT was lower than activation by fenofibrate, it is very interesting to note that it was selective for the beta/delta isoform, at least in neonatal cardiomyocytes.
Notes:
Mattia Di Nunzio, Francesca Danesi, Alessandra Bordoni (2009)  n-3 PUFA as regulators of cardiac gene transcription: a new link between PPAR activation and fatty acid composition.   Lipids 44: 12. 1073-1079 Dec  
Abstract: The fatty acids regulate gene expression directly binding to nuclear receptors or affecting the protein content of transcription factors. In this work, supplementing primary cultures of neonatal rat cardiomyocytes with 60 microM EPA or DHA, we demonstrated by an ELISA assay an increased PPAR beta/delta binding to DNA. n-3 PUFA supplementation deeply changed the acyl composition of both cytosolic and nuclear fractions. The high content of total fatty acids, particularly EPA and DHA, and its increase following supplementation suggested a selective accumulation of n-3 PUFAs in the nucleus, supporting the direct interaction of n-3 PUFA with PPAR. The activity of acyl-CoA thioesterase (ACOT), catalyzing the reaction leading to NEFA from acyl-CoA, increased in n-3 PUFA supplemented cells. The NEFA/acyl-CoA ratio is an important regulator of the fatty acid transport to the nucleus and consequent modulation of gene transcription, and although ACOT activity is not the only parameter of this ratio, it is important for the control of the NEFA pool composition. Our data further clarify what happens in cardiomyocytes following n-3 PUFA supplementation, linking the modification of acyl composition to ACOT activity and PPAR activation.
Notes:
2008
Alessandra Bordoni, Francesca Danesi, Marco Malaguti, Mattia Di Nunzio, Francesca Pasqui, Magda Maranesi, Pier Luigi Biagi (2008)  Dietary Selenium for the counteraction of oxidative damage: fortified foods or supplements?   Br J Nutr 99: 1. 191-197 Jan  
Abstract: Since any significant modification in the Se status, leading to changes in the activity of the seleno-enzymes, may have important consequences on the susceptibility of tissues to oxidative stress, considerable efforts have been made upon increasing Se dietary intake. In this respect, an important debate is still open about the bioavailability and the effectiveness of Se, and more generally nutrients, in supplements compared with foods. Using male Wistar rats, we have compared the effectiveness of two different diets in which an adequate Se content (0.1 mg/kg) was achieved by adding the element as sodium selenite or as component of a lyophilized Se-enriched food, in the counteraction of an oxidative stress induced by intraperitoneal administration of adriamycin. Both Se-enriched diets were able to reduce the consequences of the oxidative stress in liver, mainly by increasing glutathione peroxidase activity. This increase was more evident in rats fed on the diet enriched with the lyophilized food, probably due to the different chemical forms of Se, or to other components of the food itself. Although further studies are needed, data herein presented may contribute to the characterization of the effectiveness of Se from different sources, foods or supplements, in the light of dietary advice to the population concerning improvement of Se intake.
Notes:
Francesca Danesi, Alessandra Bordoni (2008)  Effect of home freezing and Italian style of cooking on antioxidant activity of edible vegetables.   J Food Sci 73: 6. H109-H112 Aug  
Abstract: In this study, we analyzed the modifications of antioxidant activity consequent to 3 typical home cooking practices (steaming, boiling, and microwave cooking) in fresh and home frozen vegetables. Six different vegetable species were examined: carrots (Daucus carota L.), zucchini (Cucurbita pepo L.), tomatoes (Solanumn lycopersicum L.), green beans (Phaseolus vulgaris L.), peas (Pisum sativum L.), and yellow peppers (Capsicum annuum L.). All vegetables were conventional products and were analyzed in season to minimize differences due to agricultural practice and storage. Cooking and freezing are generally regarded as destructive to antioxidants, and this has fostered a belief among many consumers that raw vegetables are nutritionally superior to their frozen and/or cooked forms. In the current study, we provide evidence that this is not always the case.
Notes:
Francesca Danesi, Simona Elementi, Roberta Neri, Magda Maranesi, Luigi F D'Antuono, Alessandra Bordoni (2008)  Effect of cultivar on the protection of cardiomyocytes from oxidative stress by essential oils and aqueous extracts of basil (Ocimum basilicum L.).   J Agric Food Chem 56: 21. 9911-9917 Nov  
Abstract: Notwithstanding the wide range of biological and pharmacological activities reported for sweet basil (Ocimum basilicum L.), many discrepancies are still present in the evaluation of its health-promoting properties. These discordances could be at least in part due to insufficient details of qualitative and quantitative composition, connected to the ample variability of this species. Furthermore, many investigations have been carried out in vitro, with few data available on the effectiveness in biological systems. In this study, the protective effect of essential oils and water-soluble extracts derived from three different cultivars of sweet basil has been evaluated in cultured cardiomyocytes. To verify the effectiveness of supplemented oils/extracts in counteracting oxidative damage, cardiomyocytes were stressed by the addition of hydrogen peroxide. The results indicate that (a) in vitro antioxidant activity is not predictive of biological activity and (b) basil can yield extracts with substantially different protective effects, in relation to composition and extraction techniques. Variation among different cultivars has also been detected.
Notes:
2007
Alessandra Bordoni, Annalisa Astolfi, Luca Morandi, Andrea Pession, Francesca Danesi, Mattia Di Nunzio, Monica Franzoni, Pierluigi Biagi, Annalisa Pession (2007)  N-3 PUFAs modulate global gene expression profile in cultured rat cardiomyocytes. Implications in cardiac hypertrophy and heart failure.   FEBS Lett 581: 5. 923-929 Mar  
Abstract: In cardiac cells the effects of n-3 PUFAs on the whole genome are still unknown despite their recognized cardioprotective effects and ability to modulate gene expression. We have evaluated the effects of n-3 PUFAs supplementation on the global gene expression profile in cultured neonatal rat cardiomyocytes, detecting many genes related to lipid transport and metabolism among the upregulated ones. Many of the downregulated genes appeared related to inflammation, cell growth, extracellular and cardiac matrix remodelling, calcium movements and ROS generation. Our data allow to speculate that the cardioprotective effect of n-3 PUFAs is related to a direct modulation of genes in cardiac cells.
Notes:
2006
Francesca Danesi, Marco Malaguti, Mattia Di Nunzio, Magda Maranesi, Pier L Biagi, Alessandra Bordoni (2006)  Counteraction of adriamycin-induced oxidative damage in rat heart by selenium dietary supplementation.   J Agric Food Chem 54: 4. 1203-1208 Feb  
Abstract: Many reports indicate that dietary selenium, potentially increasing the activity of glutathione peroxidase, could offer protection against free-radical-induced damage. The effects of diets moderately enriched in selenium, as sodium selenite or as a lyophilized selenium-rich food, were studied in rats. Adriamycin, an anticancer drug causing a free-radical-mediated cardiotoxicity, was administered intraperitoneally to some rats. The onset of an oxidative damage was indicated by the increase in the plasma level of reactive oxygen metabolites coupled to a decrease in the total antioxidant activity but without modification of glutathione peroxidase activity, which were observed in all rats, independent of the dietary treatment. On the contrary, in the heart, selenium supplementation caused an increase in the total antioxidant activity, glutathione concentration, and glutathione peroxidase and catalase activities leading to a decreased generation of reactive oxygen metabolites. These results clearly indicate that a moderate Se dietary supplementation counteracts adriamycin-induced cardiotoxicity by preservation of endogenous antioxidants.
Notes:
Alessandra Bordoni, Luciana Cabrini, Mario Marchetti, Francesca Danesi, Davide Bochicchio, Pier L Biagi, Magda Maranesi (2006)  Vitamin B6 deficiency and dietary fats: effects on lipid composition and glutathione peroxidase activity in rat liver.   Ann Nutr Metab 50: 3. 305-312 May  
Abstract: Dietary selenium, vitamin B6 and fatty acids modulate both tissue acyl composition by regulating polyunsaturated fatty acid metabolism and antioxidant defences by influencing glutathione peroxidase activity. Alteration in the intake of one of them could therefore lead to different results depending on the intake of the others. To clarify this complex relationship, in the present study we have evaluated the modifications occurring in fatty acid composition and glutathione peroxidase activity in total liver and liver microsomes of rats fed diets containing the same amount of selenium, but different vitamin B6 content and fatty acid composition. Our data indicate that both acyl composition and glutathione peroxidase activity are greatly influenced not only by vitamin B6 deficiency, but also by the diet unsaturation degree. This study underlines that not only selenium availability but also other nutrients can modulate glutathione peroxidase activity.
Notes:
2005
Alessandra Bordoni, Pier Luigi Biagi, Cristina Angeloni, Emanuela Leoncini, Francesca Danesi, Silvana Hrelia (2005)  Susceptibility to hypoxia/reoxygenation of aged rat cardiomyocytes and its modulation by selenium supplementation.   J Agric Food Chem 53: 2. 490-494 Jan  
Abstract: Since in the aged heart an increased basal production of reactive oxygen species (ROS) has been demonstrated, and the resistance to ROS attack could be ameliorated by antioxidant supplementation, we verified the protective effect of selenium, as sodium selenite (SS) or seleno methionine (SM), in cultured rat cardiomyocytes aged in vitro. In normoxia, glutathione peroxidase (GPx) activity and total antioxidant activity were higher in old than in young cardiomyocytes, suggesting the existence of a compensatory increase of antioxidant defenses. When aged cells were submitted to hypoxia/reoxygenation, GPx activity was not modified; while total antioxidant activity decreased, conjugated diene level increased. Selenium supplementation, particularly as SM, was able to increase GPx, and consequently total antioxidant activity, and to decrease conjugated diene production. The observed ability of selenium supplementation to protect aged cardiomyocytes from hypoxia/reoxygenation damage underlines the importance of an optimal selenium dietary intake, particularly in the elderly.
Notes:
Alessandra Bordoni, Cristina Angeloni, Emanuela Leoncini, Francesca Danesi, Magda Maranesi, Pier Luigi Biagi, Silvana Hrelia (2005)  Hypoxia/reoxygenation alters essential fatty acids metabolism in cultured rat cardiomyocytes: protection by antioxidants.   Nutr Metab Cardiovasc Dis 15: 3. 166-173 Jun  
Abstract: BACKGROUND AND AIMS: Peroxidation of membrane lipids, altering cell integrity and function, plays an important part in the onset and development of cardiac damage following ischemia and reperfusion. Cells maintain their membrane lipid homeostasis by substituting peroxidized lipids with new polyunsaturated fatty acids. The microsomal enzymatic system converting essential fatty acids to highly unsaturated fatty acids (HUFAs) contributes to this repairing mechanism. The membrane of the endoplasmic reticulum could be one of the potential targets of free radicals generated in ischemia/reperfusion, thus causing a reduced efficacy of the system required for HUFA biosynthesis. To verify this hypothesis, and the consequent modification in fatty acid composition, we exposed cultured rat cardiomyocytes to different periods of hypoxia (H), eventually followed by reoxygenation (R). Furthermore, the effectiveness of antioxidants like alpha-tocopherol and a green tea extract in counteracting H/R damage towards HUFA biosynthesis was tested. METHODS AND RESULTS: Linoleic (LA) and alpha-linolenic acid (ALA) conversion was measured by pre-labelling cells with [1-14C]LA or [1-14C]ALA for 1 h; total lipid fatty acid composition was determined by gas chromatographic analysis. H profoundly affected HUFA biosynthesis, and this effect was much more evident on LA than on ALA. Conversion of both substrates was partially restored during R due to the readmission of the final acceptor of the desaturating complex. Fatty acid composition data were in agreement with the modifications observed in essential fatty acid conversion. Antioxidant protection appeared to be related to the duration of H, and to be more effective during H than during R. CONCLUSION: This study points out the importance of possessing good antioxidant defenses not only after, but mainly prior to the onset of H.
Notes:
Powered by PublicationsList.org.