hosted by
publicationslist.org
    

Giovanni Busco


giovannibusco@hotmail.com

Journal articles

2010
G Busco, R A Cardone, M R Greco, A Bellizzi, M Colella, E Antelmi, M T Mancini, M E Dell'aquila, V Casavola, A Paradiso, S J Reshkin (2010)  NHE1 promotes invadopodial ECM proteolysis through acidification of the peri-invadopodial space.   FASEB june  
Abstract: Extracellular matrix (ECM) degradation is a critical process in tumor cell invasion and requires membrane and released proteases focalized at membrane structures called invadopodia. While extracellular acidification is important in driving tumor invasion, the structure/function mechanisms underlying this regulation are still unknown. Invadopodia are similar in structure and function to osteoclast podosomes responsible for bone degradation, and extracellular acidification is central to podosome action, suggesting that it could also be for invadopodial function. Here, utilizing a novel system for in situ zymography in native matrices, we show that the Na(+)/H(+) exchanger (NHE1) and NHE1-generated extracellular acidification are localized at and necessary for invadopodial-dependent ECM degradation, thereby promoting tumor invasion. Stimulation with EGF increased both NHE1-dependent proton secretion and ECM degradation. Manipulation of the NHE1 expression by RNA interference or activity via either transport-deficient mutation or the specific inhibitor cariporide confirmed that NHE1 expression and activity are required for invadopodia-mediated ECM degradation. Taken together, our data show a concordance among NHE1 localization, the generation of a well-defined acidic extracellular pH in the nanospace surrounding invadopodia, and matrix-degrading activity at invadopodia of human malignant breast carcinoma cells, providing a structural basis for the role of NHE1 in invasion and identifying NHE1 as a strategic target for therapeutic intervention.-Busco, G., Cardone, R. A., Greco, M. R., Bellizzi, A., Colella, M., Antelmi, E., Mancini, M. T., Dell'Aquila, M. E., Casavola, V., Paradiso, A., Reshkin, S. J. NHE1 promotes invadopodial ECM proteolysis through acidification of the peri-invadopodial space.
Notes:
2008
Christian Stock, Rosa Angela Cardone, Giovanni Busco, Hermann Krähling, Albrecht Schwab, Stephan J Reshkin (2008)  Protons extruded by NHE1: digestive or glue?   European Journal of Cell Biology 87: 8-9. 591-599 sept  
Abstract: Many physiological and pathophysiological processes, such as embryogenesis, immune defense, wound healing, or metastasis, are based on cell migration and invasion. The activity of the ubiquitously expressed NHE1 isoform of the plasma membrane Na(+)/H(+) exchanger is one of the requirements for directed locomotion of migrating cells. The mechanisms by which NHE1 is involved in cell migration are multiple. NHE1 contributes to cell migration by affecting the cell volume, by regulating the intracellular pH and thereby the assembly and activity of cytoskeletal elements, by anchoring the cytoskeleton to the plasma membrane, by the organization of signal transduction and by regulating gene expression. The present review focuses on two additional, extracellular mechanisms by which NHE1 activity contributes to cell migration and invasion. Protons extruded by the NHE1 lead to local, extracellular acidification which, on the one hand, can create pH optima needed for the activity of proteinases at invadopodia/podosomes necessary for extracellular matrix digestion and, on the other hand, facilitates cell/matrix interaction and adhesion at the cell front.
Notes:
R A Cardone, G Busco, M R Greco, A Bellizzi, R Accardi, A Cafarelli, S Monterisi, P Carratù, V Casavola, A Paradiso, M Tommasino, S J Reshkin (2008)  HPV16 E7-dependent transformation activates NHE1 through a PKA-RhoA-induced inhibition of p38alpha   PLoS One 3: 10. e3529 october  
Abstract: Neoplastic transformation originates from a large number of different genetic alterations. Despite this genetic variability, a common phenotype to transformed cells is cellular alkalinization. We have previously shown in human keratinocytes and a cell line in which transformation can be turned on and followed by the inducible expression of the E7 oncogene of human papillomavirus type 16 (HPV16), that intracellular alkalinization is an early and essential physiological event driven by the up-regulation of the Na/+H+ exchanger isoform 1 (NHE1) and is necessary for the development of other transformed phenotypes and the in vivo tumor formation in nude mice.
Notes:
2007
Rosa A Cardone, Antonia Bellizzi, Giovanni Busco, Edward J Weinman, Maria E Dell'Aquila, Valeria Casavola, Amalia Azzariti, Anita Mangia, Angelo Paradiso, Stephan J Reshkin (2007)  The NHERF1 PDZ2 domain regulates PKA-RhoA-p38-mediated NHE1 activation and invasion in breast tumor cells   Molecular Biology of the Cell 18: 5. 1768-1780 May  
Abstract: Understanding the signal transduction systems governing invasion is fundamental for the design of therapeutic strategies against metastasis. Na(+)/H(+) exchanger regulatory factor (NHERF1) is a postsynaptic density 95/disc-large/zona occludens (PDZ) domain-containing protein that recruits membrane receptors/transporters and cytoplasmic signaling proteins into functional complexes. NHERF1 expression is altered in breast cancer, but its effective role in mammary carcinogenesis remains undefined. We report here that NHERF1 overexpression in human breast tumor biopsies is associated with metastatic progression, poor prognosis, and hypoxia-inducible factor-1alpha expression. In cultured tumor cells, hypoxia and serum deprivation increase NHERF1 expression, promote the formation of leading-edge pseudopodia, and redistribute NHERF1 to these pseudopodia. This pseudopodial localization of NHERF1 was verified in breast biopsies and in three-dimensional Matrigel culture. Furthermore, serum deprivation and hypoxia stimulate the Na(+)/H(+) exchanger, invasion, and activate a protein kinase A (PKA)-gated RhoA/p38 invasion signal module. Significantly, NHERF1 overexpression was sufficient to induce these morphological and functional changes, and it potentiated their induction by serum deprivation. Functional experiments with truncated and binding groove-mutated PDZ domain constructs demonstrated that NHERF1 regulates these processes through its PDZ2 domain. We conclude that NHERF1 overexpression enhances the invasive phenotype in breast cancer cells, both alone and in synergy with exposure to the tumor microenvironment, via the coordination of PKA-gated RhoA/p38 signaling
Notes:
2005
Lorenzo Guerra, Teresa Fanelli, Maria Favia, Stefania M Riccardi, Giovanni Busco, Rosa Angela Cardone, Salvatore Carrabino, Edward J Weinman, Stephan Joel Reshkin, Massimo Conese, Valeria Casavola (2005)  Na+/H+ exchanger regulatory factor isoform 1 overexpression modulates cystic fibrosis transmembrane conductance regulator (CFTR) expression and activity in human airway 16HBE14o- cells and rescues DeltaF508 CFTR functional expression in cystic fibrosis cells   The Journal of Biological Chemistry 280: 49. 40925-40933 Dec  
Abstract: There is evidence that cystic fibrosis transmembrane conductance regulator (CFTR) interacting proteins play critical roles in the proper expression and function of CFTR. The Na(+)/H(+) exchanger regulatory factor isoform 1 (NHERF1) was the first identified CFTR-binding protein. Here we further clarify the role of NHERF1 in the regulation of CFTR activity in two human bronchial epithelial cell lines: the normal, 16HBE14o-, and the homozygous DeltaF508 CFTR, CFBE41o-. Confocal analysis in polarized cell monolayers demonstrated that NHERF1 distribution was associated with the apical membrane in 16HBE14o- cells while being primarily cytoplasmic in CFBE41o- cells. Transfection of 16HBE14o- monolayers with vectors encoding for wild-type (wt) NHERF1 increased both apical CFTR expression and apical protein kinase A (PKA)-dependent CFTR-mediated chloride efflux, whereas transfection with NHERF1 mutated in the binding groove of the PDZ domains or truncated for the ERM domain inhibited both the apical CFTR expression and the CFTR-dependent chloride efflux. These data led us to hypothesize an important role for NHERF1 in regulating CFTR localization and stability on the apical membrane of 16HBE14o- cell monolayers. Importantly, wt NHERF1 overexpression in confluent DeltaF508 CFBE41o- and DeltaF508 CFT1-C2 cell monolayers induced both a significant redistribution of CFTR from the cytoplasm to the apical membrane and a PKA-dependent activation of CFTR-dependent chloride secretion.
Notes:
Rosa A Cardone, Anna Bagorda, Antonia Bellizzi, Giovanni Busco, Lorenzo Guerra, Angelo Paradiso, Valeria Casavola, Manuela Zaccolo, Stephan J Reshkin (2005)  Protein kinase A gating of a pseudopodial-located RhoA/ROCK/p38/NHE1 signal module regulates invasion in breast cancer cell lines.   Molecular Biology of the Cell 16: 7. 3117-3127 July  
Abstract: Metastasis results from a sequence of selective events often involving interactions with elements of the tumor-specific physiological microenvironment. The low-serum component of this microenvironment confers increased motility and invasion in breast cancer cells by activating the Na+/H+ exchanger isoform 1 (NHE1). The present study was undertaken to characterize the signal transduction mechanisms underlying this serum deprivation-dependent activation of both the NHE1 and the concomitant invasive characteristics such as leading edge pseudopodia development and penetration of matrigel in breast cancer cell lines representing different stages of metastatic progression. Using pharmacological and genetic manipulation together with transport and kinase activity assays, we observe that the activation of the NHE1 and subsequent invasion by serum deprivation in metastatic human breast cells is coordinated by a sequential RhoA/p160ROCK/p38MAPK signaling pathway gated by direct protein kinase A phosphorylation and inhibition of RhoA. Fluorescence resonance energy transfer imaging of RhoA activity and immunofluorescence analysis of phospho-RhoA and NHE1 show that serum deprivation dynamically remodels the cell, forming long, leading edge pseudopodia and that this signal module is preferentially compartmentalized in these leading edge pseudopodia, suggesting a tight topographic relation of the signaling module to an invasion-specific cell structure.
Notes:
Powered by PublicationsList.org.