hosted by
publicationslist.org
    
Guweidhi Ahmed

guweidhi@hotmail.com

Journal articles

2005
 
PMID 
Ahmed Guweidhi, Jörg Kleeff, Hassan Adwan, Nathalia A Giese, Moritz N Wente, Thomas Giese, Markus W Büchler, Martin R Berger, Helmut Friess (2005)  Osteonectin influences growth and invasion of pancreatic cancer cells.   Ann Surg 242: 2. 224-234 Aug  
Abstract: OBJECTIVE: We sought to examine the expression and functional role of osteonectin in primary and metastatic pancreatic ductal adenocarcinoma (PDAC). BACKGROUND: The glycoprotein osteonectin plays a vital role in cell-matrix interactions and is involved in various biologic processes. Overexpression of osteonectin is present in malignant tumors and correlates with disease progression and poor prognosis. METHODS: Expression of osteonectin was analyzed by quantitative polymerase chain reaction and immunohistochemistry in pancreatic tissues and by enzyme-linked immunosorbent assay in the serum of patients and donors. Recombinant osteonectin and specific antisense oligonucleotides were used to examine the effects of osteonectin on induction of target genes, and on proliferation and invasiveness of pancreatic cancer cells. RESULTS: There was a 31-fold increase in osteonectin mRNA levels in PDAC and a 16-fold increase in chronic pancreatitis as compared with the normal pancreas (P < 0.01). By immunohistochemistry, faint immunoreactivity was detected in the normal pancreas. In contrast, strong staining of the cancer cells was observed in addition to extensive osteonectin immunoreactivity in surrounding fibroblasts and in the extracellular matrix. In metastatic tissues, strong immunoreactivity was observed in fibroblasts and in extracellular matrix surrounding metastatic cancer cells, whereas the signal was absent in most tumor cells. In vitro studies showed that osteonectin was able to inhibit cancer cell growth while promoting invasiveness of pancreatic tumor cells. CONCLUSION: Osteonectin is markedly overexpressed in pancreatic cancer and has the potential to increase the invasiveness of pancreatic cancer cells.
Notes:
 
DOI   
PMID 
El Fitori, Kleeff, Giese, Guweidhi, Bosserhoff, Büchler, Friess (2005)  Melanoma Inhibitory Activity (MIA) increases the invasiveness of pancreatic cancer cells.   Cancer Cell Int 5: 1. Feb  
Abstract: BACKGROUND: Melanoma inhibitory activity (MIA) is a small secreted protein that interacts with extracellular matrix proteins. Its over-expression promotes the metastatic behavior of malignant melanoma, thus making it a potential prognostic marker in this disease. In the present study, the expression and functional role of MIA was analyzed in pancreatic cancer by quantitative real-time PCR (QRT-PCR), immunohistochemistry, immunoblot analysis and ELISA. To determine the effects of MIA on tumor cell growth and invasion, MTT cell growth assays and modified Boyden chamber invasion assays were used. RESULTS: The mRNA expression of MIA was 42-fold increased in pancreatic cancers in comparison to normal pancreatic tissues (p < 0.01). In contrast, MIA serum levels were not significantly different between healthy donors and pancreatic cancer patients. In pancreatic tissues, MIA was predominantly localized in malignant cells and in tubular complexes of cancer specimens, whereas normal ductal cells, acinar cells and islets were devoid of MIA immunoreactivity. MIA significantly promoted the invasiveness of cultured pancreatic cancer cells without influencing cell proliferation. CONCLUSION: MIA is over-expressed in pancreatic cancer and has the potential of promoting the invasiveness of pancreatic cancer cells.
Notes:
 
PMID 
A Kolb, J Kleeff, A Guweidhi, I Esposito, N A Giese, H Adwan, T Giese, M W Büchler, M R Berger, H Friess (2005)  Osteopontin influences the invasiveness of pancreatic cancer cells and is increased in neoplastic and inflammatory conditions.   Cancer Biol Ther 4: 7. 740-746 Jul  
Abstract: Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive malignancies, with an overall 5-year survival rate of less than 5%. Invasive tumor growth and early metastasis are two important reasons for this dismal prognosis. Osteopontin (OPN) is a secretory protein with a variety of functions, for example in cell adhesion and migration, inflammatory reaction and apoptosis. In this study the functional role of OPN in human pancreatic cancer and its potential use as a disease marker were analyzed. By real time quantitative PCR, there was a 2.2-fold and 1.6-fold increase of OPN mRNA in pancreatic cancers (n = 23) and chronic pancreatitis samples (n = 22), respectively, compared to normal pancreatic tissues (n = 20). Immunohistochemical analysis demonstrated OPN staining in 60% of the primary pancreatic tumors and in 72% of the lymph node and liver metastases. ELISA analysis of serum samples obtained from pancreatic cancer patients (n = 70), chronic pancreatitis patients (n = 12), and healthy donors (n = 20) showed a 1.6-fold increase in OPN serum levels in patients with tumors and a 1.9-fold increase in patients with chronic pancreatitis. Recombinant human OPN significantly increased the invasiveness of pancreatic cancer cells, without having any impact on cell proliferation. In addition, down regulation of OPN by specific siRNA molecules decreased pancreatic cancer cell invasion. In conclusion, OPN serum levels in pancreatic cancer and chronic pancreatitis patients are not significantly different, thereby restricting its role as a prognostic or follow-up marker. Our results do suggest, however, that blockade of OPN might be useful as a therapeutic approach to inhibit invasion and metastasis of pancreatic cancer cells.
Notes:
2004
 
PMID 
J Li, J Kleeff, A Guweidhi, I Esposito, P O Berberat, T Giese, M W Büchler, H Friess (2004)  RUNX3 expression in primary and metastatic pancreatic cancer.   J Clin Pathol 57: 3. 294-299 Mar  
Abstract: AIM: Runx transcription factors are important regulators of lineage specific gene expression, cell proliferation, and differentiation. Runx3 expression is lost in a high proportion of gastric cancers, suggesting a tumour suppressive role in this malignancy. This study investigates the expression and localisation of Runx3 in pancreatic tissues. METHODS: Quantitative polymerase chain reaction was used to measure Runx3 mRNA. Immunohistochemistry was carried out to localise Runx3 in normal pancreatic tissues, and in primary and metastatic pancreatic ductal adenocarcinoma (PDAC). Basal and transforming growth factor beta1 (TGFbeta1) induced Runx3 expression was analysed in cultured pancreatic cancer cell lines. RESULTS: Runx3 expression was low to absent in normal pancreatic tissues, but increased in a third of cancer tissues. Runx3 was present only in islets in normal pancreas, whereas in pancreatic cancers, Runx3 was detected in the cancer cells of seven of 24 samples analysed. In addition, it was expressed by lymphocytes in six of the 16 cases with lymphocyte infiltration. In pancreatic cancer cell lines, Runx3 mRNA was present in Colo-357 and T3M4 cells, but was low to absent in the other cell lines tested. TGFbeta1 repressed Runx3 mRNA expressed in Colo-357 cells, and had no effect on Runx3 expression in the other pancreatic cancer cell lines. CONCLUSION: Runx3 expression is restricted to islets in the normal pancreas. In contrast, a considerable proportion of pancreatic tumours express Runx3, and its expression is localised in the tumour cells and in the infiltrating lymphocytes. Thus, Runx3 might play a role in the pathogenesis of PDAC.
Notes:
 
DOI   
PMID 
Mark Hartel, Fabio F Di Mola, Andrea Gardini, Arthur Zimmermann, Pierluigi Di Sebastiano, Ahmed Guweidhi, Paolo Innocenti, Thomas Giese, Nathalia Giese, Markus W Büchler, Helmut Friess (2004)  Desmoplastic reaction influences pancreatic cancer growth behavior.   World J Surg 28: 8. 818-825 Aug  
Abstract: Connective tissue growth factor (CTGF), which is regulated by transforming growth factor-ss (TGFss), has recently been implicated in the pathogenesis of fibrotic diseases and tumor stroma. Inasmuch as generation of desmoplastic tissue is characteristic for pancreatic cancer, it is not known whether it gives pancreatic cancer cells a growth advantage or is a reaction of the body to inhibit cancer cell progression. In the present study we analyzed the expression and localization of CTGF and evaluated whether it influences the prognosis of pancreas cancer. Tissue samples were obtained from 25 individuals (6 women, 19 men) undergoing pancreatic resection for pancreatic cancer. Tissue samples from 13 previously healthy organ donors (5 women, 8 men) served as controls. Expression of CTGF was studied by Northern blot analysis. In situ hybridization and immunohistochemistry localized the respective mRNA moieties and proteins in the tissue samples. Northern blot analysis revealed that pancreatic cancer tissue samples exhibited a 46-fold increase in CTGF mRNA expression ( p < 0.001) over that of normal controls. In vitro studies confirmed that pancreatic stellate cells are the major source of CTGF mRNA expression and revealed a large variance in basal and TGFss-induced CTGF expression in cultured pancreatic cancer cells. This could also be confirmed by in situ hybridization, indicating that CTGF mRNA signals were located principally in fibroblasts, with only weak signals in the cancer cells. High CTGF mRNA levels in the tissue samples correlated with better tumor differentiation ( p < 0.03). In addition, patients whose tumors exhibited high CTGF mRNA levels (> onefold increase above normal controls) lived significantly longer than those whose tumors expressed low CTGF mRNA levels (none to onefold) ( p < 0.04 multivariate analysis). Our present data indicate that CTGF, as a downstream mediator of TGFss, is overexpressed in connective tissue cells and to a lesser extent in pancreatic cancer cells. Because patients with high CTGF mRNA expression levels have a better prognosis, our findings indicate that the desmoplastic reaction provides a growth disadvantage for pancreatic cancer cells.
Notes:
 
DOI   
PMID 
Ahmed Guweidhi, Jörg Kleeff, Nathalia Giese, Jamael El Fitori, Knut Ketterer, Thomas Giese, Markus W Büchler, Murray Korc, Helmut Friess (2004)  Enhanced expression of 14-3-3sigma in pancreatic cancer and its role in cell cycle regulation and apoptosis.   Carcinogenesis 25: 9. 1575-1585 Sep  
Abstract: 14-3-3sigma belongs to the 14-3-3 family of proteins, which are involved in the modulation of diverse signal transduction pathways. Loss of 14-3-3sigma expression has been observed in a number of human cancers, suggesting that it may have a role as a tumor suppressor gene. The aim of the study was to investigate the expression and the functional role of 14-3-3sigma in pancreatic ductal adenocarcinoma (PDAC). Expression of 14-3-3sigma was analyzed using laser capture microdissection (LCM), quantitative real-time-PCR (QRT-PCR), DNA arrays, immunohistochemistry and western blot analysis. The role of 14-3-3sigma in apoptosis and cell cycle regulation was evaluated by western blotting, immunoprecipitation and FACS analysis. By QRT-PCR, 14-3-3sigma mRNA levels were 54-fold increased in pancreatic adenocarcinoma in comparison with normal pancreatic samples and localized in pancreatic cancer cells as determined by LCM. In pancreatic cancer cells, the degree of 14-3-3sigma expression was not decisive for the maintenance of G(2)/M cell cycle checkpoint or induction of apoptosis. Responses to radiation or apoptosis-inducing agents were neither accompanied by a significant 14-3-3sigma accumulation nor by a change in association of 14-3-3sigma with cdc2, bad and bax. In conclusion, the marked over-expression of 14-3-3sigma in PADC together with multiple known genetic and epigenetic alterations of potential 14-3-3sigma interacting partners suggests an important role of aberrant 14-3-3sigma downstream signaling in pancreatic cancer.
Notes:
2003
 
PMID 
Q Liao, J Kleeff, Y Xiao, A Guweidhi, A Schambony, E Töpfer-Petersen, A Zimmermann, M W Büchler, H Friess (2003)  Preferential expression of cystein-rich secretory protein-3 (CRISP-3) in chronic pancreatitis.   Histol Histopathol 18: 2. 425-433 Apr  
Abstract: BACKGROUND: Chronic pancreatitis (CP) is a progressive inflammatory process resulting in exocrine and endocrine pancreatic insufficiency in advanced stages. Cysteine-rich secretory protein (CRISP-3) has been identified as a defense-associated molecule with predominant expression in the salivary gland, pancreas and prostate. AIMS: In this study, we investigated CRISP-3 expression in normal pancreatic tissues, chronic pancreatitis tissues, pancreatic cancer tissues and pancreatic cancer cell lines, as well as in other gastrointestinal organs. MATERIALS AND METHODS: 15 normal pancreatic tissues, 14 chronic pancreatitis tissues and 14 pancreatic cancer tissues as well as three pancreatic cancer cell lines were analyzed. Moreover, hepatocellular carcinoma and esophageal, stomach and colon cancers were also analyzed together with the corresponding normal controls. RESULTS: CRISP-3 was expressed at moderate to high levels in chronic pancreatitis tissues and at moderate levels in pancreatic cancer tissues but at low levels in normal pancreatic tissues, and was absent in three pancreatic cancer cell lines. CRISP-3 expression was below the level of detection in all cancerous gastrointestinal tissues and in all normal tissues except 2 of 16 colon tissue samples. CRISP-3 mRNA signals and immunoreactivity were strongly present in the cytoplasm of degenerating acinar cells and in small proliferating ductal cells in CP tissues and CP-like lesions in pancreatic cancer tissues. In contrast, CRISP-3 expression was weak to absent in the cytoplasm of cancer cells as well as in acinar cells and ductal cells in pancreatic cancer tissues and normal pancreatic tissues. CONCLUSION: These results reveal that the distribution of CRISP-3 in gastrointestinal tissues is predominantly in the pancreas. High levels of CRISP-3 in acinar cells dedifferentiating into small proliferating ductal cells in CP and CP-like lesions in pancreatic cancer suggests a role of this molecule in the pathophysiology of CP.
Notes:
 
DOI   
PMID 
H Friess, J Ding, J Kleeff, L Fenkell, J A Rosinski, A Guweidhi, J F Reidhaar-Olson, M Korc, J Hammer, M W Büchler (2003)  Microarray-based identification of differentially expressed growth- and metastasis-associated genes in pancreatic cancer.   Cell Mol Life Sci 60: 6. 1180-1199 Jun  
Abstract: Pancreatic ductal adenocarcinoma (PDAC) has an extremely poor prognosis. To improve diagnosis and treatment, key mechanisms of deregulated molecular functions have to be identified. Using microarray analysis, the expression patterns of 5600 human genes were assessed in PDAC by comparison with the normal pancreas and chronic pancreatitis (CP). The expression of 467 of 5600 genes was increased in PDAC in comparison to the normal pancreas, and the expression of 120 of these genes was not increased in CP. In addition, 341 of 5600 genes were expressed at decreased levels in PDAC tissues, of which 96 were decreased in comparison to both normal and CP tissues. Thus, a total of 808 of 5600 human genes were differentially expressed in pancreatic cancer. The identification of a large panel of altered genes in PDAC will stimulate additional studies that will lead to improved understanding of the molecular mechanisms underlying pancreatic malignant growth.
Notes:
Powered by publicationslist.org.