hosted by
publicationslist.org
    

Ingrid Revet


ingrid.revet@gmail.com

Journal articles

2010
Sebastien de Feraudy, Katie Ridd, Lauren M Richards, Pui-Yan Kwok, Ingrid Revet, Dennis Oh, Luzviminda Feeney, James E Cleaver (2010)  The DNA damage-binding protein XPC is a frequent target for inactivation in squamous cell carcinomas.   Am J Pathol 177: 2. 555-562 Aug  
Abstract: XPC, the main damage-recognition protein responsible for nucleotide excision repair of UVB damage to DNA, is lost or mutated in xeroderma pigmentosum group C (XP-C), a rare inherited disease characterized by high incidence and early onset of non-melanoma and melanoma skin cancers. The high incidence of skin cancers in XP-C patients suggests that loss of expression of XPC protein might also provide a selective advantage for initiation and progression of similar cancers in non XP-C patients in the general population. To test whether XPC is selectively lost in squamous cell carcinomas from non XP-C patients, we examined XPC expression by immunohistochemistry on a tissue microarray with 244 tissue cores, including in situ and invasive squamous-cell carcinomas (SCCs), keratoacanthoma (KA), and normal skin samples from both immunocompetent and immunosuppressed patients. We found that XPC expression was lost in 49% of invasive squamous cell carcinomas from immunocompetent patients and 59% from immunosuppressed patients. Loss of expression was correlated with deletions of chromosomal 3p and mutations in the XPC gene. The XPC gene is consequently inactivated or lost in almost half of squamous cell carcinomas from non XP-C patients. Loss or mutation of XPC may be an early event during skin carcinogenesis that provides a selective advantage for initiation and progression of squamous cell carcinomas in non XP-C patients.
Notes:
Ingrid Revet, Gerda Huizenga, Jan Koster, Richard Volckmann, Peter van Sluis, Rogier Versteeg, Dirk Geerts (2010)  MSX1 induces the Wnt pathway antagonist genes DKK1, DKK2, DKK3, and SFRP1 in neuroblastoma cells, but does not block Wnt3 and Wnt5A signalling to DVL3.   Cancer Lett 289: 2. 195-207 Mar  
Abstract: Neuroblastoma is the most common extra-cranial solid childhood cancer; it arises from neural crest-derived cells of the sympathetic nervous system. The anomalous regulation of embryonic developmental pathways like Delta-Notch and Wnt has been implicated in aberrant cell growth and differentiation in many (childhood) tumours. We have previously found regulation of Delta-Notch pathway genes by the MSX1 neural crest development gene in a neuroblastoma cell line, and significant correlations between these genes in neuroblastic tumours. However, a clear role for the Wnt pathway in neuroblastic tumours has not yet been determined. We now analyze the complete spectrum of genes regulated by inducible expression of MSX1 in the SJNB8 neuroblastoma cell line using Affymetrix expression profiling. We show that MSX1 induces the expression of four different Wnt pathway inhibitor genes: Dickkopf 1-3 (DKK1-3) and secreted frizzled-related protein 1 (SFRP1), and provide evidence that high expression of two of these genes correlates with good prognosis. We were able to demonstrate that both the canonical Wnt3 and the alternative Wnt5A ligands are highly expressed in neuroblastic tumours and cell lines, and specifically activate the DVL3 Wnt co-receptor protein in SJNB8 neuroblastoma cells. These results suggest involvement of MSX1 in Wnt signalling and demonstrate activity of the more upstream Wnt pathway in neuroblastic cells.
Notes:
Sebastien de Feraudy, Ingrid Revet, Vladimir Bezrookove, Luzviminda Feeney, James E Cleaver (2010)  A minority of foci or pan-nuclear apoptotic staining of gammaH2AX in the S phase after UV damage contain DNA double-strand breaks.   Proc Natl Acad Sci U S A 107: 15. 6870-6875 Apr  
Abstract: UV irradiation induces histone variant H2AX phosphorylated on serine 139 (gammaH2AX) foci and high levels of pan-nuclear gammaH2AX staining without foci, but the significance of this finding is still uncertain. We examined the formation of gammaH2AX and 53BP1 that coincide at sites of double-strand breaks (DSBs) after ionizing radiation. We compared UV irradiation and treatment with etoposide, an agent that causes DSBs during DNA replication. We found that during DNA replication, UV irradiation induced at least three classes of gammaH2AX response: a minority of gammaH2AX foci colocalizing with 53BP1 foci that represent DSBs at replication sites, a majority of gammaH2AX foci that did not colocalize with 53BP1 foci, and cells with high levels of pan-nuclear gammaH2AX without foci of either gammaH2AX or 53BP1. Ataxia-telangiectasia mutated kinase and JNK mediated the UV-induced pan-nuclear gammaH2Ax, which preceded and paralleled UV-induced S phase apoptosis. These high levels of pan-nuclear gammaH2AX were further increased by loss of the bypass polymerase Pol eta and inhibition of ataxia-telangiectasia and Rad3-related, but the levels required the presence of the damage-binding proteins of excision repair xeroderma pigmentosum complementation group A and C proteins. DSBs, therefore, represent a small variable fraction of UV-induced gammaH2AX foci dependent on repair capacity, and they are not detected within high levels of pan-nuclear gammaH2AX, a preapoptotic signal associated with ATM- and JNK-dependent apoptosis during replication. The formation of gammaH2AX foci after treatment with DNA-damaging agents cannot, therefore, be used as a direct measure of DSBs without independent corroborating evidence.
Notes:
2009
James E Cleaver, Ernest T Lam, Ingrid Revet (2009)  Disorders of nucleotide excision repair: the genetic and molecular basis of heterogeneity.   Nat Rev Genet 10: 11. 756-768 Nov  
Abstract: Mutations in genes on the nucleotide excision repair pathway are associated with diseases, such as xeroderma pigmentosum, Cockayne syndrome and trichothiodystrophy, that involve skin cancer and developmental and neurological symptoms. These mutations cause the defective repair of damaged DNA and increased transcription arrest but, except for skin cancer, the links between repair and disease have not been obvious. Widely different clinical syndromes seem to result from mutations in the same gene, even when the mutations result in complete loss of function. The mapping of mutations in recently solved protein structures has begun to clarify the links between the molecular defects and phenotypes, but the identification of additional sources of clinical variability is still necessary.
Notes:
2008
Ingrid Revet, Gerda Huizenga, Alvin Chan, Jan Koster, Richard Volckmann, Peter van Sluis, Ingrid Øra, Rogier Versteeg, Dirk Geerts (2008)  The MSX1 homeobox transcription factor is a downstream target of PHOX2B and activates the Delta-Notch pathway in neuroblastoma.   Exp Cell Res 314: 4. 707-719 Feb  
Abstract: Neuroblastoma is an embryonal tumour of the peripheral sympathetic nervous system (SNS). One of the master regulator genes for peripheral SNS differentiation, the homeobox transcription factor PHOX2B, is mutated in familiar and sporadic neuroblastomas. Here we report that inducible expression of PHOX2B in the neuroblastoma cell line SJNB-8 down-regulates MSX1, a homeobox gene important for embryonic neural crest development. Inducible expression of MSX1 in SJNB-8 caused inhibition of both cell proliferation and colony formation in soft agar. Affymetrix micro-array and Northern blot analysis demonstrated that MSX1 strongly up-regulated the Delta-Notch pathway genes DLK1, NOTCH3, and HEY1. In addition, the proneural gene NEUROD1 was down-regulated. Western blot analysis showed that MSX1 induction caused cleavage of the NOTCH3 protein to its activated form, further confirming activation of the Delta-Notch pathway. These experiments describe for the first time regulation of the Delta-Notch pathway by MSX1, and connect these genes to the PHOX2B oncogene, indicative of a role in neuroblastoma biology. Affymetrix micro-array analysis of a neuroblastic tumour series consisting of neuroblastomas and the more benign ganglioneuromas showed that MSX1, NOTCH3 and HEY1 are more highly expressed in ganglioneuromas. This suggests a block in differentiation of these tumours at distinct developmental stages or lineages.
Notes:
J E Cleaver, I Revet (2008)  Clinical implications of the basic defects in Cockayne syndrome and xeroderma pigmentosum and the DNA lesions responsible for cancer, neurodegeneration and aging.   Mech Ageing Dev 129: 7-8. 492-497 Jul/Aug  
Abstract: Cancer, aging, and neurodegeneration are all associated with DNA damage and repair in complex fashions. Aging appears to be a cell and tissue-wide process linked to the insulin-dependent pathway in several DNA repair deficient disorders, especially in mice. Cancer and neurodegeneration appear to have complementary relationships to DNA damage and repair. Cancer arises from surviving cells, or even stem cells, that have down-regulated many pathways, including apoptosis, that regulate genomic stability in a multi-step process. Neurodegeneration however occurs in nondividing neurons in which the persistence of apoptosis in response to reactive oxygen species is, itself, pathological. Questions that remain open concern: sources and chemical nature of naturally occurring DNA damaging agents, especially whether mitochondria are the true source; the target tissues for DNA damage and repair; do the human DNA repair deficient diseases delineate specific pathways of DNA damage relevant to clinical outcomes; if naturally occurring reactive oxygen species are pathological in human repair deficient disease, would anti-oxidants or anti-apoptotic agents be feasible therapeutic agent?
Notes:
2006
Cs-F Hooi, C Blancher, W Qiu, I M Revet, L H Williams, M L Ciavarella, R L Anderson, E W Thompson, A Connor, W A Phillips, I G Campbell (2006)  ST7-mediated suppression of tumorigenicity of prostate cancer cells is characterized by remodeling of the extracellular matrix.   Oncogene 25: 28. 3924-3933 Jun  
Abstract: Multiple lines of evidence have provided compelling evidence for the existence of a tumor suppressor gene (TSG) on chromosome 7q31.1. ST7 may be the target of this genetic instability but its designation as a TSG is controversial. In this study, we show that, functionally, ST7 behaves as a tumor suppressor in human cancer. ST7 suppressed growth of PC-3 prostate cancer cells inoculated subcutaneously into severe combined immunodeficient mice, and increased the latency of tumor detection from 13 days in control tumors to 23 days. Re-expression of ST7 was also associated with suppression of colony formation under anchorage-independent conditions in MDA-MB-231 breast cancer cells and ST7 mRNA expression was downregulated in 44% of primary breast cancers. Expression profiling of PC-3 cells revealed that ST7 predominantly induces changes in genes involved in re-modeling the extracellular matrix such as SPARC, IGFBP5 and several matrix metalloproteinases. These data indicate that ST7 may mediate tumor suppression through modification of the tumor microenvironment.
Notes:
2005
Dirk Geerts, Ingrid Revet, Gerda Jorritsma, Nathalie Schilderink, Rogier Versteeg (2005)  MEIS homeobox genes in neuroblastoma.   Cancer Lett 228: 1-2. 43-50 Oct  
Abstract: The common pediatric tumor neuroblastoma originates from primitive neural crest-derived precursor cells of the peripheral nervous system. Neuroblastoma especially affects very young children, and can already be present at birth. Its early onset and cellular origin predict the involvement of developmental control genes in neuroblastoma etiology. These genes are indispensable for the tight regulation of normal embryonic development but as a consequence cause cancer and congenital diseases upon mutation or aberrant expression. To date however, the connotation of these genes in neuroblastoma pathogenesis is scant. This review recapitulates data on the MEIS homeobox control genes in cancer and focuses on neuroblastoma.
Notes:
2002
Donald E Ward, Ingrid M Revet, Renu Nandakumar, Jon H Tuttle, Willem M de Vos, John van der Oost, Jocelyne DiRuggiero (2002)  Characterization of plasmid pRT1 from Pyrococcus sp. strain JT1.   J Bacteriol 184: 9. 2561-2566 May  
Abstract: We discovered a 3,373-bp plasmid (pRT1) in the hyperthermophilic archaeon Pyrococcus sp. strain JT1. Two major open reading frames were identified, and analysis of the sequence revealed some resemblance to motifs typically found in plasmids that replicate via a rolling-circle mechanism. The presence of single-stranded DNA replication intermediates of pRT1 was detected, confirming this mode of replication.
Notes:
Powered by PublicationsList.org.