hosted by
publicationslist.org
    

Ivan M Moya

Laboratory of Growth Control and Cancer Research

VIB11 Center for the Biology of Disease |KU Leuven Center for Human Genetics
O&N4 Herestraat 49 box 602 | B-3000 Leuven | Belgium
ivan.moya@med.kuleuven.be

Journal articles

2013
Leticia Sansores-Garcia, Mardelle Atkins, Ivan M Moya, Maria Shahmoradgoli, Chunyao Tao, Gordon B Mills, Georg Halder (2013)  Mask is required for the activity of the Hippo pathway effector Yki/YAP.   Curr Biol 23: 3. 229-235 Feb  
Abstract: The Drosophila Yorkie (Yki) protein and its mammalian homolog Yes-associated protein (YAP) are potent growth promoters, and YAP overexpression is associated with multiple types of cancer. Yki and YAP are transcriptional coactivators and function as downstream effectors of the Hippo tumor suppressor pathway. The regulation of Yki and YAP by the Hippo signaling pathway has been extensively investigated; however, how they regulate gene expression is poorly understood. To identify additional regulators of Yki activity, we performed a genome-wide RNAi screen in Drosophila S2 cells. In this screen, we identified the conserved protein Mask (Multiple ankyrin repeats single KH domain) as a novel promoter of Yki activity in vitro and validated this function in vivo in Drosophila. We found that Mask is required downstream of the Hippo pathway for Yki to induce target-gene expression and that Mask forms complexes with Yki. The human Mask homolog MASK1 complexes with YAP and is required for the full activity of YAP. Additionally, elevated MASK1 expression is associated with worsened outcomes for breast cancer patients. We conclude that Mask is a novel cofactor for Yki/YAP required for optimal Yki/YAP activity during development and oncogenesis.
Notes:
2012
Karen Beets, Danny Huylebroeck, Iván M Moya, Lieve Umans, An Zwijsen (2012)  Robustness in angiogenesis: Notch and BMP shaping waves.   Trends Genet Dec  
Abstract: Vascular patterning involves sprouting of blood vessels, which is governed by orchestrated communication between cells in the surrounding tissue and endothelial cells (ECs) lining the blood vessels. Single ECs are selected for sprouting by hypoxia-induced stimuli and become the 'tip' or leader cell that guides new sprouts. The 'stalk' or trailing ECs proliferate for tube extension and lumenize the nascent vessel. Stalk and tip cells can dynamically switch their identities during this process in a Notch-dependent manner. Here, we review recent studies showing that bone morphogenetic protein (BMP) signaling coregulates Notch target genes in ECs. In particular, we focus on how Delta-like ligand 4 (DLL4)-Notch and BMP effector interplay may drive nonsynchronized oscillatory gene expression in ECs essential for setting sharp tip-stalk cell boundaries while sustaining a dynamic pool of nonsprouting ECs. Deeper knowledge about the coregulation of vessel plasticity in different vascular beds may result in refinement of anti-angiogenesis and vessel normalization therapies.
Notes:
Paulo N G Pereira, Mariya P Dobreva, Elke Maas, Frederique M Cornelis, Iván M Moya, Lieve Umans, Catherine M Verfaillie, Anne Camus, Susana M Chuva de de Lopes, Danny Huylebroeck, An Zwijsen (2012)  Antagonism of Nodal signaling by BMP/Smad5 prevents ectopic primitive streak formation in the mouse amnion.   Development 139: 18. 3343-3354 Sep  
Abstract: The strength and spatiotemporal activity of Nodal signaling is tightly controlled in early implantation mouse embryos, including by autoregulation and feedback loops, and involves secreted and intracellular antagonists. These control mechanisms, which are established at the extra-embryonic/embryonic interfaces, are essential for anterior-posterior patterning of the epiblast and correct positioning of the primitive streak. Formation of an ectopic primitive streak, or streak expansion, has previously been reported in mutants lacking antagonists that target Nodal signaling. Here, we demonstrate that loss-of-function of a major bone morphogenetic protein (BMP) effector, Smad5, results in formation of an ectopic primitive streak-like structure in mutant amnion accompanied by ectopic Nodal expression. This suggests that BMP/Smad5 signaling contributes to negative regulation of Nodal. In cultured cells, we find that BMP-activated Smad5 antagonizes Nodal signaling by interfering with the Nodal-Smad2/4-Foxh1 autoregulatory pathway through the formation of an unusual BMP4-induced Smad complex containing Smad2 and Smad5. Quantitative expression analysis supports that ectopic Nodal expression in the Smad5 mutant amnion is induced by the Nodal autoregulatory loop and a slow positive-feedback loop. The latter involves BMP4 signaling and also induction of ectopic Wnt3. Ectopic activation of these Nodal feedback loops in the Smad5 mutant amnion results in the eventual formation of an ectopic primitive streak-like structure. We conclude that antagonism of Nodal signaling by BMP/Smad5 signaling prevents primitive streak formation in the amnion of normal mouse embryos.
Notes:
Iván M Moya, Lieve Umans, Elke Maas, Paulo N G Pereira, Karen Beets, Annick Francis, Ward Sents, Elizabeth J Robertson, Christine L Mummery, Danny Huylebroeck, An Zwijsen (2012)  Stalk cell phenotype depends on integration of Notch and Smad1/5 signaling cascades.   Dev Cell 22: 3. 501-514 Mar  
Abstract: Gradients of vascular endothelial growth factor (VEGF) induce single endothelial cells to become leading tip cells of emerging angiogenic sprouts. Tip cells then suppress tip-cell features in adjacent stalk cells via Dll4/Notch-mediated lateral inhibition. We report here that Smad1/Smad5-mediated BMP signaling synergizes with Notch signaling during selection of tip and stalk cells. Endothelium-specific inactivation of Smad1/Smad5 in mouse embryos results in impaired Dll4/Notch signaling and increased numbers of tip-cell-like cells at the expense of stalk cells. Smad1/5 downregulation in cultured endothelial cells reduced the expression of several target genes of Notch and of other stalk-cell-enriched transcripts (Hes1, Hey1, Jagged1, VEGFR1, and Id1-3). Moreover, Id proteins act as competence factors for stalk cells and form complexes with Hes1, which augment Hes1 levels in the endothelium. Our findings provide in vivo evidence for a regulatory loop between BMP/TGFβ-Smad1/5 and Notch signaling that orchestrates tip- versus stalk-cell selection and vessel plasticity.
Notes:
2011
Andrea Conidi, Silvia Cazzola, Karen Beets, Kathleen Coddens, Clara Collart, Frederique Cornelis, Luk Cox, Debruyn Joke, Mariya P Dobreva, Ruben Dries, Camila Esguerra, Annick Francis, Abdelilah Ibrahimi, Roel Kroes, Flore Lesage, Elke Maas, Ivan Moya, Paulo N G Pereira, Elke Stappers, Agata Stryjewska, Veronique van den Berghe, Liesbeth Vermeire, Griet Verstappen, Eve Seuntjens, Lieve Umans, An Zwijsen, Danny Huylebroeck (2011)  Few Smad proteins and many Smad-interacting proteins yield multiple functions and action modes in TGFβ/BMP signaling in vivo.   Cytokine Growth Factor Rev 22: 5-6. 287-300 Oct/Dec  
Abstract: Signaling by the many ligands of the TGFβ family strongly converges towards only five receptor-activated, intracellular Smad proteins, which fall into two classes i.e. Smad2/3 and Smad1/5/8, respectively. These Smads bind to a surprisingly high number of Smad-interacting proteins (SIPs), many of which are transcription factors (TFs) that co-operate in Smad-controlled target gene transcription in a cell type and context specific manner. A combination of functional analyses in vivo as well as in cell cultures and biochemical studies has revealed the enormous versatility of the Smad proteins. Smads and their SIPs regulate diverse molecular and cellular processes and are also directly relevant to development and disease. In this survey, we selected appropriate examples on the BMP-Smads, with emphasis on Smad1 and Smad5, and on a number of SIPs, i.e. the CPSF subunit Smicl, Ttrap (Tdp2) and Sip1 (Zeb2, Zfhx1b) from our own research carried out in three different vertebrate models.
Notes:
2007
Iván M Moya, Ingrid Alarcón, Eugenia M del Pino (2007)  Gastrulation of Gastrotheca riobambae in comparison with other frogs.   Dev Biol 304: 2. 467-478 Apr  
Abstract: Blastopore formation, the embryonic disk, archenteron and notochord elongation, and Brachyury expression in the marsupial frog Gastrotheca riobambae was compared with embryos of Xenopus laevis and of the dendrobatids Colostethus machalilla and Epipedobates anthonyi. In contrast with X. laevis embryos, the blastopore closes before elongation of the archenteron and notochord in the embryos of G. riobambae and of the dendrobatid frogs. Moreover, the circumblastoporal collar (CBC) thickens due to the accumulation of involuted cells. An embryonic disk, however, is formed only in the G. riobambae gastrula. We differentiate three gastrulation patterns according to the speed of development: In X. laevis, elongation of the archenteron and notochord begin in the early to mid gastrula, whereas in the dendrobatids C. machalilla and E. anthonyi the archenteron elongates at mid gastrula and the notochord elongates after gastrulation. In G. riobambae, only involution takes place during gastrulation. Archenteron and notochord elongation occur in the post gastrula. In the non-aquatic reproducing frogs, the margin of the archenteron expands anisotropically, resulting in an apparent displacement of the CBC from a medial to a posterior location, resembling the displacement of Hensen's node in the chick and mouse. The differences detected indicate that amphibian gastrulation is modular.
Notes:
Eugenia M del Pino, Michael Venegas-Ferrín, Andrés Romero-Carvajal, Paola Montenegro-Larrea, Natalia Sáenz-Ponce, Iván M Moya, Ingrid Alarcón, Norihiro Sudou, Shinji Yamamoto, Masanori Taira (2007)  A comparative analysis of frog early development.   Proc Natl Acad Sci U S A 104: 29. 11882-11888 Jul  
Abstract: The current understanding of Xenopus laevis development provides a comparative background for the analysis of frog developmental modes. Our analysis of development in various frogs reveals that the mode of gastrulation is associated with developmental rate and is unrelated to egg size. In the gastrula of the rapidly developing embryos of the foam-nesting frogs Engystomops coloradorum and Engystomops randi, archenteron and notochord elongation overlapped with involution at the blastopore lip, as in X. laevis embryos. In embryos of dendrobatid frogs and in the frog without tadpoles Eleutherodactylus coqui, which develop somewhat more slowly than X. laevis, involution and archenteron elongation concomitantly occurred during gastrulation; whereas elongation of the notochord and, therefore, dorsal convergence and extension, occurred in the postgastrula. In contrast, in the slow developing embryos of the marsupial frog Gastrotheca riobambae, only involution occurred during gastrulation. The processes of archenteron and notochord elongation and convergence and extension were postgastrulation events. We produced an Ab against the homeodomain protein Lim1 from X. laevis as a tool for the comparative analysis of development. By the expression of Lim1, we were able to identify the dorsal side of the G. riobambae early gastrula, which otherwise was difficult to detect. Moreover, the Lim1 expression in the dorsal lip of the blastopore and notochord differed among the studied frogs, indicating variation in the timing of developmental events. The variation encountered gives evidence of the modular character of frog gastrulation.
Notes:
2004
Eugenia M Del Pino, Mariá-Eugenia Avila, Oscar D Pérez, Maria-Soledad Benitez, Ingrid Alarcón, Vanessa Noboa, Iván M Moya (2004)  Development of the dendrobatid frog Colostethus machalilla.   Int J Dev Biol 48: 7. 663-670 Sep  
Abstract: To provide a developmental correlate with other frogs, we prepared a normal table of development for the dendrobatid, Colostethus machalilla and analyzed the morphology of its early development. This frog reproduces in captivity and deposits moderately sized eggs (1.6 mm in diameter) in terrestrial nests. The father guards the embryos until tadpole hatching. We divided development until hatching into 25 stages and implemented methods for in vitro culture of the embryos. The external and internal morphology of embryos were evaluated by observations in whole mount and in sections. Neural, notochord and somite specific antibodies were used to analyze gene expression patterns by immunostaining of embryos. Embryonic development of C. machalilla is slow and deviates from Xenopus laevis. In C. machalilla the elongation of the notochord, neural plate and somite formation occur after blastopore closure, possibly due to a delay in the dorsal convergence and extension movements. The gastrula of C. machalilla also deviates from X. laevis. The archenteron remains small until blastopore closure, where small cells accumulate at the blastopore lips. Simultaneously, the blastocoel roof thins until it becomes a monolayer of cells. Although C. machalilla does not form an embryonic disk, its thick blastopore lips resemble the embryonic disk of the marsupial frog Gastrotheca riobambae and represent an interesting deviation from the gastrulation pattern observed in X. laevis.
Notes:
Powered by PublicationsList.org.