hosted by
publicationslist.org
    
jean denis troadec

j-d.troadec@univ-cezanne.fr

Journal articles

2009
 
DOI   
PMID 
Kathleen C Horner, Jean-Denis Troadec, Michel Dallaporta, Juliette Pio (2009)  Effect of chronic estradiol administration on vimentin and GFAP immunohistochemistry within the inner ear.   Neurobiol Dis 35: 2. 201-208 Aug  
Abstract: Recent data show that hormone replacement therapy, involving estrogen together with progestin, can promote hearing loss (Guimaraes, P., Frisina, S.T., Mapes, F., Tadros, S.F., Frisina, D.R. and Frisina, R.D., 2006. Progestin negatively affects hearing in aged women. Proc. Natl. Acad. Sci. USA. 103, 14246-14249.). But long-term estradiol treatment, which induces hyperprolactinemia in guinea pigs, results in hearing loss and bone dysmorphology of the otic capsule-without much hair cell loss (Horner, K.C., Cazals, Y., Guieu, R., Lenoir, M. and Sauze, N., 2007. Experimental estrogen-induced hyperprolactinemia results in bone-related hearing loss in the guinea pig. Am. J. Physiol., Endocrinol. Metab. 293, E1224-1232.). Since estrogen receptor beta can protect the mouse cochlea against acoustic trauma (Meltser, I., Tahera, Y., Simpson, E., Hultcrantz, M., Charitidi, K., Gustafsson, J.A. and Canlon, B., 2008. Estrogen receptor beta protects against acoustic trauma in mice. J. Clin. Invest. 118, 1563-1570.), we hypothesized that estradiol might activate protective glial-like elements in the inner ear. Immunohistochemistry showed down-regulation of vimentin within the lateral wall and upregulation within the spiral limbus. Glial fibrillary acid protein was increased in the inner sulcus, Hensen cells and Claudius cells. Furthermore, there was increased expression of vimentin in type II cells of the spiral ganglion and type I vestibular hair cells. The observations suggested that estradiol treatment may affect the inner ear ionic homeostasis but protection may be afforded via activated intermediate filaments.
Notes:
 
DOI   
PMID 
Emilie Pecchi, Michel Dallaporta, André Jean, Sylvie Thirion, Jean-Denis Troadec (2009)  Prostaglandins and sickness behavior: old story, new insights.   Physiol Behav 97: 3-4. 279-292 Jun  
Abstract: Previous evidence has shown that prostaglandins play a key role in the development of sickness behavior observed during inflammatory states. In particular, prostaglandin E2 (PGE2) is produced in the brain by a variety of inflammatory signals such as endotoxins or cytokines. Its injection has been also shown to induce symptoms of sickness behavior. The role of cyclooxygenase enzymes (COX), the rate-limiting enzymes converting arachidonic acid into prostaglandins, in sickness behavior has been extensively studied, and it has been demonstrated that strategies aiming at inhibiting these enzymes limit anorexia, body weight loss and fever in animals with inflammatory diseases. However, inhibiting COX activity may lead to negative gastric or cardiovascular effects, since COX enzymes play a role in the synthesis of others prostanoids with various and sometimes contrasting properties. Recently, prostaglandin E synthases (PGES), which specifically catalyze the final step of PGE2 biosynthesis, were characterized. Among these enzymes, the microsomal prostaglandin E synthase-1 (mPGES-1) was of a particular interest since it was shown to be up-regulated by inflammatory signals in a variety of cell types. Moreover, mPGES-1 was shown to be crucial for correct immune-to-brain communication and induction of fever and anorexia by pro-inflammatory agents. This review takes stock of previous knowledge and recent advances in understanding the role of prostaglandins and of their specific synthesizing enzymes in the molecular mechanisms underlying sickness behavior. The review concludes with a short summary of key questions that remain to be addressed and points out therapeutic developments in this research field.
Notes:
 
DOI   
PMID 
M Dallaporta, E Pecchi, J Pio, A Jean, K C Horner, J D Troadec (2009)  Expression of leptin receptor by glial cells of the nucleus tractus solitarius: possible involvement in energy homeostasis.   J Neuroendocrinol 21: 1. 57-67 Jan  
Abstract: Leptin, an adipocyte-derived hormone, regulates food intake and body weight by acting principally on the hypothalamus, which displays the highest expression of leptin receptor (Ob-R). Nevertheless, other regions of the brain express Ob-R and constitute leptin's target sites. The dorsal vagal complex (DVC), an integrative centre of autonomic functions located in the caudal brainstem, is one of these structures. Leptin, by acting through the DVC, affects autonomic and neuroendocrine functions, such as control of food intake and gastric motility. In the present study, we observed Ob-R labelling within the DVC in cells that correspond to neuronal cell bodies. We showed for the first time Ob-R expression in a subpopulation of glial fibrillary acid protein positive cells located at the border between the area postrema and the nucleus tractus solitarius (NTS). These glial cells exhibit an atypical morphology consisting of unbranched processes that radiate rostro-caudally from the fourth ventricle wall. In vitro, the glial cells exhibited both long and short Ob-R expression with a preferential expression of the Ob-Ra and-f isoforms. Interestingly, using i.v and i.c.v. injection of the fluorescent tracer hydroxystilbamidine, we provided evidence that these cells may constitute a diffusion barrier which might regulate entry of molecules into the NTS. Finally, modulation of energy status, by acute or chronic reduction of food intake, modulated especially the short Ob-R isoforms in the DVC. In the light of these results, we hypothesise that Ob-R positive glial cells of the DVC participate in the transport of leptin into the brainstem and thus contribute to regulation of energy homeostasis.
Notes:
2008
 
DOI   
PMID 
E Pecchi, M Dallaporta, A Jean, S Thirion, J D Troadec (2008)  mPGES-1 knock-out mice are resistant to cancer-induced anorexia despite the absence of central mPGES-1 up-regulation in wild-type anorexic mice.   J Neuroimmunol 199: 1-2. 104-114 Aug  
Abstract: Anorexia-cachexia syndrome is a very common symptom observed in individuals affected by chronic inflammatory diseases. The present study was designed to address the possible involvement of the inducible microsomal prostaglandin E synthase-1 (mPGES-1) in the hypopaghia observed during these pathological states. To this end, we used a model of cancer-induced anorexia and we report here that despite the absence of up-regulation of the mPGES-1 enzyme within the brain during anorexia-cachexia syndrome, mPGES-1 knock-out mice exhibit resistance to tumor-induced anorexia and maintain their body mass.
Notes:
2007
 
DOI   
PMID 
Emilie Pecchi, Michel Dallaporta, Céline Charrier, Juliette Pio, André Jean, Emmanuel Moyse, Jean-Denis Troadec (2007)  Glial fibrillary acidic protein (GFAP)-positive radial-like cells are present in the vicinity of proliferative progenitors in the nucleus tractus solitarius of adult rat.   J Comp Neurol 501: 3. 353-368 Mar  
Abstract: The dorsal vagal complex (DVC), an integrative center of autonomic functions located dorsally in the caudal brainstem, comprises the nucleus tractus solitarius (NTS), the area postrema (AP), and the dorsal motor nucleus of the vagus nerve (DMNX). Recently, this area of the brainstem was shown to retain, during adulthood, the expression of developmental markers, which is consistent with several forms of morphological and functional plasticity. These data led us to attempt to determine the structural organization and phenotypical characteristics of the astroglial compartment in the adult DVC. We report a strikingly high density of glial fibrillary acidic protein (GFAP) immunoreactive cells in the NTS and the DMNX compared to other brainstem structures. Furthermore, we observed a subpopulation of atypical GFAP+ cells in the NTS. These cells expressed vimentin and nestin and displayed unbranched processes that radiate rostrocaudally from cuboid cell bodies located in the 4th ventricle wall. Interestingly, these radiating cells were found in close association with neural progenitors whose proliferation was stimulated by intracerebroventricular injection of epidermal growth factor/basic fibroblast growth factor or lesion of the vagus nerve. Newly born neurons in the NTS identified by doublecortin (DCX) immunolabeling were also preferentially found in the vicinity of the radiating cells. Altogether, these results indicate that the adult NTS retains, during adulthood, astroglial cells that display morphological and phenotypical features seen during development. The overlap in the distribution of proliferative neural progenitors, newborn neurons, and radiating GFAP-positive cells suggest a possible role of the glial compartment of the NTS in functional plasticity in this structure.
Notes:
 
DOI   
PMID 
M Dallaporta, E Pecchi, C Jacques, F Berenbaum, A Jean, S Thirion, J D Troadec (2007)  c-Fos immunoreactivity induced by intraperitoneal LPS administration is reduced in the brain of mice lacking the microsomal prostaglandin E synthase-1 (mPGES-1).   Brain Behav Immun 21: 8. 1109-1121 Nov  
Abstract: The aim of the present study was to investigate the impact of the deletion of the microsomal prostaglandin E synthase-1 (mPGES-1) gene on lipopolysaccharide (LPS)-induced neuronal activation in central nervous structures. The mPGES-1 catalyses the conversion of COX-derived PGH(2) to PGE(2) and has been described as a regulated enzyme whose expression is stimulated by proinflammatory agents. Using the immediate-early gene c-fos as a marker of neuronal activation, we determined whether deletion of the mPGES-1 gene altered the neuronal activation induced by LPS in structures classically recognized as immunosensitive regions. No significant difference in the c-Fos immunostaining was observed in the brain of saline-treated mPGES-1+/+, mPGES-1+/- and mPGES-1-/- mice. However, we observed that LPS-induced neuronal activation was reduced in most of the centres known as immunosensitive nuclei in mPGES-1-/- mice compared with heterozygous and wild-type mice. The decrease in the number of c-Fos positive nuclei occurred particularly in the caudal ventrolateral medulla, the medial, intermediate and central parts of the nucleus tractus solitarius, area postrema, parabrachial nucleus, locus coeruleus, paraventricular nucleus of the hypothalamus, ventromedial preoptic area, central amygdala, bed nucleus of the stria terminalis and to a lesser extent in the ventrolateral part of the nucleus tractus solitarius and rostral ventrolateral medulla. These results suggest that the mPGES-1 enzyme is strongly needed to provide sufficient PGE(2) production required to stimulate immunosensitive brain regions and they are discussed with regard to the recent works reporting impaired sickness behavior in mPGES-1-/- mice.
Notes:
2006
 
DOI   
PMID 
E Pecchi, M Dallaporta, S Thirion, C Salvat, F Berenbaum, A Jean, J - D Troadec (2006)  Involvement of central microsomal prostaglandin E synthase-1 in IL-1beta-induced anorexia.   Physiol Genomics 25: 3. 485-492 May  
Abstract: In response to infection or inflammation, individuals develop a set of symptoms referred to as sickness behavior, which includes a decrease in food intake. The characterization of the molecular mechanisms underlying this hypophagia remains critical, because chronic anorexia may represent a significant health risk. Prostaglandins (PGs) constitute an important inflammatory mediator family whose levels increase in the brain during inflammatory states, and their involvement in inflammatory-induced anorexia has been proposed. The microsomal PGE synthase (mPGES)-1 enzyme is involved in the last step of PGE2 biosynthesis, and its expression is stimulated by proinflammatory agents. The present study attempted to determine whether an upregulation of mPGES-1 gene expression may account for the immune-induced anorexic behavior. We focused our study on mPGES-1 expression in the hypothalamus and dorsal vagal complex, two structures strongly activated during peripheral inflammation and involved in the regulation of food intake. We showed that mPGES-1 gene expression was robustly upregulated in these structures after intraperitoneal and intracerebroventricular injections of anorexigenic doses of IL-1beta. This increase was correlated with the onset of anorexia. The concomitant reduction in food intake and central mPGES-1 gene upregulation led us to test the feeding behavior of mice lacking mPGES-1 during inflammation. Interestingly, IL-1beta failed to decrease food intake in mPGES-1(-/-) mice, although these animals developed anorexia in response to a PGE2 injection. Taken together, our results demonstrate that mPGES-1, which is strongly upregulated during inflammation in central structures involved in feeding control, is essential for immune anorexic behavior and thus may constitute a potential therapeutic target.
Notes:
Powered by publicationslist.org.