hosted by
publicationslist.org
    

JV Veenvliet


j.v.veenvliet@gmail.com

Journal articles

2013
Jesse V Veenvliet, Maria T M Alves Dos Santos, Willemieke M Kouwenhoven, Lars von Oerthel, Jamie L Lim, Annemarie J A van der Linden, Marian J A Groot Koerkamp, Frank C P Holstege, Marten P Smidt (2013)  Specification of dopaminergic subsets involves interplay of En1 and Pitx3.   Development (Cambridge, England) Jul  
Abstract: Mesodiencephalic dopaminergic (mdDA) neurons control locomotion and emotion and are affected in multiple psychiatric and neurodegenerative diseases, including Parkinson's disease (PD). The homeodomain transcription factor Pitx3 is pivotal in mdDA neuron development and loss of Pitx3 results in programming deficits in a rostrolateral subpopulation of mdDA neurons destined to form the substantia nigra pars compacta (SNc), reminiscent of the specific cell loss observed in PD. We show here that in adult mice in which the gene encoding a second homeoprotein, engrailed 1 (En1), has been deleted, dramatic loss of mdDA neurons and striatal innervation defects were observed, partially reminiscent of defects observed in Pitx3(-/-) mice. We then continue to reveal developmental crosstalk between En1 and Pitx3 through genome-wide expression analysis. During development, both En1 and Pitx3 are required to induce expression of mdDA genes in the rostrolateral subset destined to form the SNc. By contrast, Pitx3 and En1 reciprocally regulate a separate gene cluster, which includes Cck, demarcating a caudal mdDA subset in wild-type embryos. Whereas En1 is crucial for induction of this caudal phenotype, Pitx3 antagonizes it rostrolaterally. The combinatorial action of En1 and Pitx3 is potentially realized through at least three levels of molecular interaction: (1) influencing each other's expression level, (2) releasing histone deacetylase-mediated repression of Nurr1 target genes and (3) modulating En1 activity through Pitx3-driven activation of En1 modulatory proteins. These findings show how two crucial mediators of mdDA neuronal development, En1 and Pitx3, interact in dopaminergic subset specification, the importance of which is exemplified by the specific vulnerability of the SNc found in PD.
Notes:
Hendrikus J van Heesbeen, Simone Mesman, Jesse V Veenvliet, Marten P Smidt (2013)  Epigenetic mechanisms in the development and maintenance of dopaminergic neurons.   Development (Cambridge, England) 140: 6. 1159-1169 Mar  
Abstract: Mesodiencephalic dopaminergic (mdDA) neurons are located in the ventral mesodiencephalon and are involved in psychiatric disorders and severely affected in neurodegenerative diseases such as Parkinson's disease. mdDA neuronal development has received much attention in the last 15 years and many transcription factors involved in mdDA specification have been discovered. More recently however, the impact of epigenetic regulation has come into focus, and it's emerging that the processes of histone modification and DNA methylation form the basis of genetic switches that operate during mdDA development. Here, we review the epigenetic control of mdDA development, maturation and maintenance. As we highlight, epigenetic mechanisms play a pivotal role in all of these processes and the knowledge gathered from studying epigenetics in these contexts may aid our understanding of mdDA-related pathologies.
Notes:
Elisa J Hoekstra, Lars von Oerthel, Lars P van der Heide, Willemieke M Kouwenhoven, Jesse V Veenvliet, Iris Wever, Yong-Ri Jin, Jeong K Yoon, Annemarie J A van der Linden, Frank C P Holstege, Marian J Groot Koerkamp, Marten P Smidt (2013)  Lmx1a Encodes a Rostral Set of Mesodiencephalic Dopaminergic Neurons Marked by the Wnt/B-Catenin Signaling Activator R-spondin 2.   PloS one 8: 9. 09  
Abstract: Recent developments in molecular programming of mesodiencephalic dopaminergic (mdDA) neurons have led to the identification of many transcription factors playing a role in mdDA specification. LIM homeodomain transcription factor Lmx1a is essential for chick mdDA development, and for the efficient differentiation of ES-cells towards a dopaminergic phenotype. In this study, we aimed towards a more detailed understanding of the subtle phenotype in Lmx1a-deficient (dreher) mice, by means of gene expression profiling. Transcriptome analysis was performed, to elucidate the exact molecular programming underlying the neuronal deficits after loss of Lmx1a. Subsequent expression analysis on brain sections, confirmed that Nurr1 is regulated by Lmx1a, and additional downstream targets were identified, like Pou4f1, Pbx1, Pitx2, C130021l20Rik, Calb2 and Rspo2. In line with a specific, rostral-lateral (prosomer 2/3) loss of expression of most of these genes during development, Nurr1 and C130021l20Rik were affected in the SNc of the mature mdDA system. Interestingly, this deficit was marked by the complete loss of the Wnt/b-catenin signaling activator Rspo2 in this domain. Subsequent analysis of Rspo2-/- embryos revealed affected mdDA neurons, partially phenocopying the Lmx1a mutant. To conclude, our study revealed that Lmx1a is essential for a rostral-lateral subset of the mdDA neuronal field, where it might serve a critical function in modulating proliferation and differentiation of mdDA progenitors through the regulation of the Wnt activator Rspo2.
Notes:
Alexi Nott, Justyna Nitarska*, Jesse V Veenvliet*, Stephan Schacke, Alwin A H A Derijck, Piotr Sirko, Christian Muchardt, R Jeroen Pasterkamp, Marten P Smidt, Antonella Riccio (2013)  S-nitrosylation of HDAC2 regulates the expression of the chromatin-remodeling factor Brm during radial neuron migration.   Proceedings of the National Academy of Sciences of the United States of America 110: 8. 3113-3118 Feb (*shared 2nd authorship)  
Abstract: Dynamic epigenetic modifications play a key role in mediating the expression of genes required for neuronal development. We previously identified nitric oxide (NO) as a signaling molecule that mediates S-nitrosylation of histone deacetylase 2 (HDAC2) and epigenetic changes in neurons. Here, we show that HDAC2 nitrosylation regulates neuronal radial migration during cortical development. Bead-array analysis performed in the developing cortex revealed that brahma (Brm), a subunit of the ATP-dependent chromatin-remodeling complex BRG/brahma-associated factor, is one of the genes regulated by S-nitrosylation of HDAC2. In the cortex, expression of a mutant form of HDAC2 that cannot be nitrosylated dramatically inhibits Brm expression. Our study identifies NO and HDAC2 nitrosylation as part of a signaling pathway that regulates cortical development and the expression of Brm in neurons.
Notes:
2011
Frank M J Jacobs*, Jesse V Veenvliet*, Wadia H Almirza, Elisa J Hoekstra, Lars von Oerthel, Annemarie J A van der Linden, Roel Neijts, Marian Groot Koerkamp, Dik van Leenen, Frank C P Holstege, J Peter H Burbach, Marten P Smidt (2011)  Retinoic acid-dependent and -independent gene-regulatory pathways of Pitx3 in meso-diencephalic dopaminergic neurons.   Development 138: 23. 5213-5222 Dec (*shared first authorship)  
Abstract: Development of meso-diencephalic dopamine (mdDA) neurons requires the combined actions of the orphan nuclear receptor Nurr1 and the paired-like homeobox transcription factor Pitx3. Whereas all mdDA neurons require Nurr1 for expression of Th and survival, dependence on Pitx3 is displayed only by the mdDA subpopulation that will form the substantia nigra (SNc). Previously, we have demonstrated that Pitx3(-/-) embryos lack the expression of the retinoic acid (RA)-generating enzyme Ahd2, which is normally selectively expressed in the Pitx3-dependent DA neurons of the SNc. Restoring RA signaling in Pitx3(-/-) embryos revealed a selective dependence of SNc neurons on the presence of RA for differentiation into Th-positive neurons and maintenance throughout embryonic development. Whereas these data are suggestive of an important developmental role for RA in neurons of the SNc, it remained unclear whether other Nurr1 and Pitx3 target genes depend on RA signaling in a manner similar to Th. In the search for genes that were affected in Pitx3-deficient mdDA neurons and restored upon embryonic RA treatment, we provide evidence that Delta-like 1, D2R (Drd2) and Th are regulated by Pitx3 and RA signaling, which influences the mdDA terminal differentiated phenotype. Furthermore, we show that regulation of Ahd2-mediated RA signaling represents only one aspect of the Pitx3 downstream cascade, as Vmat2, Dat, Ahd2 (Aldh1a1), En1, En2 and Cck were unaffected by RA treatment and are (subset) specifically modulated by Pitx3. In conclusion, our data reveal several RA-dependent and -independent aspects of the Pitx3-regulated gene cascade, suggesting that Pitx3 acts on multiple levels in the molecular subset-specification of mdDA neurons.
Notes:
2009
Michel M M Verheij, Jesse V Veenvliet, Tom Groot Kormelink, Maaike Steenhof, Alexander R Cools (2009)  Individual differences in the sensitivity to serotonergic drugs: a pharmacobehavioural approach using rats selected on the basis of their response to novelty.   Psychopharmacology (Berl) 205: 3. 441-455 Aug  
Abstract: The mechanisms underlying individual differences in the response to serotonergic drugs are poorly understood. Rat studies may contribute to our knowledge of the neuronal substrates that underlie these individual differences.
Notes:
Powered by PublicationsList.org.