hosted by
publicationslist.org
    

Janna E Hutz


jannahutz@gmail.com

Journal articles

2011
Janna E Hutz, W Aaron Manning, Michael A Province, Howard L McLeod (2011)  Genomewide analysis of inherited variation associated with phosphorylation of PI3K/AKT/mTOR signaling proteins.   PLoS One 6: 9. 09  
Abstract: While there exists a wealth of information about genetic influences on gene expression, less is known about how inherited variation influences the expression and post-translational modifications of proteins, especially those involved in intracellular signaling. The PI3K/AKT/mTOR signaling pathway contains several such proteins that have been implicated in a number of diseases, including a variety of cancers and some psychiatric disorders. To assess whether the activation of this pathway is influenced by genetic factors, we measured phosphorylated and total levels of three key proteins in the pathway (AKT1, p70S6K, 4E-BP1) by ELISA in 122 lymphoblastoid cell lines from 14 families. Interestingly, the phenotypes with the highest proportion of genetic influence were the ratios of phosphorylated to total protein for two of the pathway members: AKT1 and p70S6K. Genomewide linkage analysis suggested several loci of interest for these phenotypes, including a linkage peak for the AKT1 phenotype that contained the AKT1 gene on chromosome 14. Linkage peaks for the phosphorylated:total protein ratios of AKT1 and p70S6K also overlapped on chromosome 3. We selected and genotyped candidate genes from under the linkage peaks, and several statistically significant associations were found. One polymorphism in HSP90AA1 was associated with the ratio of phosphorylated to total AKT1, and polymorphisms in RAF1 and GRM7 were associated with the ratio of phosphorylated to total p70S6K. These findings, representing the first genomewide search for variants influencing human protein phosphorylation, provide useful information about the PI3K/AKT/mTOR pathway and serve as a valuable proof of concept for studies integrating human genomics and proteomics.
Notes:
2008
Janna E Hutz, Aldi T Kraja, Howard L McLeod, Michael A Province (2008)  CANDID: a flexible method for prioritizing candidate genes for complex human traits.   Genet Epidemiol 32: 8. 779-790 Dec  
Abstract: Genomewide studies and localized candidate gene approaches have become everyday study designs for identifying polymorphisms in genes that influence complex human traits. Yet, in general, the number of significant findings and the need to focus on smaller regions require a prioritization of genes for further study. Some candidate gene identification algorithms have been proposed in recent years to attempt to streamline this prioritization, but many suffer from limitations imposed by the source data or are difficult to use and understand. CANDID is a prioritization algorithm designed to produce impartial, accurate rankings of candidate genes that influence complex human traits. CANDID can use information from publications, protein domain descriptions, cross-species conservation measures, gene expression profiles and protein-protein interactions in its analysis. Additionally, users may supplement these data sources with results from linkage, association and other studies. CANDID was tested on well-known complex trait genes using data from the Online Mendelian Inheritance in Man database. Additionally, CANDID was evaluated in a modeled gene discovery environment, where it ranked genes whose trait associations were published after CANDID's databases were compiled. In all settings, CANDID exhibited high sensitivity and specificity, indicating an improvement upon previously published algorithms. Its accuracy and ease of use make CANDID a highly useful tool in study design and analysis for complex human traits.
Notes:
2007
Catherine E Keegan, Janna E Hutz, Andrea S Krause, Katrin Koehler, Louise A Metherell, Sosipatros Boikos, Sotirios Stergiopoulos, Adrian J L Clark, Constantine A Stratakis, Angela Huebner, Gary D Hammer (2007)  Novel polymorphisms and lack of mutations in the ACD gene in patients with ACTH resistance syndromes.   Clin Endocrinol (Oxf) 67: 2. 168-174 Aug  
Abstract: ACTH resistance is a feature of several human syndromes with known genetic causes, including familial glucocorticoid deficiency (types 1 and 2) and triple A syndrome. However, many patients with ACTH resistance lack an identifiable genetic aetiology. The human homolog of the Acd gene, mutated in a mouse model of adrenal insufficiency, was sequenced in 25 patients with a clinical diagnosis of familial glucocorticoid deficiency or triple A syndrome.
Notes:
Tobias Else, Brian K Theisen, Yipin Wu, Janna E Hutz, Catherine E Keegan, Gary D Hammer, David O Ferguson (2007)  Tpp1/Acd maintains genomic stability through a complex role in telomere protection.   Chromosome Res 15: 8. 1001-1013 01  
Abstract: Telomeres serve to protect the ends of chromosomes, and failure to maintain telomeres can lead to dramatic genomic instability. Human TPP1 was identified as a protein which interacts with components of a telomere cap complex, but does not directly bind to telomeric DNA. While biochemical interactions indicate a function in telomere biology, much remains to be learned regarding the roles of TPP1 in vivo. We previously reported the positional cloning of the gene responsible for the adrenocortical dysplasia (acd) mouse phenotype, which revealed a mutation in the mouse homologue encoding TPP1. We find that cells from homozygous acd mice harbor chromosomes fused at telomere sequences, demonstrating a role in telomere protection in vivo. Surprisingly, our studies also reveal fusions and radial structures lacking internal telomere sequences, which are not anticipated from a simple deficiency in telomere protection. Employing spectral karyotyping and telomere FISH in a combined approach, we have uncovered a striking pattern; fusions with telomeric sequences involve nonhomologous chromosomes while those lacking telomeric sequences involve homologues. Together, these studies show that Tpp1/Acd plays a vital role in telomere protection, but likely has additional functions yet to be defined.
Notes:
2006
Janna E Hutz, Andrea S Krause, John C Achermann, Eric Vilain, Maïthé Tauber, Claudine Lecointre, Edward R B McCabe, Gary D Hammer, Catherine E Keegan (2006)  IMAGe association and congenital adrenal hypoplasia: no disease-causing mutations found in the ACD gene.   Mol Genet Metab 88: 1. 66-70 May  
Abstract: The spontaneous mouse mutant adrenocortical dysplasia (acd) is characterized by defects in the adrenals, kidneys, and gonads of adult mutant mice and by caudal dysgenesis and vertebral segmentation defects in acd embryos. This association of defects mirrors those identified in patients with known or suspected abnormalities in adrenocortical development, including adrenal hypoplasia congenita and IMAGe association. The identification of the Acd gene in mice has prompted the study of its human homolog ACD, which has recently been shown to be a regulator of telomere length. Sequencing of ACD in 15 patients revealed no coding mutations, but three novel SNPs were identified.
Notes:
2005
Catherine E Keegan, Janna E Hutz, Tobias Else, Maja Adamska, Sonalee P Shah, Amy E Kent, John M Howes, Wesley G Beamer, Gary D Hammer (2005)  Urogenital and caudal dysgenesis in adrenocortical dysplasia (acd) mice is caused by a splicing mutation in a novel telomeric regulator.   Hum Mol Genet 14: 1. 113-123 Jan  
Abstract: Adrenocortical dysplasia (acd) is a spontaneous autosomal recessive mouse mutant with developmental defects in organs derived from the urogenital ridge. In surviving adult mutants, adrenocortical dysplasia and hypofunction are predominant features. Adults are infertile due to lack of mature germ cells, and 50% develop hydronephrosis due to ureteral hyperplasia. We report the identification of a splice donor mutation in a novel gene, which is the mouse ortholog of a newly discovered telomeric regulator. This gene (Acd) has recently been characterized as a novel component of the TRF1 protein complex that controls telomere elongation by telomerase. Characterization of Acd transcripts in mutant animals reveals two abnormal transcripts, consistent with a splicing defect. Expression of a wild-type Acd transgene in acd mutants rescues the observed phenotype. Most mutants die within 1-2 days of life on the original genetic background. Analysis of these mutant embryos reveals variable, yet striking defects in caudal specification, limb patterning and axial skeleton formation. In the tail bud, reduced expression of Wnt3a and Dll1 correlates with phenotypic severity of caudal regression. In the limbs, expression of Fgf8 is expanded in the dorsal-ventral axis of the apical ectodermal ridge and shortened in the anterior-posterior axis, consistent with the observed loss of anterior digits in older embryos. The axial skeleton of mutant embryos shows abnormal vertebral fusions in cervical, lumbar and caudal regions. This is the first report to show that a telomeric regulator is required for proper urogenital ridge differentiation, axial skeleton specification and limb patterning in mice.
Notes:
2002
F Beuschlein, C E Keegan, D L Bavers, C Mutch, J E Hutz, S Shah, Y M Ulrich-Lai, W C Engeland, B Jeffs, J L Jameson, G D Hammer (2002)  SF-1, DAX-1, and acd: molecular determinants of adrenocortical growth and steroidogenesis.   Endocr Res 28: 4. 597-607 Nov  
Abstract: The formation of the adrenal cortex in humans is notable for the presence of two discrete zones, the fetal zone (FZ) which regresses soon after birth and the definitive zone (DZ) which gives rise to the classic steroidogenic zones of the adult cortex. Mice possess an analogous structure to the FZ referred to as the X-zone (XZ) which regresses at puberty in the male and during the first pregnancy in the female. Similar to the human FZ in X-linked Congenital Adrenal Hypoplasia caused by loss of function mutations in DAX-1 (Dosage-sensitive sex reversal-Adrenal hypoplasia congenita critical region on the X chromosome), the mouse XZ does not regress when DAX-1 is mutated. Only in humans with DAX-1 mutations, however, is the DZ small and hypofunctional. Patients and mice with SF-1 mutations have complete adrenal aplasia with absence of both the DZ and FZ/XZ. Lastly, the phenotype of the Autosomal Recessive Adrenocortical Dysplasia (acd) mouse is strikingly similar to human Miniature Adult Congenital Adrenal Hypoplasia, lacking an XZ/FZ and possessing a dysfunctional DZ. Current work has addressed the regulation of SF-1 and DAX-1 dependent adrenocortical growth and steroidogenesis in vivo utilizing mouse models of simple and combined SF-1 and DAX-1 deficiency. In addition, the model of compensatory adrenal growth in SF-1 haplo-insufficient mice has been applied to evaluate the potential role of SF-1 in adrenocortical proliferation. Additional efforts aim to positionally clone the acd gene, predicated on the hypothesis that it is a critical component of the adrenal developmental cascade.
Notes:
Powered by PublicationsList.org.