hosted by
publicationslist.org
    
Jaroslav Dolezel
Laboratory of Molecular Cytogenetics and Cytometry
Institute of Experimental Botany
Sokolovska 6
CZ-77200 Olomouc
Czech Republic

Tel.: (+420) 585 205 852
Fax: (+420) 585 205 853
dolezel@ueb.cas.cz

Journal articles

2009
Johann Greilhuber, Jaroslav Dolezel (2009)  2C or not 2C: a closer look at cell nuclei and their DNA content.   Chromosoma 118: 3. 391-400 Jun  
Abstract: The life cycle of animals and plants involves changes in chromosome number (nuclear phase) and sometimes even the karyotype, and consequently the DNA content of a nuclear genome is not static in time. Thus, in order to interpret DNA content data, it is important that the status of the materials from which DNA content is estimated be precisely defined. The previously proposed distinction between "holoploid" (C) and "monoploid" (Cx) genome size covers the most frequent states of plant and animal nuclear genomes. However, restricting nomenclature to just C and Cx still leaves a number of unresolved problems. Here, we propose an extension of the C-value terminology to handle a range of cytogenetic conditions, life cycle segments, and nuclear phases. A set of superscripts and subscripts are used in a formal way to identify life cycle segments and to express the quantitative relationship between these segments. A revision of the current usage of the holoploid chromosome number n was necessary to maintain the intimate link between n and C-value and between the monoploid chromosome number x and Cx-value. In this revision, haplophase individuals (i.e., "haploid" animals and "haploid" spontaneous or experimentally induced land plant sporophytes) have chromosome number n (not 2n, as is the current tradition) and thus nuclear DNA contents based on 1C. However, to avoid an unlimited progression of n levels due to generative polyploidy, zygotic individuals are assigned as 2n starting from the zygote, whatever their ploidy level. Their ploidy is indicated by multiples of the basic chromosome number x. The extended terminology for genome size should eliminate ambiguities in reporting DNA contents in both plants and animals.
Notes:
Klaus F X Mayer, Stefan Taudien, Mihaela Martis, Hana Simková, Pavla Suchánková, Heidrun Gundlach, Thomas Wicker, Andreas Petzold, Marius Felder, Burkhard Steuernagel, Uwe Scholz, Andreas Graner, Matthias Platzer, Jaroslav Dolezel, Nils Stein (2009)  Gene Content and Virtual Gene Order of Barley Chromosome 1H.   Plant Physiol 151: 2. 496-505 Oct  
Abstract: Chromosome 1H (approximately 622 Mb) of barley (Hordeum vulgare) was isolated by flow sorting and shotgun sequenced by GSFLX pyrosequencing to 1.3-fold coverage. Fluorescence in situ hybridization and stringent sequence comparison against genetically mapped barley genes revealed 95% purity of the sorted chromosome 1H fraction. Sequence comparison against the reference genomes of rice (Oryza sativa) and sorghum (Sorghum bicolor) and against wheat (Triticum aestivum) and barley expressed sequence tag datasets led to the estimation of 4,600 to 5,800 genes on chromosome 1H, and 38,000 to 48,000 genes in the whole barley genome. Conserved gene content between chromosome 1H and known syntenic regions of rice chromosomes 5 and 10, and of sorghum chromosomes 1 and 9 was detected on a per gene resolution. Informed by the syntenic relationships between the two reference genomes, genic barley sequence reads were integrated and ordered to deduce a virtual gene map of barley chromosome 1H. We demonstrate that synteny-based analysis of low-pass shotgun sequenced flow-sorted Triticeae chromosomes can deliver linearly ordered high-resolution gene inventories of individual chromosomes, which complement extensive Triticeae expressed sequence tag datasets. Thus, integration of genomic, transcriptomic, and synteny-derived information represents a major step toward developing reference sequences of chromosomes and complete genomes of the most important plant tribe for mankind.
Notes:
D Kopecký, J Bartos, Z Zwierzykowski, J Dolezel (2009)  Chromosome pairing of individual genomes in tall fescue (Festuca arundinacea Schreb.), its progenitors, and hybrids with Italian ryegrass (Lolium multiflorum Lam.).   Cytogenet Genome Res 124: 2. 170-178 05  
Abstract: A diploid-like pairing system prevents meiotic irregularities and improves the efficiency of gamete production in allopolyploid species. While the nature of the system is known in some polyploid crops including wheat, little is known about the control of chromosome pairing in polyploid fescues (Festuca spp.). In this work we studied chromosome pairing in allohexaploid F. arundinacea, its progenitors F. pratensis and F. glaucescens, and two intergeneric hybrids Lolium multiflorum (2x) x F. arundinacea (6x) and L. multiflorum (4x) x F. glaucescens (4x). The use of genomic in situ hybridization (GISH) permitted the analysis of homoeologous chromosome pairing and recombination of different genomes involved. We detected a diploid-like pairing system in polyploid fescues F. arundinacea and F. glaucescens, the latter being one of the progenitors of F. arundinacea. The pairing control system was absent in the second progenitor F. pratensis. Detailed analysis of intergeneric hybrids confirmed the presumed haploinsufficiency of the fescue system, which resulted in homoeologous pairing between all component genomes. This indicates that introgression of any specific chromosome segment from one genome to another is possible in all genome combinations. Our results not only contribute to the quest to discover the nature of the system controlling chromosome pairing in polyploid fescues, but may also have serious implications for design of hybrid breeding schemes in forage grasses.
Notes:
2008
Robert Kofler, Jan Bartos, Li Gong, Gertraud Stift, Pavla Suchánková, Hana Simková, Maria Berenyi, Kornel Burg, Jaroslav Dolezel, Tamas Lelley (2008)  Development of microsatellite markers specific for the short arm of rye (Secale cereale L.) chromosome 1.   Theor Appl Genet 117: 6. 915-926 Oct  
Abstract: We developed 74 microsatellite marker primer pairs yielding 76 polymorphic loci, specific for the short arm of rye chromosome 1R (1RS) in wheat background. Four libraries enriched for microsatellite motifs AG, AAG, AC and AAC were constructed from DNA of flow-sorted 1RS chromosomes and 1,290 clones were sequenced. Additionally, 2,778 BAC-end-sequences from a 1RS specific BAC library were used for microsatellite screening and marker development. From 724 designed primer pairs, 119 produced 1RS specific bands and 74 of them showed polymorphism in a set of ten rye genotypes. We show that this high attrition rate was due to the highly repetitive nature of the rye genome consisting of a large number of transposable elements. We mapped the 76 polymorphic loci physically into three regions (bins) on 1RS; 29, 30 and 17 loci were assigned to the distal, intercalary and proximal regions of the 1RS arm, respectively. The average polymorphism information content increases with distance from the centromere, which could be due to an increased recombination rate along the chromosome arm toward's the telomere. Additionally, we demonstrate, using the data of the whole rice genome, that the intra-genomic length variation of microsatellites correlates (r = 0.87) with microsatellite polymorphism. Based on these results we suggest that an analysis of the microsatellite length variation is conducted for each species prior to microsatellite development, provided that sufficient sequence information is available. This will allow to selectively design microsatellite markers for motifs likely to yield a high level of polymorphism.
Notes:
Hana Simková, Jan T Svensson, Pascal Condamine, Eva Hribová, Pavla Suchánková, Prasanna R Bhat, Jan Bartos, Jan Safár, Timothy J Close, Jaroslav Dolezel (2008)  Coupling amplified DNA from flow-sorted chromosomes to high-density SNP mapping in barley.   BMC Genomics 9: 06  
Abstract: BACKGROUND: Flow cytometry facilitates sorting of single chromosomes and chromosome arms which can be used for targeted genome analysis. However, the recovery of microgram amounts of DNA needed for some assays requires sorting of millions of chromosomes which is laborious and time consuming. Yet, many genomic applications such as development of genetic maps or physical mapping do not require large DNA fragments. In such cases time-consuming de novo sorting can be minimized by utilizing whole-genome amplification. RESULTS: Here we report a protocol optimized in barley including amplification of DNA from only ten thousand chromosomes, which can be isolated in less than one hour. Flow-sorted chromosomes were treated with proteinase K and amplified using Phi29 multiple displacement amplification (MDA). Overnight amplification in a 20-microlitre reaction produced 3.7 - 5.7 micrograms DNA with a majority of products between 5 and 30 kb. To determine the purity of sorted fractions and potential amplification bias we used quantitative PCR for specific genes on each chromosome. To extend the analysis to a whole genome level we performed an oligonucleotide pool assay (OPA) for interrogation of 1524 loci, of which 1153 loci had known genetic map positions. Analysis of unamplified genomic DNA of barley cv. Akcent using this OPA resulted in 1426 markers with present calls. Comparison with three replicates of amplified genomic DNA revealed >99% concordance. DNA samples from amplified chromosome 1H and a fraction containing chromosomes 2H - 7H were examined. In addition to loci with known map positions, 349 loci with unknown map positions were included. Based on this analysis 40 new loci were mapped to 1H. CONCLUSION: The results indicate a significant potential of using this approach for physical mapping. Moreover, the study showed that multiple displacement amplification of flow-sorted chromosomes is highly efficient and representative which considerably expands the potential of chromosome flow sorting in plant genomics.
Notes:
Hana Simková, Jan Safár, Pavla Suchánková, Pavlína Kovárová, Jan Bartos, Marie Kubaláková, Jaroslav Janda, Jarmila Cíhalíková, Rohit Mago, Tamas Lelley, Jaroslav Dolezel (2008)  A novel resource for genomics of Triticeae: BAC library specific for the short arm of rye (Secale cereale L.) chromosome 1R (1RS).   BMC Genomics 9: 05  
Abstract: BACKGROUND: Genomics of rye (Secale cereale L.) is impeded by its large nuclear genome (1C approximately 7,900 Mbp) with prevalence of DNA repeats (> 90%). An attractive possibility is to dissect the genome to small parts after flow sorting particular chromosomes and chromosome arms. To test this approach, we have chosen 1RS chromosome arm, which represents only 5.6% of the total rye genome. The 1RS arm is an attractive target as it carries many important genes and because it became part of the wheat gene pool as the 1BL.1RS translocation. RESULTS: We demonstrate that it is possible to sort 1RS arm from wheat-rye ditelosomic addition line. Using this approach, we isolated over 10 million of 1RS arms using flow sorting and used their DNA to construct a 1RS-specific BAC library, which comprises 103,680 clones with average insert size of 73 kb. The library comprises two sublibraries constructed using HindIII and EcoRI and provides a deep coverage of about 14-fold of the 1RS arm (442 Mbp). We present preliminary results obtained during positional cloning of the stem rust resistance gene SrR, which confirm a potential of the library to speed up isolation of agronomically important genes by map-based cloning. CONCLUSION: We present a strategy that enables sorting short arms of several chromosomes of rye. Using flow-sorted chromosomes, we have constructed a deep coverage BAC library specific for the short arm of chromosome 1R (1RS). This is the first subgenomic BAC library available for rye and we demonstrate its potential for positional gene cloning. We expect that the library will facilitate development of a physical contig map of 1RS and comparative genomics of the homoeologous chromosome group 1 of wheat, barley and rye.
Notes:
Etienne Paux, Pierre Sourdille, Jérôme Salse, Cyrille Saintenac, Frédéric Choulet, Philippe Leroy, Abraham Korol, Monika Michalak, Shahryar Kianian, Wolfgang Spielmeyer, Evans Lagudah, Daryl Somers, Andrzej Kilian, Michael Alaux, Sonia Vautrin, Hélène Bergès, Kellye Eversole, Rudi Appels, Jan Safar, Hana Simkova, Jaroslav Dolezel, Michel Bernard, Catherine Feuillet (2008)  A physical map of the 1-gigabase bread wheat chromosome 3B.   Science 322: 5898. 101-104 Oct  
Abstract: As the staple food for 35% of the world's population, wheat is one of the most important crop species. To date, sequence-based tools to accelerate wheat improvement are lacking. As part of the international effort to sequence the 17-billion-base-pair hexaploid bread wheat genome (2n = 6x = 42 chromosomes), we constructed a bacterial artificial chromosome (BAC)-based integrated physical map of the largest chromosome, 3B, that alone is 995 megabases. A chromosome-specific BAC library was used to assemble 82% of the chromosome into 1036 contigs that were anchored with 1443 molecular markers, providing a major resource for genetic and genomic studies. This physical map establishes a template for the remaining wheat chromosomes and demonstrates the feasibility of constructing physical maps in large, complex, polyploid genomes with a chromosome-based approach.
Notes:
D Kopecký, A J Lukaszewski, J Dolezel (2008)  Meiotic behaviour of individual chromosomes of Festuca pratensis in tetraploid Lolium multiflorum.   Chromosome Res 16: 7. 987-998 09  
Abstract: Intergeneric hybrids of fescues (Festuca spp.) and ryegrasses (Lolium spp.) are unique for the ability of their chromosomes to pair essentially freely in meiotic metaphase I (MI). At the same time, their chromosomes can be readily recognized by genomic in-situ hybridization (GISH). Past genome-wide observations suggested that this homoeologous pairing was not completely random. In this study we extend the analysis to all seven individual chromosomes of F. pratensis introgressed into autotetraploid L. multiflorum and show that for any F. pratensis chromosome the choice of an MI pairing partner depends on the identity of the remaining chromosomes present in the quadruplet. In monosomic introgressions, the choice of a homologous or homoeologous partner was completely random; in disomics there was a slight preference for homologous pairing. Pairing preference was similar for each chromosome, suggesting that pairing affinity of all chromosomes is essentially the same and no structural rearrangements differentiate the two genera. Homoeologous crossover rates for individual chromosomes were similar and they were consistently lower than expected on the basis of the MI pairing. High homoeologous MI pairing in these hybrids may be due to a very permissive system of chromosome pairing control that overlooks differences between the parental chromosomes. Given the ease of genome discrimination by GISH in the Lolium-Festuca hybrids, the differences in repetitive DNA sequences must be substantial. On the other hand, it appears just as likely that while the DNA repeats diverged markedly during evolution, the sequences involved in chromosome pairing have been conserved enough to facilitate regular pairing partner recognition and crossing-over.
Notes:
Jan Bartos, Etienne Paux, Robert Kofler, Miroslava Havránková, David Kopecký, Pavla Suchánková, Jan Safár, Hana Simková, Christopher D Town, Tamas Lelley, Catherine Feuillet, Jaroslav Dolezel (2008)  A first survey of the rye (Secale cereale) genome composition through BAC end sequencing of the short arm of chromosome 1R.   BMC Plant Biol 8: 09  
Abstract: BACKGROUND: Rye (Secale cereale L.) belongs to tribe Triticeae and is an important temperate cereal. It is one of the parents of man-made species Triticale and has been used as a source of agronomically important genes for wheat improvement. The short arm of rye chromosome 1 (1RS), in particular is rich in useful genes, and as it may increase yield, protein content and resistance to biotic and abiotic stress, it has been introgressed into wheat as the 1BL.1RS translocation. A better knowledge of the rye genome could facilitate rye improvement and increase the efficiency of utilizing rye genes in wheat breeding. RESULTS: Here, we report on BAC end sequencing of 1,536 clones from two 1RS-specific BAC libraries. We obtained 2,778 (90.4%) useful sequences with a cumulative length of 2,032,538 bp and an average read length of 732 bp. These sequences represent 0.5% of 1RS arm. The GC content of the sequenced fraction of 1RS is 45.9%, and at least 84% of the 1RS arm consists of repetitive DNA. We identified transposable element junctions in BESs and developed insertion site based polymorphism markers (ISBP). Out of the 64 primer pairs tested, 17 (26.6%) were specific for 1RS. We also identified BESs carrying microsatellites suitable for development of 1RS-specific SSR markers. CONCLUSION: This work demonstrates the utility of chromosome arm-specific BAC libraries for targeted analysis of large Triticeae genomes and provides new sequence data from the rye genome and molecular markers for the short arm of rye chromosome 1.
Notes:
D Kopecký, A J Lukaszewski, J Dolezel (2008)  Cytogenetics of Festulolium (Festuca x Lolium hybrids).   Cytogenet Genome Res 120: 3-4. 370-383 05  
Abstract: Grasses are the most important and widely cultivated crops. Among them, ryegrasses (Lolium spp.) and fescues (Festuca spp.) provide high quality fodder for livestock, are used for turf and amenity purposes, and play a fundamental role in environment protection. Species from the two genera display complementary agronomic characteristics and are often grown in mixtures. Breeding efforts to combine desired features in single entities culminated with the production of Festuca x Lolium hybrids. The so called Festuloliums enjoy a considerable commercial success with numerous cultivars registered all over the world. They are also very intriguing from a strictly cytogenetic point of view as the parental chromosomes recombine freely in hybrids. Until a decade ago this phenomenon was only known in general quantitative terms. The introduction of molecular cytogenetic tools such as FISH and GISH permitted detailed studies of intergeneric chromosome recombination and karyotyping of Festulolium cultivars. These tools were also invaluable in revealing the origin of polyploid fescues, and facilitated the development of chromosome substitution and introgression lines and physical mapping of traits of interest. Further progress in this area will require the development of a larger set of cytogenetic markers and high-resolution cytogenetic maps. It is expected that the Lolium-Festuca complex will continue providing opportunities for breeding superior grass cultivars and the complex will remain an attractive platform for fundamental research of the early steps of hybrid speciation and interaction of parental genomes, as well as the processes of chromosome pairing, elimination and recombination.
Notes:
2007
Jaroslav Dolezel, Johann Greilhuber, Jan Suda (2007)  Estimation of nuclear DNA content in plants using flow cytometry.   Nat Protoc 2: 9. 2233-2244  
Abstract: Flow cytometry (FCM) using DNA-selective fluorochromes is now the prevailing method for the measurement of nuclear DNA content in plants. Ease of sample preparation and high sample throughput make it generally better suited than other methods such as Feulgen densitometry to estimate genome size, level of generative polyploidy, nuclear replication state and endopolyploidy (polysomaty). Here we present four protocols for sample preparation (suspensions of intact cell nuclei) and describe the analysis of nuclear DNA amounts using FCM. We consider the chemicals and equipment necessary, the measurement process, data analysis, and describe the most frequent problems encountered with plant material such as the interference of secondary metabolites. The purpose and requirement of internal and external standardization are discussed. The importance of using a correct terminology for DNA amounts and genome size is underlined, and its basic principles are explained.
Notes:
João Loureiro, Eleazar Rodriguez, Jaroslav Dolezel, Conceição Santos (2007)  Two new nuclear isolation buffers for plant DNA flow cytometry: a test with 37 species.   Ann Bot (Lond) 100: 4. 875-888 Oct  
Abstract: BACKGROUND AND AIMS: After the initial boom in the application of flow cytometry in plant sciences in the late 1980s and early 1990s, which was accompanied by development of many nuclear isolation buffers, only a few efforts were made to develop new buffer formulas. In this work, recent data on the performance of nuclear isolation buffers are utilized in order to develop new buffers, general purpose buffer (GPB) and woody plant buffer (WPB), for plant DNA flow cytometry. METHODS: GPB and WPB were used to prepare samples for flow cytometric analysis of nuclear DNA content in a set of 37 plant species that included herbaceous and woody taxa with leaf tissues differing in structure and chemical composition. The following parameters of isolated nuclei were assessed: forward and side light scatter, propidium iodide fluorescence, coefficient of variation of DNA peaks, quantity of debris background, and the number of particles released from sample tissue. The nuclear genome size of 30 selected species was also estimated using the buffer that performed better for a given species. KEY RESULTS: In unproblematic species, the use of both buffers resulted in high quality samples. The analysis of samples obtained with GPB usually resulted in histograms of DNA content with higher or similar resolution than those prepared with the WPB. In more recalcitrant tissues, such as those from woody plants, WPB performed better and GPB failed to provide acceptable results in some cases. Improved resolution of DNA content histograms in comparison with previously published buffers was achieved in most of the species analysed. CONCLUSIONS: WPB is a reliable buffer which is also suitable for the analysis of problematic tissues/species. Although GPB failed with some plant species, it provided high-quality DNA histograms in species from which nuclear suspensions are easy to prepare. The results indicate that even with a broad range of species, either GPB or WPB is suitable for preparation of high-quality suspensions of intact nuclei suitable for DNA flow cytometry.
Notes:
D Kopecky, D C Allen, M Duchoslav, J Dolezel, A J Lukaszewski (2007)  Condensation of rye chromatin in somatic interphase nuclei of Ph1 and ph1b wheat.   Cytogenet Genome Res 119: 3-4. 263-267 02  
Abstract: The Ph1 locus in hexaploid wheat (Triticum aestivum L.) enforces diploid-like behavior in the first metaphase of meiosis. To test the hypothesis that this chromosome pairing control is exercised by affecting the degree of chromatin condensation, the dispersion of rye chromatin in interphase nuclei in somatic tissues of wheat-rye chromosome translocations 1RS.1BL, 2RS.2BL, 2BS.2RL, 3RS.3DL and 5RS.5BL was compared in Ph1 and ph1b isogenic backgrounds. No significant differences in rye chromatin condensation that could be attributed to the Ph1 locus were detected. Regardless of the Ph1 status, each rye chromosome arm tested conformed to the general Rabl's orientation and occupied portions of the nuclei proportional to their length. Earlier observations that indicated the involvement of Ph1 locus in rye chromatin condensation in wheat could have been due either to specific loci on the studied 5RL rye arm that control the chromosome condensation process or to damage to the genetic system controlling chromatin condensation in the existing ph1b stocks of wheat. That damage might have been caused by homoeologous recombination and uneven disjunction of chromosomes from multivalents.
Notes:
Jaroslav Dolezel, Marie Kubaláková, Etienne Paux, Jan Bartos, Catherine Feuillet (2007)  Chromosome-based genomics in the cereals.   Chromosome Res 15: 1. 51-66  
Abstract: The cereals are of enormous importance to mankind. Many of the major cereal species - specifically, wheat, barley, oat, rye, and maize - have large genomes. Early cytogenetics, genome analysis and genetic mapping in the cereals benefited greatly from their large chromosomes, and the allopolyploidy of wheat and oats that has allowed for the development of many precise cytogenetic stocks. In the genomics era, however, large genomes are disadvantageous. Sequencing large and complex genomes is expensive, and the assembly of genome sequence is hampered by a significant content of repetitive DNA and, in allopolyploids, by the presence of homoeologous genomes. Dissection of the genome into its component chromosomes and chromosome arms provides an elegant solution to these problems. In this review we illustrate how this can be achieved by flow cytometric sorting. We describe the development of methods for the preparation of intact chromosome suspensions from the major cereals, and their analysis and sorting using flow cytometry. We explain how difficulties in the discrimination of specific chromosomes and their arms can be overcome by exploiting extant cytogenetic stocks of polyploid wheat and oats, in particular chromosome deletion and alien addition lines. Finally, we discuss some of the applications of flow-sorted chromosomes, and present some examples demonstrating that a chromosome-based approach is advantageous for the analysis of the complex genomes of cereals, and that it can offer significant potential for the delivery of genome sequencing and gene cloning in these crops.
Notes:
E Hribová, M Dolezelová, C D Town, J Macas, J Dolezel (2007)  Isolation and characterization of the highly repeated fraction of the banana genome.   Cytogenet Genome Res 119: 3-4. 268-274 02  
Abstract: Although the nuclear genome of banana (Musa spp.) is relatively small (1C approximately 610 Mbp for M. acuminata), the results obtained from other sequenced genomes suggest that more than half of the banana genome may be composed of repetitive and non-coding DNA sequences. Knowledge of repetitive DNA can facilitate mapping of important traits, phylogenetic studies, BAC-based physical mapping, and genome sequencing/annotation. However, only a few repetitive DNA sequences have been characterized in banana. In this work, we used DNA reassociation kinetics to isolate the highly repeated fraction of the banana genome (M. acuminata 'Calcutta 4'). Two libraries, one prepared from Cot </=0.05 DNA (2,688 clones) and one from Cot </=0.1 sequences (4,608 clones), were constructed, and 614 DNA clones were chosen randomly for sequencing and further characterization. Dot-plot analysis revealed that 14% of the sequenced clones contained various semi-tandem and palindromic repeated sequences. 'BLAST' homology searches showed that, in addition to tandem repeats, the Cot libraries were composed mainly of different types of retrotransposons, the most frequent being the Ty3/gypsy type monkey retrotransposon. Selected sequences displaying tandem organization properties were mapped by PRimed IN Situ DNA labeling (PRINS) to the secondary constriction on metaphase chromosomes of M. acuminata 'Calcutta 4'. Southern hybridization with selected BAC clones carrying 45S rDNA confirmed the presence of the tandem repeats in the 45S rDNA unit. This work significantly expands the knowledge of the repetitive fraction of the Musa genome and organization of its chromosomes.
Notes:
2006
João Loureiro, Eleazar Rodriguez, Jaroslav Dolezel, Conceição Santos (2006)  Flow cytometric and microscopic analysis of the effect of tannic acid on plant nuclei and estimation of DNA content.   Ann Bot (Lond) 98: 3. 515-527 Sep  
Abstract: BACKGROUND AND AIMS: Flow cytometry (FCM) is extensively used to estimate DNA ploidy and genome size in plants. In order to determine nuclear DNA content, nuclei in suspension are stained by a DNA-specific fluorochrome and fluorescence emission is quantified. Recent studies have shown that cytosolic compounds may interfere with binding of fluorochromes to DNA, leading to flawed data. Tannic acid, a common phenolic compound, may be responsible for some of the stoichiometric errors, especially in woody plants. In this study, the effect of tannic acid on estimation of nuclear DNA content was evaluated in Pisum sativum and Zea mays, which were chosen as model species. METHODS: Nuclear suspensions were prepared from P. sativum leaf tissue using four different lysis buffers (Galbraith's, LB01, Otto's and Tris.MgCl2). The suspensions were treated with tannic acid (TA) at 13 different initial concentrations ranging from 0.25 to 3.50 mg mL-1. After propidium iodide (PI) staining, samples were analysed using FCM. In addition to the measurement of nuclei fluorescence, light scatter properties were assessed. Subsequently, a single TA concentration was chosen for each buffer and the effect of incubation time was assessed. Similar analyses were performed on liquid suspensions of P. sativum and Z. mays nuclei that were isolated, treated and analysed simultaneously. FCM analyses were accompanied by microscopic observations of nuclei suspensions. KEY RESULTS: TA affected PI fluorescence and light scatter properties of plant nuclei, regardless of the isolation buffer used. The least pronounced effects of TA were observed in Tris.MgCl2 buffer. Samples obtained using Galbraith's and LB01 buffers were the most affected by this compound. A newly described 'tannic acid effect' occurred immediately after the addition of the compound. With the exception of Otto's buffer, nuclei of P. sativum and Z. mays were affected differently, with pea nuclei exhibiting a greater decrease in fluorescence intensity. CONCLUSIONS: A negative effect of a secondary metabolite, TA, on estimation of nuclear DNA content is described and recommendations for minimizing the effect of cytosolic compounds are presented. Alteration in light scattering properties of isolated nuclei can be used as an indicator of the presence of TA, which may cause stoichiometric errors in nuclei staining using a DNA intercalator, PI.
Notes:
João Loureiro, Eleazar Rodriguez, Jaroslav Dolezel, Conceição Santos (2006)  Comparison of four nuclear isolation buffers for plant DNA flow cytometry.   Ann Bot (Lond) 98: 3. 679-689 Sep  
Abstract: BACKGROUND AND AIMS: DNA flow cytometry requires preparation of suspensions of intact nuclei, which are stained using a DNA-specific fluorochrome prior to analysis. Various buffer formulas were developed to preserve nuclear integrity, protect DNA from degradation and facilitate its stoichiometric staining. Although nuclear isolation buffers differ considerably in chemical composition, no systematic comparison of their performance has been made until now. This knowledge is required to select the appropriate buffer for a given species and tissue. METHODS: Four common lysis buffers (Galbraith's, LB01, Otto's and Tris.MgCl2) were used to prepare samples from leaf tissues of seven plant species (Sedum burrito, Oxalis pes-caprae, Lycopersicon esculentum, Celtis australis, Pisum sativum, Festuca rothmaleri and Vicia faba). The species were selected to cover a wide range of genome sizes (1.30-26.90 pg per 2C DNA) and a variety of leaf tissue types. The following parameters were assessed: forward (FS) and side (SS) light scatters, fluorescence of propidium iodide-stained nuclei, coefficient of variation of DNA peaks, presence of debris background and the number of nuclei released from sample tissue. The experiments were performed independently by two operators and repeated on three different days. KEY RESULTS: Clear differences among buffers were observed. With the exception of O. pes-caprae, any buffer provided acceptable results for all species. LB01 and Otto's were generally the best buffers, with Otto's buffer providing better results in species with low DNA content. Galbraith's buffer led to satisfactory results and Tris.MgCl2 was generally the worst, although it yielded the best histograms in C. australis. A combined analysis of FS and SS provided a 'fingerprint' for each buffer. The variation between days was more significant than the variation between operators. CONCLUSIONS: Each lysis buffer tested responded to a specific problem differently and none of the buffers worked best with all species. These results expand our knowledge on nuclear isolation buffers and will facilitate selection of the most appropriate buffer depending on species, tissue type and the presence of cytosolic compounds interfering with DNA staining.
Notes:
Roman Hobza, Pavla Hrusakova, Jan Safar, Jan Bartos, Bohuslav Janousek, Jitka Zluvova, Elleni Michu, Jaroslav Dolezel, Boris Vyskot (2006)  MK17, a specific marker closely linked to the gynoecium suppression region on the Y chromosome in Silene latifolia.   Theor Appl Genet 113: 2. 280-287 Jul  
Abstract: The aim of this work was to isolate new DNA markers linked to the Silene latifolia Y chromosome. To do this we created a chromosome-specific plasmid library after DOP-PCR amplification of laser-microdissected Y-chromosomes. The library screening led to the isolation of several clones yielding mostly to exclusive male specific hybridization signals. Subsequent PCR confirmed the Y-unique linkage for one of the sequences. This DNA sequence called MK17 has no homology to any known DNA sequence and it is not expressed. Based on PCR and Southern analyses, MK17 is present only in dioecious species of the Elisanthe section of the genus Silene (S. latifolia, S. dioica, and S. diclinis) and it is absent in related gynodioecious and hermaphroditic species. The mapping analysis using a panel of deletion mutants showed that MK17 is closely linked to the region controlling suppression of gynoecium development. Hence MK17 represents a valuable marker to isolate genes controlling the gynoecium development suppression on the Y chromosome of S. latifolia.
Notes:
Ales Pecinka, Pavla Suchánková, Martin A Lysak, Bohumil Trávnícek, Jaroslav Dolezel (2006)  Nuclear DNA content variation among Central European Koeleria taxa.   Ann Bot (Lond) 98: 1. 117-122 Jul  
Abstract: BACKGROUND AND AIMS: Polyploidization plays an important role in the evolution of many plant genera, including Koeleria. The knowledge of ploidy, chromosome number and genome size may enable correct taxonomic treatment when other features are insufficient as in Koeleria. Therefore, these characteristics and their variability were determined for populations of six central European Koeleria taxa. METHODS: Chromosome number analysis was performed by squashing root meristems, and ploidy and 2C nuclear DNA content were estimated by flow cytometry. KEY RESULTS: Three diploids (K. glauca, K. macrantha var. macrantha and var. pseudoglauca), one tetraploid (K. macrantha var. majoriflora), one decaploid (K. pyramidata) and one dodecaploid (K. tristis) were found. The 2C nuclear DNA content of the diploids ranged from 4.85 to 5.20 pg. The 2C DNA contents of tetraploid, decaploid and dodecaploid taxa were 9.31 pg, 22.89 pg and 29.23 pg, respectively. The DNA content of polyploids within the K. macrantha aggregate (i.e. within K. macrantha and K. pyramidata) was smaller than the expected multiple of the diploid genome (K. macrantha var. macrantha). Geography-correlated variation of DNA content was found for some taxa. Czech populations of K. macrantha var. majoriflora had a 5.06% smaller genome than the Slovak ones. An isolated eastern Slovakian population of K. tristis revealed 8.04% less DNA than populations from central Slovakia. In central and north-west Bohemia, diploid and tetraploid cytotypes of K. macrantha were sympatric; east from this region diploid populations, and towards the west tetraploid populations were dominant. CONCLUSIONS: Remarkable intra-specific inter-population differences in nuclear DNA content were found between Bohemian and Pannonian populations of Koeleria macrantha var. majoriflora and between geographically isolated central and eastern Slovakian populations of K. tristis. These differences occur over a relatively small geographical scale.
Notes:
D Kopecký, J Loureiro, Z Zwierzykowski, M Ghesquière, J Dolezel (2006)  Genome constitution and evolution in Lolium x Festuca hybrid cultivars (Festulolium).   Theor Appl Genet 113: 4. 731-742 Aug  
Abstract: Festulolium hybrids are being increasingly used worldwide as forage grasses. This is due to their superior agronomic characteristics, which combine yield performance of ryegrasses (Lolium multiflorum and L. perenne) and tolerance against abiotic stress of fescues (Festuca pratensis, F. arundinacea and F. arundinacea var. glaucescens). Despite the widespread use, only fragmentary information exists on their genomic constitution. We used genomic in situ hybridization (GISH) to analyze genomic constitution of over 600 plants from almost all commercially available cultivars of Festulolium. Our results revealed a surprisingly large range of variation in the proportions of parental genomes and in the extent of intergenomic recombination. Using fluorescence in situ hybridization (FISH) with probes for ribosomal DNA, we assessed the frequency of recombination and elimination of particular chromosomes and chromosome groups in three contrasting Festulolium cultivars. This study provides novel information that will aid in understanding the relationship between a genetic make-up and the phenotype of Festulolium hybrids. Our results indicate that GISH might be a useful tool to aid in Festulolium breeding and provide data for a more detailed description of registered cultivars.
Notes:
Pavla Suchánková, Marie Kubaláková, Pavlína Kovárová, Jan Bartos, Jarmila Cíhalíková, Márta Molnár-Láng, Takashi R Endo, Jaroslav Dolezel (2006)  Dissection of the nuclear genome of barley by chromosome flow sorting.   Theor Appl Genet 113: 4. 651-659 Aug  
Abstract: Isolation of mitotic chromosomes using flow cytometry is an attractive way to dissect nuclear genomes into their individual chromosomal components or portions of them. This approach is especially useful in plants with complex genomes, where it offers a targeted and hence economical approach to genome analysis and gene cloning. In several plant species, DNA of flow-sorted chromosomes has been used for isolation of molecular markers from specific genome regions, for physical mapping using polymerase chain reaction (PCR) and fluorescence in situ hybridization (FISH), for integration of genetic and physical maps and for construction of chromosome-specific DNA libraries, including those cloned in bacterial artificial chromosome vectors. Until now, chromosome analysis and sorting using flow cytometry (flow cytogenetics) has found little application in barley (2n = 14, 1C approximately 5,100 Mbp) because of the impossibility of discriminating and sorting individual chromosomes, except for the smallest chromosome 1H and some translocation chromosomes with DNA content significantly different from the remaining chromosomes. In this work, we demonstrate that wheat-barley ditelosomic addition lines can be used to sort any arm of barley chromosomes 2H-7H. Thus, the barley genome can be dissected into fractions representing only about 6-12% of the total genome. This advance makes the flow cytogenetics an attractive tool, which may greatly facilitate genome analysis and gene cloning in barley.
Notes:
Andrzej Kasprzak, Jan Safár, Jaroslav Janda, Jaroslav Dolezel, Bogdan Wolko, Barbara Naganowska (2006)  The bacterial artificial chromosome (BAC) library of the narrow-leafed lupin (Lupinus angustifolius L.).   Cell Mol Biol Lett 11: 3. 396-407  
Abstract: The narrow-leafed lupin possesses valuable traits for environment-friendly agriculture and for the production of unconventional agricultural products. Despite various genetic and environmental studies, the breeding of improved cultivars has been slow due to the limited knowledge of its genomic structure. Further advances in genomics require, among other things, the availability of a genomic DNA library with large inserts. We report here on the construction of the first DNA library cloned in a BAC (bacterial artificial chromosome) vector from diploid Lupinus angustifolius L. cv. Sonet. The high molecular weight DNA used for its preparation was isolated from interphase nuclei that were purified by flow cytometry. The library comprises 55,296 clones and is ordered in 144x384-well microtitre plates. With an average insert size of 100 kb, the library represents six haploid genome equivalents. Thanks to the purification of the nuclei by flow cytometry, contamination with chloroplast DNA and mitochondrial DNA was negligible. The availability of a BAC library opens avenues for the development of a physical contig map and positional gene cloning, as well as for the analysis of the plant's genome structure and evolution.
Notes:
Jaroslav Janda, Jan Safár, Marie Kubaláková, Jan Bartos, Pavlína Kovárová, Pavla Suchánková, Stephanie Pateyron, Jarmila Cíhalíková, Pierre Sourdille, Hana Simková, Patricia Faivre-Rampant, Eva Hribová, Michel Bernard, Adam Lukaszewski, Jaroslav Dolezel, Boulos Chalhoub (2006)  Advanced resources for plant genomics: a BAC library specific for the short arm of wheat chromosome 1B.   Plant J 47: 6. 977-986 Sep  
Abstract: Common wheat (Triticum aestivum L., 2n = 6x = 42) is a polyploid species possessing one of the largest genomes among the cultivated crops (1C is approximately 17 000 Mb). The presence of three homoeologous genomes (A, B and D), and the prevalence of repetitive DNA make sequencing the wheat genome a daunting task. We have developed a novel 'chromosome arm-based' strategy for wheat genome sequencing to simplify this task; this relies on sub-genomic libraries of large DNA inserts. In this paper, we used a di-telosomic line of wheat to isolate six million copies of the short arm of chromosome 1B (1BS) by flow sorting. Chromosomal DNA was partially digested with HindIII and used to construct an arm-specific BAC library. The library consists of 65 280 clones with an average insert size of 82 kb. Almost half of the library (45%) has inserts larger than 100 kb, while 18% of the inserts range in size between 75 and 100 kb, and 37% are shorter than 75 kb. We estimated the chromosome arm coverage to be 14.5-fold, giving a 99.9% probability of identifying a clone corresponding to any sequence on the short arm of 1B. Each chromosome arm in wheat can be flow sorted from an appropriate cytogenetic stock, and we envisage that the availability of chromosome arm-specific BAC resources in wheat will greatly facilitate the development of ready-to-sequence physical maps and map-based gene cloning.
Notes:
Jirí Macas, Alice Navrátilová, Marie Kubaláková, Jaroslav Dolezel (2006)  PRINS on plant chromosomes.   Methods Mol Biol 334: 133-139  
Abstract: The introduction of primed in situ labeling (PRINS) into plant cytogenetics provided a novel means for fast and highly specific visualization of DNA sequences on chromosomes and in interphase nuclei. Although the technique does not reach the sensitivity of fluorescence in situ hybridization that is needed for detection of single-copy targets, it is superior in its speed and simplicity. Thus, the main applications of PRINS include fluorescent labeling of repeated DNA sequences, such as ribosomal DNA and satellite repeats, which are used to discriminate individual chromosome types within karyotypes and to assess the purity of chromosome fractions separated by flow-sorting. Recently, an application of PRINS for the discrimination of sequence subfamilies of satellite repeats has been developed that takes advantage of the sensitivity of Taq polymerase to mismatches between 3'-end of the primer and the template sequences. This approach allows the distinguishing of sequences that differ in only a few nucleotides and has proved to be valuable for studies of satellite DNA evolution in plants.
Notes:
2005
J Loureiro, G Pinto, T Lopes, J Dolezel, C Santos (2005)  Assessment of ploidy stability of the somatic embryogenesis process in Quercus suber L. using flow cytometry.   Planta 221: 6. 815-822 Aug  
Abstract: Flow cytometry analyses were used to verify the ploidy stability of Quercus suber L. somatic embryogenesis process. Leaf explants of two adult cork oak trees (QsG0 and QsG5) of the North of Portugal were inoculated on MS medium with 2,4-D and zeatin. After 3 months, calluses with embryogenic structures were isolated and transferred to fresh MS medium without growth regulators and somatic embryo evolution was followed. Morphologically normal somatic embryos (with two cotyledons) and abnormal somatic embryos (with one or three cotyledons) were used in this assay. Flow cytometry combined with propidium iodide staining was employed to estimate DNA ploidy levels and nuclear DNA content of somatic embryos and leaves from mother plants. No significant differences (P< or =0.05) were detected among embryos, and between the embryos and the mother plants. Also, after conversion of these embryos, no significant morphological differences were observed among the somatic embryo-derived plants. These results and further studies using converted plantlet leaves and embryogenic callus tissue indicate that embryo cultures and converted plantlets were stable with regard to ploidy level. As no major somaclonal variation was detected our primary goal of "true-to-type" propagation of cork oak using somatic embryogenesis was assured at this level. The estimation of the 2C nuclear DNA content for this species is similar to the previously obtained value.
Notes:
Jaroslav Dolezel, Jan Bartos (2005)  Plant DNA flow cytometry and estimation of nuclear genome size.   Ann Bot (Lond) 95: 1. 99-110 Jan  
Abstract: BACKGROUND: DNA flow cytometry describes the use of flow cytometry for estimation of DNA quantity in cell nuclei. The method involves preparation of aqueous suspensions of intact nuclei whose DNA is stained using a DNA fluorochrome. The nuclei are classified according to their relative fluorescence intensity or DNA content. Because the sample preparation and analysis is convenient and rapid, DNA flow cytometry has become a popular method for ploidy screening, detection of mixoploidy and aneuploidy, cell cycle analysis, assessment of the degree of polysomaty, determination of reproductive pathway, and estimation of absolute DNA amount or genome size. While the former applications are relatively straightforward, estimation of absolute DNA amount requires special attention to possible errors in sample preparation and analysis. SCOPE: The article reviews current procedures for estimation of absolute DNA amounts in plants using flow cytometry, with special emphasis on preparation of nuclei suspensions, stoichiometric DNA staining and the use of DNA reference standards. In addition, methodological pitfalls encountered in estimation of intraspecific variation in genome size are discussed as well as problems linked to the use of DNA flow cytometry for fieldwork. CONCLUSIONS: Reliable estimation of absolute DNA amounts in plants using flow cytometry is not a trivial task. Although several well-proven protocols are available and some factors controlling the precision and reproducibility have been identified, several problems persist: (1) the need for fresh tissues complicates the transfer of samples from field to the laboratory and/or their storage; (2) the role of cytosolic compounds interfering with quantitative DNA staining is not well understood; and (3) the use of a set of internationally agreed DNA reference standards still remains an unrealized goal.
Notes:
J Bartos, O Alkhimova, M Dolezelová, E De Langhe, J Dolezel (2005)  Nuclear genome size and genomic distribution of ribosomal DNA in Musa and Ensete (Musaceae): taxonomic implications.   Cytogenet Genome Res 109: 1-3. 50-57  
Abstract: Nuclear DNA content and genomic distributions of 5S and 45S rDNA were examined in nineteen diploid accessions of the genus Musa representing its four sections Eumusa, Rhodochlamys, Callimusa and Australimusa, and in Ensete gilletii, which was the outgroup in this study. In the Eumusa (x = 11), 2C DNA content ranged from 1.130 to 1.377 pg, M. balbisiana having the lowest DNA content of all sections. M. beccarii (x = 9), a representative of Callimusa, had the highest 2C nuclear DNA content (1.561 pg). Species belonging to Rhodochlamys (x = 11) and Australimusa (x = 10) had 2C DNA contents ranging from 1.191 to 1.299 pg and from 1.435 to 1.547 pg, respectively. E. gilletii (x = 9) had 2C DNA content of 1.210 pg. The number of 5S rDNA loci in Musa varied from 4 to 8 per diploid cell. While different numbers of 5S rDNA loci were observed within Eumusa and Rhodochlamys, four 5S rDNA loci were observed in all accessions of Australimusa. M. beccarii (Callimusa) and E. gilletii contained 5S rRNA gene clusters on five and six chromosomes, respectively. The number of 45S rDNA loci was conserved within individual sections. Hierarchical cluster analysis of genome size, number of chromosomes and 45S rDNA sites suggested a close relationship between Rhodochlamys and Eumusa; Australimusa was clearly separated as were M. beccarii and E. gilletii. Within the Eumusa-Rhodochlamys group, M. balbisiana, M. schizocarpa and M. ornata formed distinct subgroups, clearly separated from the accessions of M. acuminata, M. mannii, M. laterita and M. velutina, which formed a tight subgroup. The results expand the knowledge of genome size and genomic distribution of ribosomal DNA in Musa and Ensete. They aid in clarification of the taxonomical classification of Musa and show a need to supplement the analyses on the DNA sequence level with cytogenetic studies.
Notes:
Johann Greilhuber, Jaroslav Dolezel, Martin A Lysák, Michael D Bennett (2005)  The origin, evolution and proposed stabilization of the terms 'genome size' and 'C-value' to describe nuclear DNA contents.   Ann Bot (Lond) 95: 1. 255-260 Jan  
Abstract: BACKGROUND: Perusing the literature on nuclear 'genome size' shows that the term is not stabilized, but applied with different meanings. It is used for the DNA content of the complete chromosome complement (with chromosome number n), for which others use 'C-value', but also for the DNA content of the monoploid chromosome set only (with chromosome number x). Reconsideration of the terminology is required. AIM: Our purpose is to discuss the currently unstable usage of the terms 'genome size' and 'C-value', and to propose a new unified terminology which can describe nuclear DNA contents with ease and without ambiguity. PROPOSALS: We argue that there is a need to maintain the term genome size in a broad sense as a covering term, because it is widely understood, short and phonetically pleasing. Proposals are made for a unified and consensual terminology. In this, 'genome size' should mean the DNA content based on chromosome number x and n, and should be used mainly in a general sense. The necessary distinction of the kinds of genome sizes is made by the adjectives 'monoploid' and the neology 'holoploid'. 'Holoploid genome size' is a shortcut for the DNA content of the whole chromosome complement characteristic for the individual (and by generalization for the population, species, etc.) irrespective of the degree of generative polyploidy, aneuploidies, etc. This term was lacking in the terminology and is for reasons of linguistic consistency indispensable. The abbreviated terms for monoploid and holoploid genome size are, respectively, Cx-value and C-value. Quantitative data on genome size should always indicate the C-level by a numerical prefix, such as 1C, 1Cx, 2C, etc. The proposed conventions cover general fundamental aspects relating to genome size in plants and animals, but do not treat in detail cytogenetic particularities (e.g. haploids, hybrids, etc.) which will need minor extensions of the present scheme in a future paper.
Notes:
N Strakova, J Ehrmann, J Bartos, J Malikova, J Dolezel, Z Kolar (2005)  Peroxisome proliferator-activated receptors (PPAR) agonists affect cell viability, apoptosis and expression of cell cycle related proteins in cell lines of glial brain tumors.   Neoplasma 52: 2. 126-136  
Abstract: The nuclear receptors PPARs (peroxisome proliferator-activated receptors) are transcription factors activated by specific ligands. PPARs play an important role in carcinogenesis, inflammation, atherosclerosis, lipid metabolism and diabetes. There is evidence that activation of PPARs by specific ligands is able to suppress the growth of different types of human cancer by mechanisms including the growth arrest, apoptosis and induction of differentiation, although the detailed signalling pathways have not been completely elucidated to date. The aim of our study was to determine whether synthetic ligands of PPARalpha and PPARgamma could affect the viability, proliferation, differentiation, apoptosis and expression of some cell cycle related proteins in glial tumor cell lines. The study was performed on human glioblastoma cell lines U-87 MG, T98G, A172 and U-118 MG. Cell lines were treated by ligands of PPARalpha (bezafibrate, gemfibrozil) and PPARgamma (ciglitazone). MTT, flow cytometry, TUNEL assay and immunoblotting were used for detection of changes in cell viability, proliferation, differentiation and apoptosis. Bezafibrate, ciglitazone and gemfibrozil inhibited viability of glioblastoma cell lines. The synthetic ligands significantly reduced or induced the expression of cyclins, p27Kip1, p21Waf1/Cip1, MDM-2, Bcl-2, Bax, PARP, Caspase 3, androgen receptors, etc. and did not affect the expression of the differentiation marker GFAP. Flow cytometry confirmed arrest of the cell cycle although the detection of apoptosis was controversial. Apart from hypolipidemic and hypoglycaemic effects, PPAR ligands may also have significant cytostatic effects of potential use in anticancer treatment.
Notes:
Marie Kubaláková, Pavlína Kovárová, Pavla Suchánková, Jarmila Cíhalíková, Jan Bartos, Sergio Lucretti, Nobuyoshi Watanabe, Shahryar F Kianian, Jaroslav Dolezel (2005)  Chromosome sorting in tetraploid wheat and its potential for genome analysis.   Genetics 170: 2. 823-829 Jun  
Abstract: This study evaluates the potential of flow cytometry for chromosome sorting in durum wheat (Triticum turgidum Desf. var. durum, 2n = 4x = 28). Histograms of fluorescence intensity (flow karyotypes) obtained after the analysis of DAPI-stained chromosomes consisted of three peaks. Of these, one represented chromosome 3B, a small peak corresponded to chromosomes 1A and 6A, and a large peak represented the remaining 11 chromosomes. Chromosomes sorted onto microscope slides were identified after fluorescence in situ hybridization (FISH) with probes for GAA microsatellite, pSc119.2, and Afa repeats. Genomic distribution of these sequences was determined for the first time in durum wheat and a molecular karyotype has been developed for this crop. Flow karyotyping in double-ditelosomic lines of durum wheat revealed that the lines facilitated sorting of any arm of the wheat A- and B-genome chromosomes. Compared to hexaploid wheat, flow karyotype of durum wheat is less complex. This property results in better discrimination of telosomes and high purities in sorted fractions, ranging from 90 to 98%. We have demonstrated that large insert libraries can be created from DNA purified using flow cytometry. This study considerably expands the potential of flow cytogenetics for use in wheat genomics and opens the possibility of sequencing the genome of this important crop one chromosome arm at a time.
Notes:
2004
B Román, Z Satovic, D Pozarkova, J Macas, J Dolezel, J I Cubero, A M Torres (2004)  Development of a composite map in Vicia faba, breeding applications and future prospects.   Theor Appl Genet 108: 6. 1079-1088 Apr  
Abstract: A composite map of the Vicia faba genome based on morphological markers, isozymes, RAPDs, seed protein genes and microsatellites was constructed. The map incorporates data from 11 F(2) families for a total of 654 individuals all sharing the common female parent Vf 6. The integrated map is arranged in 14 major linkage groups (five of which were located in specific chromosomes). These linkage groups include 192 loci and cover 1559 cM with an overall average marker interval of 8 cM. By joining data of a new F(2) population segregating for resistance to ascochyta, broomrape and others traits of agronomic interest, have been saturated new areas of the genome. The combination of trisomic segregation, linkage analysis among loci from different families with a recurrent parent, and the analysis of new physically located markers, has allowed the establishment of the present status of the V. faba map with a wide coverage. This map provides an efficient tool in breeding applications such as disease-resistance mapping, QTL analyses and marker-assisted selection.
Notes:
Jan Safár, Jan Bartos, Jaroslav Janda, Arnaud Bellec, Marie Kubaláková, Miroslav Valárik, Stéphanie Pateyron, Jitka Weiserová, Radka Tusková, Jarmila Cíhalíková, Jan Vrána, Hana Simková, Patricia Faivre-Rampant, Pierre Sourdille, Michel Caboche, Michel Bernard, Jaroslav Dolezel, Boulos Chalhoub (2004)  Dissecting large and complex genomes: flow sorting and BAC cloning of individual chromosomes from bread wheat.   Plant J 39: 6. 960-968 Sep  
Abstract: The analysis of the complex genome of common wheat (Triticum aestivum, 2n = 6x = 42, genome formula AABBDD) is hampered by its large size ( approximately 17 000 Mbp) and allohexaploid nature. In order to simplify its analysis, we developed a generic strategy for dissecting such large and complex genomes into individual chromosomes. Chromosome 3B was successfully sorted by flow cytometry and cloned into a bacterial artificial chromosome (BAC), using only 1.8 million chromosomes and an adapted protocol developed for this purpose. The BAC library (designated as TA-3B) consists of 67 968 clones with an average insert size of 103 kb. It represents 6.2 equivalents of chromosome 3B with 100% coverage and 90% specificity as confirmed by genetic markers. This method was validated using other chromosomes and its broad application and usefulness in facilitating wheat genome analysis were demonstrated by target characterization of the chromosome 3B structure through cytogenetic mapping. This report on the successful cloning of flow-sorted chromosomes into BACs marks the integration of flow cytogenetics and genomics and represents a great leap forward in genetics and genomic analysis.
Notes:
Jaroslav Dolezel, Marie Kubaláková, Jan Bartos, Jirí Macas (2004)  Flow cytogenetics and plant genome mapping.   Chromosome Res 12: 1. 77-91  
Abstract: The application of flow cytometry and sorting (flow cytogenetics) to plant chromosomes did not begin until the mid-1980s, having been delayed by difficulties in preparation of suspensions of intact chromosomes and discrimination of individual chromosome types. These problems have been overcome during the last ten years. So far, chromosome analysis and sorting has been reported in 17 species, including major legume and cereal crops. While chromosome classification by flow cytometry (flow karyotyping) may be used for quantitative detection of structural and numerical chromosome changes, chromosomes purified by flow sorting were found to be invaluable in a broad range of applications. These included physical mapping using PCR, high-resolution cytogenetic mapping using FISH and PRINS, production of recombinant DNA libraries, targeted isolation of markers, and protein analysis. A great potential is foreseen for the use of sorted chromosomes for construction of chromosome and chromosome-arm-specific BAC libraries, targeted isolation of low-copy (genic) sequences, high-throughput physical mapping of ESTs and other DNA sequences by hybridization to DNA arrays, and global characterization of chromosomal proteins using approaches of proteomics. This paper provides a comprehensive review of the methodology and application of flow cytogenetics, and assesses its potential for plant genome analysis.
Notes:
M Valárik, J Bartos, P Kovárová, M Kubaláková, J H de Jong, J Dolezel (2004)  High-resolution FISH on super-stretched flow-sorted plant chromosomes.   Plant J 37: 6. 940-950 Mar  
Abstract: A novel high-resolution fluorescence in situ hybridisation (FISH) strategy, using super-stretched flow-sorted plant chromosomes as targets, is described. The technique that allows longitudinal extension of chromosomes of more than 100 times their original metaphase size is especially attractive for plant species with large chromosomes, whose pachytene chromosomes are generally too long and heterochromatin patterns too complex for FISH analysis. The protocol involves flow cytometric sorting of metaphase chromosomes, mild proteinase-K digestion of air-dried chromosomes on microscopic slides, followed by stretching with ethanol:acetic acid (3 : 1). Stretching ratios were assessed in a number of FISH experiments with super-stretched chromosomes from barley, wheat, rye and chickpea, hybridised with 45S and 5S ribosomal DNAs and the [GAA]n microsatellite, the [TTTAGGG]n telomeric repeat and a bacterial artificial chromosome (BAC) clone as probes. FISH signals on stretched chromosomes were brighter than those on the untreated control, resulting from better accessibility of the stretched chromatin and maximum observed sensitivity of 1 kbp. Spatial resolution of neighbouring loci was improved down to 70 kbp as compared to 5-10 Mbp after FISH on mitotic chromosomes, revealing details of adjacent DNA sequences hitherto not obtained with any other method. Stretched chromosomes are advantageous over extended DNA fibres from interphase nuclei as targets for FISH studies because they still retain chromosomal integrity. Although the method is confined to species for which chromosome flow sorting has been developed, it provides a unique system for controlling stretching degree of mitotic chromosomes and high-resolution bar-code FISH.
Notes:
Jaroslav Janda, Jan Bartos, Jan Safár, Marie Kubaláková, Miroslav Valárik, Jarmila Cíhalíková, Hana Simková, Michel Caboche, Pierre Sourdille, Michel Bernard, Boulos Chalhoub, Jaroslav Dolezel (2004)  Construction of a subgenomic BAC library specific for chromosomes 1D, 4D and 6D of hexaploid wheat.   Theor Appl Genet 109: 7. 1337-1345 Nov  
Abstract: The analysis of the hexaploid wheat genome (Triticum aestivum L., 2 n=6 x=42) is hampered by its large size (16,974 Mb/1C) and presence of three homoeologous genomes (A, B and D). One of the possible strategies is a targeted approach based on subgenomic libraries of large DNA inserts. In this work, we purified by flow cytometry a total of 10(7) of three wheat D-genome chromosomes: 1D, 4D and 6D. Chromosomal DNA was partially digested with HindIII and used to prepare a specific bacterial artificial chromosome (BAC) library. The library (designated as TA-subD) consists of 87,168 clones, with an average insert size of 85 kb. Among these clones, 53% had inserts larger than 100 kb, only 29% of inserts being shorter than 75 kb. The coverage was estimated to be 3.4-fold, giving a 96.5% probability of identifying a clone corresponding to any sequence on the three chromosomes. Specificity for chromosomes 1D, 4D and 6D was confirmed after screening the library pools with single-locus microsatellite markers. The screening indicated that the library was not biased and gave an estimated coverage of sixfold. This is the second report on BAC library construction from flow-sorted plant chromosomes, which confirms that dissecting of the complex wheat genome and preparation of subgenomic BAC libraries is possible. Their availability should facilitate the analysis of wheat genome structure and evolution, development of cytogenetic maps, construction of local physical maps and map-based cloning of agronomically important genes.
Notes:
Jan Safár, Juan Carlos Noa-Carrazana, Jan Vrána, Jan Bartos, Olena Alkhimova, Xavier Sabau, Hana Simková, Fabrice Lheureux, Marie-Line Caruana, Jaroslav Dolezel, Pietro Piffanelli (2004)  Creation of a BAC resource to study the structure and evolution of the banana (Musa balbisiana) genome.   Genome 47: 6. 1182-1191 Dec  
Abstract: The first bacterial artificial chromosome (BAC) library of the banana species Musa balbisiana 'Pisang Klutuk Wulung' (PKW BAC library) was constructed and characterized. One improved and one novel protocol for nuclei isolation were employed to overcome problems caused by high levels of polyphenols and polysaccharides present in leaf tissues. The use of flow cytometry to purify cell nuclei eliminated contamination with secondary metabolites and plastid DNA. Furthermore, the usefulness of the inducible pCC1BAC vector to obtain a higher amount of BAC DNA was demonstrated. The PKW BAC library represents nine haploid genome equivalents of M. balbisiana and its mean insert size is 135 kb. It consists of two sublibraries, of which the first one (SN sublibrary with 24,960 clones) was prepared according to an improved standard nuclei isolation protocol, whereas the second (FN sublibrary with 11,904 clones) was obtained from flow-sorted nuclei. Screening with 12 RFLP probes, which were genetically anchored to 8 genetic linkage groups of the banana species Musa acuminata, revealed an average of 11 BAC clones per probe, thus confirming the genome coverage estimated based on the insert size, as well as a high level of conservation between the two species of Musa. Localization of selected BAC clones to mitotic chromosomes using FISH indicated that the BAC library represented a useful resource for cytogenetic mapping. As the first step in map-based cloning of a genetic factor that is involved in the activation of integrated pararetroviral sequences of Banana streak virus (BSV), the BSV expressed locus (BEL) was physically delimited. The PKW BAC library represents a publicly available tool, and is currently used to reveal the integration and activation mechanisms of BSV sequences and to study banana genome structure and evolution.
Notes:
2003
Sachihiro Matsunaga, Erika Isono, Eduard Kejnovsky, Boris Vyskot, Jaroslav Dolezel, Shigeyuki Kawano, Deborah Charlesworth (2003)  Duplicative transfer of a MADS box gene to a plant Y chromosome.   Mol Biol Evol 20: 7. 1062-1069 Jul  
Abstract: Y chromosomes carry genes with functions in male reproduction and often have few other loci. Their evolution and the causes of genetic degeneration are of great interest. In addition to genetic degeneration, the acquisition of autosomal genes may be important in Y chromosome evolution. We here report that the dioecious plant Silene latifolia harbors a complete MADS box gene, SlAP3Y, duplicated onto the Y chromosome. This gene has no X-linked homologs but only an autosomal paralog, SlAP3A, and sequence divergence suggests that the duplication is a quite old event that occurred soon after the evolution of the sex chromosomes. Evolutionary sequence analyses using homologs of closely related species, including hermaphroditic Silene conica and dioecious Silene dioica and Silene diclinis, suggest that both SlAP3A and SlAP3Y genes encode functional proteins. Indeed, quantitative RT-PCR and in situ hybridization analyses showed that SlAP3A is expressed specifically in developing petals, but SlAP3Y is much more strongly expressed in developing stamens. The S. conica homolog, ScAP3A, is expressed in developing petals, suggesting subfunctionalization with evolution of male-specific functions, possibly due to evolutionary change in regulatory elements. Our results suggest that the acquisition of autosomal genes is an important event in the evolution of plant Y chromosomes.
Notes:
N Roux, A Toloza, Z Radecki, F J Zapata-Arias, J Dolezel (2003)  Rapid detection of aneuploidy in Musa using flow cytometry.   Plant Cell Rep 21: 5. 483-490 Jan  
Abstract: We report a procedure for the rapid and convenient detection of aneuploidy in triploid Musa using DNA flow cytometry. From a population of plants derived from gamma-irradiated shoot tips, plants were selected based on aberrant morphology and their chromosome numbers were counted. Aneuploids plants with chromosome numbers 2n=31 or 32 were found as well as the expected triploid plants (2n=3x=33). At the same time, the nuclear DNA content of all plants was measured using flow cytometry. The flow cytometric assay involved the use of nuclei isolated from chicken red blood cells (CRBC), which served as an internal reference standard. The relative DNA content of individual plants was expressed as a ratio of DNA content of CRBC and Musa (DNA index). In order to estimate the chromosome number using flow cytometry, the relative DNA content of plants with unknown ploidy was expressed as a percentage of the DNA content of triploid plants. The classification based on flow cytometry fully agreed with the results obtained by chromosome counting. The results indicated that flow cytometry is a convenient and rapid method for the detection of aneuploidy in Musa.
Notes:
M Kubaláková, M Valárik, J Barto, J Vrána, J Cíhalíková, M Molnár-Láng, J Dolezel (2003)  Analysis and sorting of rye (Secale cereale L.) chromosomes using flow cytometry.   Genome 46: 5. 893-905 Oct  
Abstract: Procedures for chromosome analysis and sorting using flow cytometry (flow cytogenetics) were developed for rye (Secale cereale L.). Suspensions of intact chromosomes were prepared by mechanical homogenization of synchronized root tips after mild fixation with formaldehyde. Histograms of relative fluorescence intensity obtained after the analysis of DAPI-stained chromosomes (flow karyotypes) were characterized and the chromosome content of the DNA peaks was determined. Chromosome 1R could be discriminated on a flow karyotype of S. cereale 'Imperial'. The remaining rye chromosomes (2R-7R) could be discriminated and sorted from individual wheat-rye addition lines. The analysis of lines with reconstructed karyotypes demonstrated a possibility of sorting translocation chromosomes. Supernumerary B chromosomes could be sorted from an experimental rye population and from S. cereale 'Adams'. Flow-sorted chromosomes were identified by fluorescence in situ hybridization (FISH) with probes for various DNA repeats. Large numbers of chromosomes of a single type sorted onto microscopic slides facilitated detection of rarely occurring chromosome variants by FISH with specific probes. PCR with chromosome-specific primers confirmed the identity of sorted fractions and indicated suitability of sorted chromosomes for physical mapping. The possibility to sort large numbers of chromosomes opens a way for the construction of large-insert chromosome-specific DNA libraries in rye.
Notes:
2002
Pavel Neumann, Dana Pozárková, Jan Vrána, Jaroslav Dolezel, Jirí Macas (2002)  Chromosome sorting and PCR-based physical mapping in pea (Pisum sativum L.).   Chromosome Res 10: 1. 63-71  
Abstract: Three pea lines with reconstructed karyotypes were used for analysis and subsequent purification of individual chromosome types using flow cytometry and sorting. The lines JI 145, JI 146, and JI 148 possess defined chromosomal translocations allowing discrimination of three to four chromosome types from each line based on the different sizes of translocation chromosomes. Whereas only two chromosomes could be sorted from standard (wild-type) karyotype, a combined use of these lines allowed sorting of six out of the seven types of pea chromosomes. Chromosomes were identified and purity of flow-sorted fractions was assessed using fluorescence in-situ hybridization with a PisTR-B probe that was previously shown to give labelling patterns characteristic for each chromosome type. The fractions of flow-sorted chromosomes were of very high purity (> 95%) and proved to be suitable for detection of gene and marker sequences using PCR with specific primers. Three fractions containing chromosomes 27, 72 and a pool of all remaining chromosomes (1, 3, 4, 5, 6) flow-sorted from the line JI 148 were then used for PCR-based physical localization of genetic markers selected from linkage groups IV and VII. These experiments enabled assignment of the linkage groups IV and VII to chromosomes 4 and 7, respectively.
Notes:
M Valárik, H Simková, E Hribová, J Safár, M Dolezelová, J Dolezel (2002)  Isolation, characterization and chromosome localization of repetitive DNA sequences in bananas (Musa spp.).   Chromosome Res 10: 2. 89-100  
Abstract: Partial genomic DNA libraries were constructed in Musa acuminata and M. balbisiana and screened for clones carrying repeated sequences, and sequences carrying rDNA. Isolated clones were characterized in terms of copy number, genomic distribution in M. acuminata and M. balbisiana, and sequence similarity to known DNA sequences. Ribosomal RNA genes have been the most abundant sequences recovered. FISH with probes for DNA clones Radkal and Radka7, which carry different fragments of Musa 26S rDNA, and Radka14, for which no homology with known DNA sequences has been found, resulted in clear signals at secondary constrictions. Only one clone carrying 5S rDNA, named Radka2, has been recovered. All remaining DNA clones exhibited more or less pronounced clustering at centromeric regions. The study revealed small differences in genomic distribution of repetitive DNA sequences between M. acuminata and M. balbisiana, the only exception being the 5S rDNA where the two Musa clones under study differed in the number of sites. All repetitive sequences were more abundant in M. acuminata whose genome is about 12% larger than that of M. balbisiana. While, for some sequences, the differences in copy number between the species were relatively small, for some of them, e.g. Radka5, the difference was almost thirty-fold. These observations suggest that repetitive DNA sequences contribute to the difference in genome size between both species, albeit to different extents. Isolation and characterization of new repetitive DNA sequences improves the knowledge of long-range organization of chromosomes in
Notes:
K Vlácilová, D Ohri, J Vrána, J Cíhalíková, M Kubaláková, G Kahl, J Dolezel (2002)  Development of flow cytogenetics and physical genome mapping in chickpea (Cicer arietinum L.).   Chromosome Res 10: 8. 695-706  
Abstract: Procedures for flow cytometric analysis and sorting of mitotic chromosomes (flow cytogenetics) have been developed for chickpea (Cicer arietinum). Suspensions of intact chromosomes were prepared from root tips treated to achieve a high degree of metaphase synchrony. The optimal protocol consisted of a treatment of roots with 2 mmol/L hydroxyurea for 18 h, a 4.5-h recovery in hydroxyurea-free medium, 2 h incubation with 10 micromol/L oryzalin, and ice-water treatment overnight. This procedure resulted in an average metaphase index of 47%. Synchronized root tips were fixed in 2% formaldehyde for 20 min, and chromosome suspensions prepared by mechanical homogenization of fixed root tips. More than 4 x 10(5) morphologically intact chromosomes could be isolated from 15 root tips. Flow cytometric analysis of DAPI-stained chromosomes resulted in histograms of relative fluorescence intensity (flow karyotypes) containing eight peaks, representing individual chromosomes and/or groups of chromosomes with a similar relative DNA content. Five peaks could be assigned to individual chromosomes (A, B, C, G, H). The parity of sorted chromosome fractions was high, and chromosomes B and H could be sorted with 100% purity. PCR on flow-sorted chromosome fractions with primers for sequence-tagged microsatellite site (STMS) markers permitted assignment of the genetic linkage group LG8 to the smallest chickpea chromosome H. This study extends the number of legume species for which flow cytogenetics is available, and demonstrates the potential of flow cytogenetics for genome mapping in chickpea.
Notes:
Kubaláková, Vrána, Cíhalíková, Simková, Dolezel (2002)  Flow karyotyping and chromosome sorting in bread wheat ( Triticum aestivum L.).   Theor Appl Genet 104: 8. 1362-1372 Jun  
Abstract: Previously, we reported on the development of procedures for chromosome analysis and sorting using flow cytometry (flow cytogenetics) in bread wheat. That study indicated the possibility of sorting large quantities of intact chromosomes, and their suitability for analysis at the molecular level. However, due to the lack of sufficient differences in size between individual chromosomes, only chromosome 3B could be sorted into a high-purity fraction. The present study aimed to identify wheat stocks that could be used to sort other chromosomes. An analysis of 58 varieties and landraces demonstrated a remarkable reproducibility and sensitivity of flow cytometry for the detection of numerical and structural chromosome changes. Changes in flow karyotype, diagnostic for the presence of the 1BL.1RS translocation, have been found and lines from which translocation chromosomes 5BL.7BL and 4AL.4AS-5BL could be sorted have been identified. Furthermore, wheat lines have been identified which can be used for sorting chromosomes 4B, 4D, 5D and 6D. The ability to sort any single arm of the hexaploid wheat karyotype, either in the form of a ditelosome or a isochromosome, has also been demonstrated. Thus, although originally considered recalcitrant, wheat seems to be suitable for the development of flow cytogenetics and the technology can be applied to the physical mapping of DNA sequences, the targeted isolation of molecular makers and the construction of chromosome- and arm-specific DNA libraries. These approaches should facilitate the analysis of the complex genome of hexaploid bread wheat.
Notes:
2001
E Kejnovský, J Vrána, S Matsunaga, P Soucek, J Siroký, J Dolezel, B Vyskot (2001)  Localization of male-specifically expressed MROS genes of Silene latifolia by PCR on flow-sorted sex chromosomes and autosomes.   Genetics 158: 3. 1269-1277 Jul  
Abstract: The dioecious white campion Silene latifolia (syn. Melandrium album) has heteromorphic sex chromosomes, XX in females and XY in males, that are larger than the autosomes and enable their separation by flow sorting. The group of MROS genes, the first male-specifically expressed genes in dioecious plants, was recently identified in S. latifolia. To localize the MROS genes, we used the flow-sorted X chromosomes and autosomes as a template for PCR with internal primers. Our results indicate that the MROS3 gene is located in at least two copies tandemly arranged on the X chromosome with additional copy(ies) on the autosome(s), while MROS1, MROS2, and MROS4 are exclusively autosomal. The specificity of PCR products was checked by digestion with a restriction enzyme or reamplification using nested primers. Homology search of databases has shown the presence of five MROS3 homologues in A. thaliana, four of them arranged in two tandems, each consisting of two copies. We conclude that MROS3 is a low-copy gene family, connected with the proper pollen development, which is present not only in dioecious but also in other dicot plant species.
Notes:
J Siroký, M A Lysák, J Dolezel, E Kejnovský, B Vyskot (2001)  Heterogeneity of rDNA distribution and genome size in Silene spp.   Chromosome Res 9: 5. 387-393  
Abstract: Genus Silene L. (Caryophyllaceae) contains about 700 species divided into 44 sections. According to recent taxonomic classification this genus also includes taxa previously classified in genera Lychnis and Melandrium. In this work, four Silene species belonging to different sections were studied: S. latifolia (syn. Melandrium album, Section Elisanthe), S. vulgaris (Inflatae), S. pendula (Erectorefractae), and S. chalcedonica (syn. Lychnis chalcedonica, Lychnidiformes). Flow cytometric analysis revealed a genome size of 2.25 and 2.35 pg/2C for S. vulgaris and S. pendula and of 5.73 and 6.59 pg/2C for S. latifolia and S. chalcedonica. All four species have the same chromosome number including the pair of sex chromosomes of the dioecious S. latifolia (2n = 2x = 24). Double target fluorescence in-situ hybridization revealed the chromosomal locations of 25S rDNA and 5S rDNA. A marked variation in number and localization of rDNA loci but no correlation between the numbers of rDNA clusters and genome size was found. FISH and genome size data indicate that nuclear genomes of Silene species are highly diversified as a result of numerous DNA amplifications and translocations.
Notes:
E M Temsch, R Obermayer, J Dolezel, J Greilhuber (2001)  Application of an optical immersion-gel in a flow cytometer with horizontally oriented objective.   Biotech Histochem 76: 1. 11-14 Jan  
Abstract: In certain flow cytometry systems, it is desirable to use immersion optics to obtain optimum fluorescence yield. This is important when propidium iodide and other DNA fluorochromes are used that have weaker fluorescence emission compared to DAPI, when a lamp is used instead of a laser and when the DNA concentrations are low. Our Partec PA II with a horizontally oriented objective and a vertically oriented flow chamber precludes using a liquid immersion medium. The problem was solved using an optical gel with appropriate characteristics. This gel is commercially available and commonly used for connecting glass fiber cables, but has never been used for microscopy before. Compared to the manufacturer's objective (40 x, aperture 0.8), the fluorescence yield was improved approximately four-fold using the optical gel and a 40 x glycerol objective (aperture 1.25). This innovation widens the applicability of flow cytometers with horizontally oriented objectives and vertical flow chambers. We expect it to facilitate the use of propidium iodide as a DNA stain, especially when interspecific genome size comparisons are to be done and base ratio dependent bias must be avoided.
Notes:
J Dolezel, J Macas, S Lucretti (2001)  Flow analysis and sorting of plant chromosomes.   Curr Protoc Cytom Chapter 5: May  
Abstract: The use of flow cytometry for evaluation of plant chromosomes requires some specialized attention to preparation and instrumentation. This unit deals exclusively with plant cytogenetics and presents an outline of this area as well as methods for accumulation of cells in metaphase, preparation of chromosome suspensions, flow analysis and sorting of chromosomes, and processing of the sorted chromosomes. Each method is described in tremendous detail because in many aspects dealing with plant cells is quite different from dealing with mammalian cells. Supporting histograms are presented as well as a range of special hints on dealing with plant material and a discussion of the utility of sorted chromosomes for plant genome mapping.
Notes:
M Kubaláková, J Vrána, J Cíhalíková, M A Lysák, J Dolezel (2001)  Localisation of DNA sequences on plant chromosomes using PRINS and C-PRINS.   Methods Cell Sci 23: 1-3. 71-82  
Abstract: Localisation of DNA sequences to plant chromosomes in situ has traditionally been accomplished using fluorescence in situ hybridisation (FISH). Although the method is suitable for most applications it is time-consuming and requires labelled probes. Recently, primed in situ labelling (PRINS) has been developed as an alternative to FISH. PRINS is based on annealing of unlabelled oligonucleotide primer(s) to chromosome DNA and its elongation by DNA polymerase in the presence of labelled nucleotide(s). The method was found useful to detect high-copy tandem repeats on plant chromosomes. Low copy repeats were detected after a more sensitive variant of PRINS called cycling PRINS (C-PRINS), which involves a sequence of thermal cycles analogous to polymerase chain reaction. This paper describes protocols of PRINS and C-PRINS, which have been optimised for chromosome spreads and for chromosomes purified using gradient centrifugation and/or flow sorting. The methods result in clear signals with negligible non-specific labelling. Further work is needed to improve the sensitivity to allow for reliable detection of single- copy DNA sequences.
Notes:
D W Galbraith, G M Lambert, J Macas, J Dolezel (2001)  Analysis of nuclear DNA content and ploidy in higher plants.   Curr Protoc Cytom Chapter 7: May  
Abstract: This is the first of a series of units discussing the application of cytometry to plant material. Techniques commonly used for mammalian nuclei evaluation need considerable modification to be successful with plant material. David Galbraith and his colleagues bring together many years of knowledge in plant cytometry. Their unit provides detailed protocols on measuring DNA content, ploidy, and cell cycle status of plant tissue using both conventional laser based instruments as well as arc lamp cytometers. This unit provides an excellent starting point for those interested in doing cytometry with plants.
Notes:
A Svirshchevskaya, J Dolezel (2001)  Karyological characterization of sugar beet gynogenetic lines cultured in vitro.   J Appl Genet 42: 1. 21-32  
Abstract: Flow cytometry was used to screen ploidy levels in 47 cultured in vitro sugar beet gynogenetic lines of various origin and age, obtained after plant regeneration from unfertilized ovules. When donor plants were diploid, the majority of regenerants were found to have cells with 1C, 2C and 4C relative DNA content (mainly haploid and diploid) and there were large differences in the rate of spontaneous in vitro chromosome doubling between individual homozygous lines. Six ovule-derived lines regenerated from fertile and sterile diploid donors of forty-five lines were solid diploids from the very early stages of their in vitro cultivation, and thus could not be classified as doubled haploids. In the case of tetraploid donor plants, the gynogenetic regenerants demonstrated 2x-ploidy level. The results obtained in chimeric plants with both haploid and diploid cells indicated the possibility to overcome mixoploidy by their re-cultivation through generative shoot tip culture. The flow cytometry method confirmed data obtained by conventional microscopic chromosome counting in dividing leaf cells and was found very useful for screening of a large number of regenerants and for characterizing the process of in vitro gynogenetic lines formation in sugar beet.
Notes:
2000
P Binarová, V Cenklová, B Hause, E Kubátová, M Lysák, J Dolezel, L Bögre, P Dráber (2000)  Nuclear gamma-tubulin during acentriolar plant mitosis.   Plant Cell 12: 3. 433-442 Mar  
Abstract: Neither the molecular mechanism by which plant microtubules nucleate in the cytoplasm nor the organization of plant mitotic spindles, which lack centrosomes, is well understood. Here, using immunolocalization and cell fractionation techniques, we provide evidence that gamma-tubulin, a universal component of microtubule organizing centers, is present in both the cytoplasm and the nucleus of plant cells. The amount of gamma-tubulin in nuclei increased during the G(2) phase, when cells are synchronized or sorted for particular phases of the cell cycle. gamma-Tubulin appeared on prekinetochores before preprophase arrest caused by inhibition of the cyclin-dependent kinase and before prekinetochore labeling of the mitosis-specific phosphoepitope MPM2. The association of nuclear gamma-tubulin with chromatin displayed moderately strong affinity, as shown by its release after DNase treatment and by using extraction experiments. Subcellular compartmentalization of gamma-tubulin might be an important factor in the organization of plant-specific microtubule arrays and acentriolar mitotic spindles.
Notes:
P J Balint-Kurti, S K Clendennen, M Dolezelová, M Valárik, J Dolezel, P R Beetham, G D May (2000)  Identification and chromosomal localization of the monkey retrotransposon in Musa sp.   Mol Gen Genet 263: 6. 908-915 Jul  
Abstract: Retroelements are ubiquitous features of eukaryotic genomes, often accounting for a substantial fraction of their total DNA content. One major group of retroelements, which includes the gypsy and copia-like elements, is distinguished by the presence of long terminal repeats (LTRs). We have identified and partially characterized a sequence from banana (Musa acuminata cv. Grand Nain) which shows significant homology to gypsy-like LTR retroelements from other species. The element, named monkey, shows a high degree of homology to the reverse transcriptase, RNase H and integrase genes of retroelements from plants, fungi and yeast. However, several stop codons are present in the major ORF of this element, suggesting that this copy of monkey, if functional, is non-autonomous. Southern analysis indicated that monkey is present in both the A and B genomes of Musa, and that it is found in 200-500 copies per haploid genome in cv. Grand Nain. Chromosomal localization by fluorescent in-situ hybridization indicates that copies of monkey are concentrated in the nucleolar organizer regions and colocalize with rRNA genes. Other copies of monkey appear to be dispersed throughout the genome.
Notes:
M Kubaláková, M A Lysák, J Vrána, H Simková, J Cíhalíková, J Dolezel (2000)  Rapid identification and determination of purity of flow-sorted plant chromosomes using C-PRINS.   Cytometry 41: 2. 102-108 Oct  
Abstract: BACKGROUND: Flow-sorted plant chromosomes are being increasingly used in plant genome analysis and mapping. Consequently, there is a need for a rapid method for identification of sorted chromosomes and for determination of their purity. We report on optimization of procedures for primed in situ DNA labeling (PRINS) and cycling-PRINS (C-PRINS) for fluorescent labeling of repetitive DNA sequences on sorted plant chromosomes suitable for their identification. METHODS: Chromosomes of barley, wheat, and field bean were sorted onto microscope slides, dried, and subjected to PRINS or C-PRINS with primers for GAA microsatellites (barley and wheat) or FokI repeat (field bean). The following parameters were optimized to achieve the highest specificity and intensity of fluorescent labeling: ratio of labeled versus unlabeled nucleotides, nucleotide concentration, and the number and concentration of primers. RESULTS: Under optimal conditions, C-PRINS resulted in strong and specific labeling of GAA microsatellites on sorted barley and wheat chromosomes and FokI repeats on sorted field bean chromosomes. The labeling patterns were characteristic for each chromosome and permitted their unequivocal identification as well as determination of purity after sorting, which ranged from 96% to 99%. A standard polymerase chain reaction (PCR) with chromosome-specific primers was not sensitive enough to detect low-frequency contamination. CONCLUSIONS: The results indicate that a single C-PRINS assay with primers that give chromosome-specific labeling pattern is sufficient not only to determine chromosome content of peaks on flow karyotype but also to determine the purity of sorted chromosome fractions. The whole procedure can be performed in less than 3 h on the next day after sorting. Numerous applications are expected in the area of plant flow cytogenetics.
Notes:
J Vrána, M Kubaláková, H Simková, J Cíhalíková, M A Lysák, J Dolezel (2000)  Flow sorting of mitotic chromosomes in common wheat (Triticum aestivum L.).   Genetics 156: 4. 2033-2041 Dec  
Abstract: The aim of this study was to develop an improved procedure for preparation of chromosome suspensions, and to evaluate the potential of flow cytometry for chromosome sorting in wheat. Suspensions of intact chromosomes were prepared by mechanical homogenization of synchronized root tips after mild fixation with formaldehyde. Histograms of relative fluorescence intensity (flow karyotypes) obtained after the analysis of DAPI-stained chromosomes were characterized and the chromosome content of all peaks on wheat flow karyotype was determined for the first time. Only chromosome 3B could be discriminated on flow karyotypes of wheat lines with standard karyotype. Remaining chromosomes formed three composite peaks and could be sorted only as groups. Chromosome 3B could be sorted at purity >95% as determined by microscopic evaluation of sorted fractions that were labeled using C-PRINS with primers for GAA microsatellites and for Afa repeats, respectively. Chromosome 5BL/7BL could be sorted in two wheat cultivars at similar purity, indicating a potential of various wheat stocks for sorting of other chromosome types. PCR with chromosome-specific primers confirmed the identity of sorted fractions and suitability of flow-sorted chromosomes for physical mapping and for construction of small-insert DNA libraries. Sorted chromosomes were also found suitable for the preparation of high-molecular-weight DNA. On the basis of these results, it seems realistic to propose construction of large-insert chromosome-specific DNA libraries in wheat. The availability of such libraries would greatly simplify the analysis of the complex wheat genome.
Notes:
R ten Hoopen, R Manteuffel, J Dolezel, L Malysheva, I Schubert (2000)  Evolutionary conservation of kinetochore protein sequences in plants.   Chromosoma 109: 7. 482-489 Nov  
Abstract: The evolutionary conservation of structural/functional kinetochore proteins has been studied on isolated nuclei and pro-/metaphase chromosomes of mono- and dicot plants. The cross-reactivities of antibodies against human CENPC, CENPE and CENPF, and against maize CENPCa with the centromeric regions of mitotic chromosomes of Vicia faba and/or Hordeum vulgare are shown. Putative homologs of the kinetochore protein SKP1 (suppressor of kinetochore protein 1p of yeast) were found in both species and of CBF5p (centromere binding factor 5 of yeast) in barley. Antibodies against synthetic peptides derived from partial sequences encoding these proteins were produced and recognized the centromeric regions on mitotic chromosomes as detected by indirect immunofluorescence.
Notes:
1999
M A Lysák, J Cíhalíková, M Kubaláková, H Simková, G Künzel, J Dolezel (1999)  Flow karyotyping and sorting of mitotic chromosomes of barley (Hordeum vulgare L.).   Chromosome Res 7: 6. 431-444  
Abstract: A high-yield method for isolation of barley chromosomes in suspension, their analysis and sorting using flow cytometry is described. To accumulate meristem root tip cells at metaphase, actively growing roots were subjected to subsequent treatment with 2 mmol/L hydroxyurea for 18 h, 2.5 micromol/L amiprophos methyl for 2 h, and ice water (overnight). This treatment resulted in metaphase indices exceeding 50%. Synchronized root tips were fixed in 2% formaldehyde for 20 min and chromosomes were released into a lysis buffer by mechanical homogenization, producing, on average, 5 x 10(5) chromosomes from 50 root tips. The isolated chromosomes were morphologically intact and suitable for flow cytometric analysis and sorting. While it was possible to discriminate and sort only one chromosome from a barley cultivar with standard karyotype, up to three chromosomes could be sorted in translocation lines with morphologically distinct chromosomes. The purity of chromosome fractions, estimated after PRINS with primers specific for GAA microsatellites, reached 97%. PCR with chromosome-specific primers confirmed the purity and suitability of flow-sorted chromosomes for physical mapping of DNA sequences.
Notes:
J Dolezel, J Cíhalíková, J Weiserová, S Lucretti (1999)  Cell cycle synchronization in plant root meristems.   Methods Cell Sci 21: 2-3. 95-107  
Abstract: The analysis of structure and metabolism of a cell at a defined phase of cell cycle is often difficult because cell cycle progression in somatic tissues is asynchronous and only a fraction of cells are cycling. An elegant solution to obtain populations of cells enriched for single stage of the cell cycle is to impose the synchrony artificially. Different systems have been used to obtain synchronized populations of plant cells, including suspension-cultured cells, leaf mesophyll protoplasts and root tip meristems. Root tips have been frequently used in a variety of studies ranging from chromosome analysis to cell cycle and its regulation. Seedlings with actively growing roots may be obtained in most plant species, they are easy to handle, the experimental system is well defined, reproducible and can be easily modified for different species. This paper describes a protocol for cell cycle synchronization in root tips of Vicia faba, which is based on the use of DNA synthesis inhibitor hydroxyurea [18]. Modifications of the protocol for Pisum sativum, Medicago sativa, Hordeum vulgare, Secale cereale, Triticum aestivum, and Zea mays are also given. Flow cytometric data indicate that about 90% of root tip cells are synchronized. On average, mitotic indices exceeding 50% are obtained with the method. Synchronized cells may be accumulated at metaphase using a mitotic spindle inhibitor to achieve metaphase indices exceeding 50%.
Notes:
S Lucretti, L Nardi, P T Nisini, F Moretti, G Gualberti, J Dolezel (1999)  Bivariate flow cytometry DNA/BrdUrd analysis of plant cell cycle.   Methods Cell Sci 21: 2-3. 155-166  
Abstract: We describe a protocol for flow cytometry analysis of cell cycle in plants using indirect immunolabelling staining and Vicia faba, Pisum sativum and Zea mays root tip cells as model systems. The protocol is based on simultaneous analysis of two fluorescent signals. The first, obtained after staining with propidium iodide, is used to quantify nuclear DNA content. The second, obtained after indirect immunofluorescent staining of bromodeoxyuridine (BrdUrd), is used to quantify the amount of BrdUrd incorporated into nuclear DNA. In an attempt to standardize the procedure, the effects of various conditions for partial DNA denaturation using HCl, as well as of BrdUrd concentration and incorporation time on flow cytometry DNA/BrdUrd content analysis have been studied. Maximum BrdUrd-linked fluorescence was observed after a 30 min pulse with 10 microM BrdUrd and after DNA denaturation with 1.5 N HCl (final concentration) for 30 min at 25 degrees C. Under these conditions, DNA content histograms with relatively small coefficient of variation (< 4%, full peak) could be obtained. To avoid non-specific staining of cytoplasm and cell walls, the protocol involves the use of nuclei isolated from formaldehyde-fixed tissues. Fixed isolated nuclei are stable and may be stored in hexylene glycol 0.75 M at 4 degrees C for prolonged periods prior to actual staining and analysis.
Notes:
1998
P Binarová, J Dolezel, P Draber, E Heberle-Bors, M Strnad, L Bögre (1998)  Treatment of Vicia faba root tip cells with specific inhibitors to cyclin-dependent kinases leads to abnormal spindle formation.   Plant J 16: 6. 697-707 Dec  
Abstract: Many events during cell division are triggered by an evolutionary conserved regulator, the cyclin-dependent kinase (Cdk). Here we used two novel drugs, the purine analogues bohemine and roscovitine, to study the role of Cdks in cell cycle progression and microtubule organisation in Vicia faba root tip cells. Both drugs inhibited the activity of immunopurified Vicia faba and alfalfa Cdc2-kinase. The transcript levels of an A- and B-type cyclin, as well as of the cdc2 genes, declined in treated root tips, while the mRNA level of a D-type cyclin gene was not affected. An observed transient arrest at the G1/S and G2/M regulatory points indicated that inhibition of the Cdc2-kinase had an effect on both transitions. In contrast to the regular bipolar spindle in untreated cell, in drug-treated metaphase cells abnormally short and dense kinetochore microtubule fibres were observed. These microtubules were randomly arranged in the vicinity of the kinetochores and connected the chromosomes. Thus, the chromosomes were not aligned on the metaphase plate but were arranged in a circle, with kinetochores pointing inwards and chromosome arms pointing outwards. gamma-Tubulin, which plays a role in microtubule nucleation, also localised to the centre of the monopolar spindle. The observed abnormalities in mitosis, after inhibition of Cdc2-kinase by specific drugs, suggest a role for this enzyme in regulating some of the steps leading to a bipolar spindle structure.
Notes:
1997
S Lucretti, J Dolezel (1997)  Bivariate flow karyotyping in broad bean (Vicia faba).   Cytometry 28: 3. 236-242 Jul  
Abstract: In the present study, we report on the development of bivariate flow karyotyping in the legume broad bean (Vicia faba). We optimised chromosome staining with 4',6-diamidino-2-phenylindole and mithramycin A and analysed chromosome suspensions prepared from a line with standard (wild-type) karyotype and from six translocation lines with reconstructed karyotypes. Chromosomes were isolated from formaldehyde-fixed root tips after cell cycle synchronisation, and their fluorescence was analysed with dual-laser flow cytometry after the staining. High-resolution bivariate flow karyotypes were obtained in all broad bean lines analysed. Compared with univariate analysis, the bivariate analysis permitted discrimination of more chromosome types. However, peaks corresponding to newly resolved chromosomes were rather closely spaced, which could have compromised the purity of sorted fractions. With only a few exceptions, chromosome peaks were in a straight line, suggesting only minor differences in the AT:GC ratio among the chromosomes. These results indicate the limited potential of bivariate flow cytometric analysis and sorting in broad bean.
Notes:
1996
J Macas, G Gualberti, M Nouzová, P Samec, S Lucretti, J Dolezel (1996)  Construction of chromosome-specific DNA libraries covering the whole genome of field bean (Vicia faba L.).   Chromosome Res 4: 7. 531-539 Nov  
Abstract: Recombinant DNA libraries were constructed for seven chromosome types isolated from two translocation lines of field bean (Vicia faba L.) with reconstructed karyotypes. The chromosomes were selected so that the set of libraries covers the whole V. faba genome more than once. Individual chromosome types were highly purified by flow sorting, and their DNA was amplified by degenerate oligonucleotide-primed (DOP) polymerase chain reaction (PCR) and cloned into a plasmid vector. The choice of restriction site present in PCR primer and refinement of cloning protocol resulted in high cloning efficiency and allowed generation of libraries consisting of about 10(5) clones from 250 or 1000 sorted chromosomes. The insert size ranged between 50 and 2200 bp and the mean length estimated in individual libraries varied between 310 and 487 bp. Hybridization of cloned fragments with labelled genomic DNA showed that about 60% of inserts represented unique or low-copy sequences. The suitability of the libraries for genome mapping was demonstrated by isolation of clones containing microsatellite motifs.
Notes:
1995
J Dolezel, W Göhde (1995)  Sex determination in dioecious plants Melandrium album and M. rubrum using high-resolution flow cytometry.   Cytometry 19: 2. 103-106 Feb  
Abstract: High-resolution flow cytometry was used to analyze nuclear DNA content in dioecious plants Melandrium album and M. rubrum. Very low coefficients of variation (0.53-0.70%) of G0/1 peaks were obtained after the analysis of nuclei isolated by chopping leaf tissues. In both species, females have lower DNA content than males due to sex chromosome heteromorphism. This made it possible to discriminate peaks belonging to female and male nuclei on the same histogram and permitted unambiguous sex identification in both species. The results indicated the possibility of diagnosing sex also in other heterogametic dioecious plants. The assay described here might be interesting in any area where rapid sex identification is required at an early stage of plant development.
Notes:
J Macas, J Dolezel, G Gualberti, U Pich, I Schubert, S Lucretti (1995)  Primer-induced labeling of pea and field bean chromosomes in situ and in suspension.   Biotechniques 19: 3. 402-4; 407-8 Sep  
Abstract: A protocol for primed in situ DNA labeling (PRINS) was optimized for pea (Pisum sativum L.) and field bean (Vicia faba L.) chromosomes attached to coverslips. Cloned DNA or synthetic oligonucleotides were used as probes for repetitive DNA sequences (rDNA, Fok-element) and different reaction conditions were tested to achieve the highest specific signal-to-background ratio. A procedure based on direct labeling by fluorescein-dUTP was compared with an indirect one using digoxigenin detected by fluorescently labeled antibody. Under optimal conditions, strong and specific signals were obtained exclusively on chromosome regions known to contain respective DNA sequences. Compared to the direct labeling, significantly stronger signals were obtained when the indirect procedure was used. Both types of labeling were successfully applied to chromosomes in suspension and were shown to produce signals comparable to that obtained with chromosomes attached to coverslips. It is expected that primed in situ DNA labeling en suspension (PRINSES) will provide a basis for flow-cytometric discrimination and sorting of otherwise indistinguishable chromosomes according to their specific fluorescent labeling.
Notes:
1993
J Macas, J Dolezel, S Lucretti, U Pich, A Meister, J Fuchs, I Schubert (1993)  Localization of seed protein genes on flow-sorted field bean chromosomes.   Chromosome Res 1: 2. 107-115 Jul  
Abstract: Chromosomes from reconstructed field bean (Vicia faba L.) karyotypes were flow-sorted and the DNA was used for the physical localization of seed storage and nonstorage (USP) protein genes using PCR with sequence specific primers. The data were confirmed and refined by using DNA of microisolated chromosomes of other karyotypes as the target for PCR. The specificity of the PCR products was proved by restrictase digestion into fragments of predicted length or by reamplification using 'nested' primers. The genes are located within defined regions of chromosome I (USP = unknown seed protein genes), II (vicilin genes, legumin B3 genes), III (legumin B4 genes), IV (pseudogenes psi 1) and V (legumin A genes and pseudogenes psi 1). Except for the pseudogene derived from the sequence of legumin B4 gene, all members of each gene family are located in one chromosome region exclusively. This approach proved to be useful for localizing genes that cannot be mapped genetically (due to the lack of allelic variants) and might be applied to integrate physical and genetic maps.
Notes:
P Binarova, J Cihalikova, J Dolezel (1993)  Localization of MPM-2 recognized phosphoproteins and tubulin during cell cycle progression in synchronized Vicia faba root meristem cells.   Cell Biol Int 17: 9. 847-856 Sep  
Abstract: MPM-2 antibody reacts with a subset of mitotic phosphoproteins. We followed localization of MPM-2 immunoreactive material and localization of microtubules during cell cycle progression in a highly synchronous population of Vicia faba root meristem cells and isolated nuclei. The MPM-2 antibody labelling showed significant cell cycle dependence. MPM-2 nuclear reactivity was weak and homogeneous in G1 and S phase of the cell cycle and became stronger and heterogeneous during G2, resembling staining of the nuclear matrix, with maximum staining at the G2/M interface. Similarly the staining intensity of nucleoli increased from late G1 phase to nucleoli dispersion in early prophase. During mitosis MPM-2 immunoreactivity was associated with spindle configurations and the brightest signal was localized in kinetochores from prophase to metaphase.
Notes:
1990
M Hejtmánek, J Dolezel, I Holubová (1990)  Staining of fungal cell walls with fluorescent brighteners: flow-cytometric analysis.   Folia Microbiol (Praha) 35: 5. 437-442  
Abstract: Spore walls of Backusella lamprospora (Mucorales) were stained with ten fluorescent brighteners (FB) and the intensity of their fluorescence was determined. The fluorescence was most intense with Uvitex 2B (100%), other brighteners yielding lower fluorescence intensities: Blankophor BA 267% and BA 200% about 75%, Rylux BSU about 50%, other Rylux agents 10-30%. The agents most suitable for microscopic diagnostics of human and animal mycoses are Uvitex 2B, Blankophor BA 267% and BA 200%, Rylux BSU, and also Rylux BS and PRS. The regulation of excessive fluorescence of fungal cells during microscopic observation is discussed. For the purposes of microscopic diagnosis of human and animal mycosis Uvitex 2B, Blankophor BA 267% and BA 200%, Rylux BSU and, possibly, Rylux BS and PRS are recommended.
Notes:
1989
J Dolezel (1989)  Improvement of accuracy of scanning absorption measurement of nuclear DNA content in plants.   Acta Histochem 86: 2. 123-127  
Abstract: The effect of optical errors and stain variation on the accuracy of plant Feulgen-DNA absorption cytophotometry was investigated. Optical errors (glare, distributional error, and diffraction) were shown to cause important errors. A correction procedure of DUIJNDAM et al. (1980a) was successfully applied to eliminate them. Stain variation can also lead to serious errors and in case different samples are to be compared the use of an internal standard is imperative. Chicken red blood cells proved to be a reliable standard.
Notes:
J Dolezel, J Cíhalíková, O V Zakchlenjuk (1989)  Sequential estimation of nuclear DNA and silver staining of nucleoli in plant cells.   Stain Technol 64: 1. 9-13 Jan  
Abstract: A method for sequential estimation of nuclear DNA and silver staining of nucleoli in plant cells is described. Feulgen staining is done first and nuclear DNA estimated by absorption cytophotometry. Following this, the slides are stained with AgNO3. The method has been used to study the process of nucleolar fusion in garlic (Allium sativum L.) meristem root tip cells. It was found that during interphase nucleoli rarely fused, thus most fusion must have occurred before the G1 phase of the cell cycle.
Notes:
1985
J Cíhalíková, J Dolezel, F J Novák (1985)  Cytofluorometric determination of nuclear DNA in plant cells using auramine O.   Acta Histochem 76: 2. 151-156  
Abstract: The effect of DNA hydrolysis, staining time, dye concentration and some other important factors was evaluated on measurement of nuclear DNA content in plant cells by cytofluorometry. Based on the results optimal conditions for making permanent Auramine O--SO2 stained squash preparations can be chosen.
Notes:
Powered by publicationslist.org.