hosted by
publicationslist.org
    

Jose Luis Bocco


jbocco@fcq.unc.edu.ar

Journal articles

2011
Ana C Racca, Soledad A Camolotto, Magali E Ridano, José L Bocco, Susana Genti-Raimondi, Graciela M Panzetta-Dutari (2011)  Krüppel-like factor 6 expression changes during trophoblast syncytialization and transactivates ßhCG and PSG placental genes.   PLoS One 6: 7. 07  
Abstract: Krüppel-like factor-6 (KLF6) is a widely expressed member of the Sp1/KLF family of transcriptional regulators involved in differentiation, cell cycle control and proliferation in several cell systems. Even though the highest expression level of KLF6 has been detected in human and mice placenta, its function in trophoblast physiology is still unknown.
Notes:
Claudia Sola, Ricardo O Lamberghini, Marcos Ciarlantini, Ana L Egea, Patricia Gonzalez, Elda G Diaz, Vanina Huerta, Jose Gonzalez, Alejandra Corso, Mario Vilaro, Juan P Petiti, Alicia Torres, Ana Vindel, Jose L Bocco (2011)  Heterogeneous vancomycin-intermediate susceptibility in a community-associated methicillin-resistant Staphylococcus aureus epidemic clone, in a case of Infective Endocarditis in Argentina.   Ann Clin Microbiol Antimicrob 10: 04  
Abstract: Community-Associated Methicillin Resistant Staphylococcus aureus (CA-MRSA) has traditionally been related to skin and soft tissue infections in healthy young patients. However, it has now emerged as responsible for severe infections worldwide, for which vancomycin is one of the mainstays of treatment. Infective endocarditis (IE) due to CA-MRSA with heterogeneous vancomycin-intermediate susceptibility-(h-VISA) has been recently reported, associated to an epidemic USA 300 CA-MRSA clone.
Notes:
Ricardo C Gehrau, Diego S D'Astolfo, Verónica Andreoli, José L Bocco, Nicolás P Koritschoner (2011)  Differential expression of the klf6 tumor suppressor gene upon cell damaging treatments in cancer cells.   Mutat Res 707: 1-2. 15-23 Feb  
Abstract: The mammalian Krüppel-like factor 6 (KLF6) is involved in critical roles such as growth-related signal transduction, cell proliferation and differentiation, development, apoptosis and angiogenesis. Also, KLF6 appears to be an emerging key factor during cancer development and progression. Its expression is thoroughly regulated by several cell-damaging stimuli. DNA damaging agents at lethal concentrations induce a p53-independent down-regulation of the klf6 gene. To investigate the impact of external stimuli on human klf6 gene expression, its mRNA level was analyzed using a cancer cell line profiling array system, consisting in an assortment of immobilized cDNAs from multiple cell lines treated with several cell-damaging agents at growth inhibitory concentrations (IC(50)). Cell-damaging agents affected the klf6 expression in 62% of the cDNA samples, though the expression pattern was not dependent on the cell origin type. Interestingly, significant differences (p<0.0001) in KLF6 mRNA levels were observed depending on the cellular p53 status upon cell damage. KLF6 expression was significantly increased in 63% of p53-deficient cells (122/195). Conversely, KLF6 mRNA level decreased nearly 4 fold in more than 70% of p53+/+ cells. In addition, klf6 gene promoter activity was down-regulated by DNA damaging agents in cells expressing the functional p53 protein whereas it was moderately increased in the absence of functional p53. Consistent results were obtained for the endogenous KLF6 protein level. Results indicate that human klf6 gene expression is responsive to external cell damage mediated by IC(50) concentrations of physical and chemical stimuli in a p53-dependent manner. Most of these agents are frequently used in cancer therapy. Induction of klf6 expression in the absence of functional p53 directly correlates with cell death triggered by these compounds, whereas it is down-regulated in p53+/+ cells. Hence, klf6 expression level could represent a valuable marker for the efficiency of cell death upon cancer treatment.
Notes:
2010
Ricardo C Gehrau, Diego S D'Astolfo, Catherine I Dumur, José L Bocco, Nicolás P Koritschoner (2010)  Nuclear expression of KLF6 tumor suppressor factor is highly associated with overexpression of ERBB2 oncoprotein in ductal breast carcinomas.   PLoS One 5: 1. 01  
Abstract: Krüppel-like factor 6 (KLF6) is an evolutionarily conserved and ubiquitously expressed protein that belongs to the mammalian Sp1/KLF family of transcriptional regulators. Though KLF6 is a transcription factor and harbors a nuclear localization signal it is not systematically located in the nucleus but it was detected in the cytoplasm of several tissues and cell lines. Hence, it is still not fully settled whether the tumor suppressor function of KLF6 is directly associated with its ability to regulate target genes.
Notes:
Juan Pablo Petiti, Silvina Gutiérrez, Ana Lucía De Paul, Verónica Andreoli, Claudia Mariela Palmeri, Liliana Del Valle Sosa, José Luis Bocco, Alicia Inés Torres (2010)  GH3B6 pituitary tumor cell proliferation is mediated by PKCalpha and PKCepsilon via ERK 1/2-dependent pathway.   Cell Physiol Biochem 26: 2. 135-146 08  
Abstract: In this report, we explored the role of PKCalpha and PKCe as mediators of phorbol 12-myristate13-acetate (PMA)-induced proliferation in pituitary tumor GH3B6 cells, and determined if the ERK1/2 and Akt pathways were activated.
Notes:
Sofía Feliziani, Adela M Luján, Alejandro J Moyano, Claudia Sola, José L Bocco, Patricia Montanaro, Liliana Fernández Canigia, Carlos E Argaraña, Andrea M Smania (2010)  Mucoidy, quorum sensing, mismatch repair and antibiotic resistance in Pseudomonas aeruginosa from cystic fibrosis chronic airways infections.   PLoS One 5: 9. 09  
Abstract: Survival of Pseudomonas aeruginosa in cystic fibrosis (CF) chronic infections is based on a genetic adaptation process consisting of mutations in specific genes, which can produce advantageous phenotypic switches and ensure its persistence in the lung. Among these, mutations inactivating the regulators MucA (alginate biosynthesis), LasR (quorum sensing) and MexZ (multidrug-efflux pump MexXY) are the most frequently observed, with those inactivating the DNA mismatch repair system (MRS) being also highly prevalent in P. aeruginosa CF isolates, leading to hypermutator phenotypes that could contribute to this adaptive mutagenesis by virtue of an increased mutation rate. Here, we characterized the mutations found in the mucA, lasR, mexZ and MRS genes in P. aeruginosa isolates obtained from Argentinean CF patients, and analyzed the potential association of mucA, lasR and mexZ mutagenesis with MRS-deficiency and antibiotic resistance. Thus, 38 isolates from 26 chronically infected CF patients were characterized for their phenotypic traits, PFGE genotypic patterns, mutations in the mucA, lasR, mexZ, mutS and mutL gene coding sequences and antibiotic resistance profiles. The most frequently mutated gene was mexZ (79%), followed by mucA (63%) and lasR (39%) as well as a high prevalence (42%) of hypermutators being observed due to loss-of-function mutations in mutL (60%) followed by mutS (40%). Interestingly, mutational spectra were particular to each gene, suggesting that several mechanisms are responsible for mutations during chronic infection. However, no link could be established between hypermutability and mutagenesis in mucA, lasR and mexZ, indicating that MRS-deficiency was not involved in the acquisition of these mutations. Finally, although inactivation of mucA, lasR and mexZ has been previously shown to confer resistance/tolerance to antibiotics, only mutations in MRS genes could be related to an antibiotic resistance increase. These results help to unravel the mutational dynamics that lead to the adaptation of P. aeruginosa to the CF lung.
Notes:
Verónica Andreoli, Ricardo C Gehrau, Jose Luis Bocco (2010)  Biology of Krüppel-like factor 6 transcriptional regulator in cell life and death.   IUBMB Life 62: 12. 896-905 Dec  
Abstract: An essential role for the Krüppel-like transcription factor family has been determined in the regulation of remarkable processes including cell proliferation, differentiation, signal transduction, oncogenesis, and cell death. A member of this group, Krüppel-like factor 6 (KLF6), identified on the basis of its ability to regulate a group of genes belonging to the carcinoembryonic antigen gene family, has been involved in human carcinogenesis. Early studies proposed a tumor suppressor function for KLF6 because of its ability to reduce cell proliferation through several biochemical mechanisms including regulation of cell cycle components, oncogene products, and apoptosis. Mutations within the klf6 gene, decreased expression and/or loss-of-heterozygosity were associated with the development of different human malignancies, and, hence, further supporting the tumor suppressor function of KLF6. This view has been challenged by other studies in distinct types of human cancers describing infrequent genetic alterations of klf6 gene or even enhanced expression in some tumors. The scenario about KLF6 function became still more complex as the description of oncogenic KLF6 splice variant 1 (SV1) with dominant negative activity against the wild type KLF6 (wtKLF6) protein. Additionally, increased evidence is suggesting that KLF6 is a bonafide target of several signaling cascades, which ultimate regulatory effect on this protein could drive decisions of cell life and death, facing the dilemma about how wtKLF6 could be involved in both processes. These apparently conflicting situations, emerged by apparently opposite effects mediated by wtKLF6, may be related, at least in part, to the biological cross-talk with the c-Jun oncoprotein. Depending on the stimulus received by the cell, wtKLF6 interaction with c-Jun determines different cell outcomes such as proliferation control or apoptosis. Thus, KLF6 responsiveness represents a kind of cell warning signal on receiving different stimuli, including oncogenic activation and microbial infections, orchestrating the implementation of proliferation and apoptotic programs.
Notes:
2009
María Valeria Amé, María Verónica Baroni, Lucas Nicolás Galanti, José Luis Bocco, Daniel Alberto Wunderlin (2009)  Effects of microcystin-LR on the expression of P-glycoprotein in Jenynsia multidentata.   Chemosphere 74: 9. 1179-1186 Mar  
Abstract: The multixenobiotic resistance phenomenon (MXR) related to the P-glycoprotein multidrug transporter protein (P-gp) has been identified and characterized in several aquatic organisms. In the present work, we prove the presence of a P-gp in liver, gills and brain of Jenynsia multidentata by Western Blot and RT-PCR. A 170 kDa protein has been found in liver and gills while in brain a approximately 80 kDa protein has been detected. The partial nucleotide sequence obtained in this autochthonous fish showed high similarity ranging from 83% to 92% with other fishes. In addition, P-gp expression in this fish was evaluated after time and dose-dependent exposures to the cyanotoxin microcystin-LR. Individuals were exposed to MC-LR at concentrations of 2, 5 and 10 microg L(-1) for 24h and for 6, 12 and 24h at 2 microg L(-1) MC-LR. Changes in P-gp expression were observed in liver, gills and brain. However, this response was tissue specific. Only in gills of J. multidentata P-gp expression, measured either by real-time RT-PCR or Western Blot, was significantly higher compared to controls at most tested times and doses. A 3-fold increase with respect to controls was found at 12h by RT-PCR and after 24h by Western Blot. In dose-dependent experiments the maximum P-gp expression was observed at 2 microg L(-1) MC-LR, measured by both RT-PCR and Western Blot. In the liver, P-gp protein levels were significantly increased after 24h of exposure, at every toxin dose tested. Thus, probably longer exposures would show also significant increases in this tissue. Considering these results we can propose that P-gp belongs to the defence system involved in the response to MC-LR in J. multidentata.
Notes:
2008
Hector Alex Saka, Carla Bidinost, Claudia Sola, Pablo Carranza, Cesar Collino, Susana Ortiz, Jose Ricardo Echenique, José Luis Bocco (2008)  Vibrio cholerae cytolysin is essential for high enterotoxicity and apoptosis induction produced by a cholera toxin gene-negative V. cholerae non-O1, non-O139 strain.   Microb Pathog 44: 2. 118-128 Feb  
Abstract: Cholera toxin (CT) gene-negative Vibrio cholerae non-O1, non-O139 strains may cause severe diarrhea though their pathogenic mechanism remains unclear. V. cholerae cytolysin (VCC) is a pore-forming exotoxin encoded in the hlyA gene of V. cholerae whose contribution to the pathogenesis is not fully understood. In this work, the virulence properties of a CT gene-negative V. cholerae non-O1, non-O139 strain causing a cholera-like syndrome were analyzed. Inoculation of rabbit ileal loops with the wild type strain induced extensive fluid accumulation, accompanied by severe histopathological damage characterized by villus shortening, lymphangiectasia and focal areas of necrosis. These pathogenic effects were abrogated by mutation of the hlyA gene thus pointing out the main role of VCC in the virulence of the strain. Interestingly, this toxin was capable of triggering apoptosis in human intestinal cell lines due to its anion channel activity. Moreover, the wild type strain also induced increased apoptosis of the intestinal epithelium cells which was not observed upon inoculation of the VCC null mutant strain, indicating that VCC may trigger apoptotic cell death during infection in vivo. Altogether, these results support a main role of VCC in the pathogenesis of the CT gene-negative V. cholerae non-O1, non-O139 strain and identify apoptosis as a previously unrecognized cell death pathway triggered by VCC.
Notes:
Claudia Sola, Hector A Saka, Ana Vindel, José Luis Bocco (2008)  Emergence and dissemination of a community-associated methicillin-resistant Panton-Valentine leucocidin-positive Staphylococcus aureus clone sharing the sequence type 5 lineage with the most prevalent nosocomial clone in the same region of Argentina.   J Clin Microbiol 46: 5. 1826-1831 May  
Abstract: Epidemiological surveillance for community-associated methicillin-resistant Staphylococcus aureus revealed prevalences of 33% and 13% in pediatric and adult patients, respectively, in Cordoba, Argentina, in 2005. This study describes for the first time the emergence and dissemination of the sequence type 5 (ST5) lineage as the most prevalent clone (89%) (pulsed-field gel electrophoresis type I-ST5-staphylococcal cassette chromosome type IVa-spa type 311) harboring the Panton-Valentine leukocidin and enterotoxin A genes.
Notes:
2007
Maximiliano Gabriel Gutierrez, Hector Alex Saka, Isabel Chinen, Felipe C M Zoppino, Tamotsu Yoshimori, Jose Luis Bocco, María Isabel Colombo (2007)  Protective role of autophagy against Vibrio cholerae cytolysin, a pore-forming toxin from V. cholerae.   Proc Natl Acad Sci U S A 104: 6. 1829-1834 Feb  
Abstract: Autophagy is the unique, regulated mechanism for the degradation of organelles. This intracellular process acts as a prosurvival pathway during cell starvation or stress and is also involved in cellular response against specific bacterial infections. Vibrio cholerae is a noninvasive intestinal pathogen that has been studied extensively as the causative agent of the human disease cholera. V. cholerae illness is produced primarily through the expression of a potent toxin (cholera toxin) within the human intestine. Besides cholera toxin, this bacterium secretes a hemolytic exotoxin termed V. cholerae cytolysin (VCC) that causes extensive vacuolation in epithelial cells. In this work, we explored the relationship between the vacuolation caused by VCC and the autophagic pathway. Treatment of cells with VCC increased the punctate distribution of LC3, a feature indicative of autophagosome formation. Moreover, VCC-induced vacuoles colocalized with LC3 in several cell lines, including human intestinal Caco-2 cells, indicating the interaction of the large vacuoles with autophagic vesicles. Electron microscopy analysis confirmed that the vacuoles caused by VCC presented hallmarks of autophagosomes. Additionally, biochemical evidence demonstrated the degradative nature of the VCC-generated vacuoles. Interestingly, autophagy inhibition resulted in decreased survival of Caco-2 cells upon VCC intoxication. Also, VCC failed to induce vacuolization in Atg5-/- cells, and the survival response of these cells against the toxin was dramatically impaired. These results demonstrate that autophagy acts as a cellular defense pathway against secreted bacterial toxins.
Notes:
Héctor A Saka, Maximiliano G Gutiérrez, José L Bocco, María I Colombo (2007)  The autophagic pathway: a cell survival strategy against the bacterial pore-forming toxin Vibrio cholerae cytolysin.   Autophagy 3: 4. 363-365 Jul/Aug  
Abstract: Vibrio cholerae is the causative agent of cholera in humans. In addition to the criticalvirulence factors cholera toxin and toxin coregulated pilus, V. cholerae secretes V.cholerae cytolysin (VCC), a pore-forming exotoxin able to induce cell lysis and extensivevacuolation. We have shown that this vacuolation is related to the activation of autophagyin response to VCC action. Furthermore, we found that the autophagic pathway wasrequired to protect cells upon VCC intoxication. Based on additional data presented here,we propose a model aimed to explain the mechanism of cell protection. We postulatethat VCC-induced autophagic vacuoles, which display features of multivesicular bodies and enclose the toxin, are implicated in cell defense through VCC degradation involvingfusion with lysosomes.
Notes:
C Sola, H A Saka, A Vindel, J L Bocco (2007)  High frequency of Panton-Valentine leukocidin genes in invasive methicillin-susceptible Staphylococcus aureus strains and the relationship with methicillin-resistant Staphylococcus aureus in Córdoba, Argentina.   Eur J Clin Microbiol Infect Dis 26: 4. 281-286 Apr  
Abstract: In the study presented here, the genetic characteristics of methicillin-susceptible Staphylococcus aureus (MSSA) strains isolated from patients attending hospitals in the city of Córdoba, Argentina, during 1999-2002 were evaluated to determine their genetic relationship with methicillin-resistant S. aureus (MRSA) clones as part of an effort to control the potential emergence of new epidemic MRSA strains. The results showed there is a high frequency of MSSA strains carrying Panton-Valentine leukocidin genes in invasive infections in Córdoba, Argentina, particularly in those occurring in hospital settings. Panton-Valentine leukocidin genes were found in the genomic background of one clone (ST30-N pulsotype) belonging to a successful internationally distributed MSSA lineage (clonal complex 30), which is closely related to the EMRSA-16 pandemic clone. These genes were also detected in the ancestral clone (ST5-M pulsotype) of the most prevalent MRSA epidemic clone causing healthcare-associated infections in this region, known as the Cordobes/Chilean clone. The molecular characterization of circulating MSSA strains, including the detection of Panton-Valentine leukocidin genes, is thus a useful marker for investigating the evolving epidemiology of hospital- and community-acquired MRSA clones.
Notes:
F López-Díaz, R Nores, G Panzetta-Dutari, D Slavin, C Prieto, N P Koritschoner, J L Bocco (2007)  RXRalpha regulates the pregnancy-specific glycoprotein 5 gene transcription through a functional retinoic acid responsive element.   Placenta 28: 8-9. 898-906 Aug/Sep  
Abstract: Human pregnancy-specific glycoproteins (PSG) are major placental polypeptides encoded by eleven highly conserved genes expressed by the syncytiotrophoblast. The minimal promoter region of all PSG genes contains a putative Retinoic Acid Responsive Element (RARE) though the ability of retinoids to regulate PSG gene expression has not been established. Retinoid signaling pathway plays a key role for overall placenta biology and is essential for trophoblast differentiation. In this work, we investigated the participation of the RARE motif in the regulation of PSG5 gene transcription by retinoic acid and its receptors. The minimal promoter region of PSG5 gene was activated by RXRalpha but not by RARalpha, in a ligand-dependent manner. The RARE sequence of PSG5 gene promoter was recognized by endogenous RXRalpha present in placental nuclear extracts as well as by RXRalpha either over expressed in cultured non-placental cells or in vitro translated. Mutations at specific nucleotides within the RARE motif abrogated both RXRalpha DNA binding and transcriptional activation of PSG5 promoter mediated by RXRalpha. Moreover, endogenous PSG expression was significantly induced in trophoblast-derived Jeg-3 cells upon 9-cis retinoic acid treatment. Interestingly, the induction level was higher following methotrexate-induced differentiation of Jeg-3 cells to syncytiotrophoblast-like structures. Altogether, these data provide the first evidences demonstrating that transcriptional activity of PSG5 gene is responsive to an external signal involving the retinoids-RXRalpha axis through a conserved RARE motif shared by all PSG gene family members.
Notes:
2006
Claudia Sola, Paulo Cortes, Hector A Saka, Ana Vindel, José Luis Bocco (2006)  Evolution and molecular characterization of methicillin-resistant Staphylococcus aureus epidemic and sporadic clones in Cordoba, Argentina.   J Clin Microbiol 44: 1. 192-200 Jan  
Abstract: Since 1999, a new, epidemic, methicillin-resistant Staphylococcus aureus (MRSA) strain, named the "Cordobes clone," has emerged in Argentina and coexists with the pandemic Brazilian clone. The purpose of this study was to determine the stability over time of the new clone and to investigate its evolutionary relationship with epidemic international MRSA lineages and with other MRSA and methicillin-susceptible S. aureus (MSSA) major clones distributed in this region. One hundred three MRSA isolates recovered in 2001 from Cordoba, Argentina, hospitals and 31 MSSA strains collected from 1999 to 2002 were analyzed by their antibiotic resistance patterns, phage typing, and pulsed-field gel electrophoresis. Additionally, representative members of most MRSA defined genotypes (A, B, C, E, K, and I) were characterized by multilocus sequence typing (MLST) and spaA and SCCmec typing. The most prevalent MSSA pulsotypes were also analyzed by MLST. Our results support the displacement of the Brazilian clone (sequence type [ST] 239, spaA type WGKAOMQ, SCCmec type IIIA) by the Cordobes clone (ST5, spaA type TIMEMDMGMGMK, SCCmec type I) in the hospital environment. MRSA and MSSA isolates shared only ST5. The data support the origin of the Cordobes clone as a member of a lineage that includes the pediatric and New York/Japan international clones and that is genetically related to the British EMRSA-3 strain. Interestingly, the pediatric clone, isolated from most community-acquired infections in Cordoba, was characterized by ST100, a single-locus variant of ST5 and a new variant of SCCmec type related to SCCmec type IVc.
Notes:
Loïc Blanchon, Rodrigo Nores, Denis Gallot, Geoffroy Marceau, Valérie Borel, Vincent W Yang, José Luis Bocco, Didier Lémery, Graciela Panzetta-Dutari, Vincent Sapin (2006)  Activation of the human pregnancy-specific glycoprotein PSG-5 promoter by KLF4 and Sp1.   Biochem Biophys Res Commun 343: 3. 745-753 May  
Abstract: Pregnancy-specific glycoproteins (PSGs) are major placental proteins thought to be essential for the maintenance of gestation. Little is known about the regulation of expression of the 11 genes encoding these proteins. It was previously demonstrated that Krüppel-like factor 6 (KLF6) and specific-protein 1 (Sp1) bind to conserved sequence within the PSG-5 gene promoter. Informatics analysis revealed the presence of one potential binding site for Krüppel-like factor 4 (KLF4), in the PSG-5 promoter, suggesting a potential transcriptional regulator role for KLF4. Using gene promoter-reporter transfections and X-ChIP assays, we demonstrated that KLF4 is an activator of the PSG-5 promoter by binding to a KLF consensus like binding which includes the Core Promoter Element region (-147/-140). Furthermore, we used previous data showing the binding of Sp1 transcription factor to a GT-box (-443/-437) and co-transfection assays with KLF4 and Sp1 to demonstrate the strong synergic activity of these two factors on the PSG-5 promoter.
Notes:
2005
Ricardo C Gehrau, Diego S D'Astolfo, Claudio Prieto, José L Bocco, Nicolás P Koritschoner (2005)  Genomic organization and functional analysis of the gene encoding the Krüppel-like transcription factor KLF6.   Biochim Biophys Acta 1730: 2. 137-146 Aug  
Abstract: The Krüppel-like transcription Factor 6 (KLF6) is regulated during cell proliferation and differentiation events like mammalian development and tissue regeneration, while its aberrant expression is associated with tumor formation. To investigate KLF6 transcriptional control, the genomic organization of human KLF6 together with its cis-regulatory region was analyzed. A high sequence homology of KLF6 regulatory regions was found in mammals, which in turn predicts a high degree of evolutionary conserved transcriptional mechanisms. A transcription start site was identified at the first nucleotide downstream of a potential initiator element. Also, the role of KLF6 regulatory regions was determined by transfection experiments. A minimal promoter region lacking a TATA-box yet containing an Initiator was identified and found to be active in all cells analyzed. In addition, two strong activating sequences were located between positions -407/-344 and -307/-207, where the latter contained Sp1 and CAAT-box sites. Furthermore, ectopic expression of Sp1 increased the transcriptional activity of the KLF6 promoter. In conclusion, our data revealed that KLF6 gene transcription is under control of a TATA-box independent initiation mechanism together with an evolutionary conserved array of positive cis-acting elements.
Notes:
2004
R Nores, L Blanchon, F López-Díaz, J L Bocco, L C Patrito, V Sapin, G M Panzetta-Dutari (2004)  Transcriptional control of the human pregnancy-specific glycoprotein 5 gene is dependent on two GT-boxes recognized by the ubiquitous specificity protein 1 (Sp1) transcription factor.   Placenta 25: 1. 9-19 Jan  
Abstract: Pregnancy-specific glycoprotein 5 gene (PSG-5) belongs to the human pregnancy-specific glycoprotein family, encoded by eleven highly similar and transcriptionally active genes. High levels of PSG biosynthesis are restricted to the placenta syncytiotrophoblast and are essential for the maintenance of normal gestation in mammalian species. We have investigated here the nature of the transcription factors that recognize the FP1 (-455/-433) and the CPE (-147/-140) regulatory sequences that significantly contribute to basal PSG-5 promoter activity. Both elements bear a similar GT-box motif; and DNA-protein complex formation, as well as promoter activity, is largely dependent on the integrity of these GT-box sequences. Gel shift, super gel shift and UV-crosslinking experiments clearly demonstrate that the ubiquitous specificity protein 1 (Sp1) is the major transcription factor involved in complex formation with both cis-acting elements in normal term placenta tissue and in PSG-non-expressing COS-7 cells. Furthermore, transfection experiments indicate that Sp1 activates PSG-5 promoter constructs. In addition, we show that Sp1 is indeed co-expressed with PSG genes in the syncytiotrophoblast cells, stressing its potential role in the in vivo regulation of PSG expression.
Notes:
Daniela A Slavin, Nicolás P Koritschoner, Claudio C Prieto, Fernando J López-Díaz, Bruno Chatton, José Luis Bocco (2004)  A new role for the Kruppel-like transcription factor KLF6 as an inhibitor of c-Jun proto-oncoprotein function.   Oncogene 23: 50. 8196-8205 Oct  
Abstract: Kruppel-like transcription factors (KLFs) represent one of the most diverse set of regulators in vertebrate organisms. KLF family members are involved in cell proliferation and differentiation control in normal as well as in pathological situations. Here, we demonstrate that KLF6 behaves as a functional antagonist of the c-Jun proto-oncoprotein. Thus, KLF6 overexpression downregulated c-Jun-dependent transcription and a physical interaction between c-Jun and KLF6 was detected. Moreover, cell proliferation induced by c-Jun was significantly decreased by KLF6. The inhibition of c-Jun functions correlates directly with c-Jun protein degradation induced by KLF6. We also show that all KLF6 effects on c-Jun were largely dependent on phorbol ester (TPA/ionomycin) extracellular stimulation, which enhanced KLF6 nuclear translocation and transcriptional activity and modified its phosphorylation status. Our data are consistent with a novel mechanism of KLF6's role as an inhibitor of cell proliferation by counteracting the function of the c-Jun proto-oncoprotein involving enhanced c-Jun degradation by the proteasome-dependent pathway, and further reinforces KLF6 as a potential tumor suppressor gene product.
Notes:
C Bidinost, H A Saka, O Aliendro, C Sola, G Panzetta-Duttari, P Carranza, J Echenique, E Patrito, J L Bocco (2004)  Virulence factors of non-O1 non-O139 Vibrio cholerae isolated in Córdoba, Argentina.   Rev Argent Microbiol 36: 4. 158-163 Oct/Dec  
Abstract: V. cholerae non-O1 non-O139 serogroups isolated from clinical and environmental sources in Córdoba, Argentina, were analyzed for the presence and expression of virulence genes. Most of the strains studied contained the genes toxR and hlyA, but lacked ctxA, zot, ace, tcpA and stn. The culture supernatants were tested for hemolytic and cytotoxic activity. The enterotoxic potential of the strains was studied in a rabbit ileal loop assay and their genetic profiles were compared by PFGE. The environmental strains varied in their virulence phenotype and showed no clonal relationships. The clinical strains were highly enterotoxic, hemolytic, proteolytic and showed indistinguishable PFGE profiles, although they differed in their cytotoxic activity. This is the first description, using cell culture and "in vivo" studies, of the virulence properties of non-O1 non-O139 V. cholerae from Argentina.
Notes:
2003
Claudia C Motrán, Fernando López Diaz, Carolina L Montes, José Luis Bocco, Adriana Gruppi (2003)  In vivo expression of recombinant pregnancy-specific glycoprotein 1a induces alternative activation of monocytes and enhances Th2-type immune response.   Eur J Immunol 33: 11. 3007-3016 Nov  
Abstract: It has been proposed that pregnancy-specific factors could be responsible for shift the balance of cytokine profiles during maternal immune response from Th1-type reactivity into a "less-damaging" Th2-type reactivity. In the present work, we investigated the in vivo function of human pregnancy-specific glycoprotein (PSG)1a, the major variant of PSG polypeptides released into the circulation during pregnancy, on the modulation of the innate and adaptive immune response. For this, BALB/c mice were injected with a vaccinia virus-based vector harboring the human PSG1a cDNA (Vac-PSG1a) 4 days before immunization with ovalbumin (OVA) in complete Freund's adjuvant, and the early specific T cell response against OVA was evaluated 8 days post-immunization. We also studied the activation status of spleen and peritoneal monocytes/macrophages (Mo) populations from Vac-PSG1a-treated mice, and explored whether PSG1a-targeted Mo could affect the Th-type commitment by investigating their impact on the differentiation of naive T cells. Our data show that the treatment with Vac-PSG1a is able to induce a state of alternative activation on Mo. Furthermore, the generation of the immune response in the context of these alternatively activated antigen-presenting cells may shift T cell differentiation to Th2-type immunity which is more compatible with a successful pregnancy.
Notes:
2002
Claudia Sola, Germán Gribaudo, Ana Vindel, Luis Patrito, José Luis Bocco (2002)  Identification of a novel methicillin-resistant Staphylococcus aureus epidemic clone in Córdoba, Argentina, involved in nosocomial infections.   J Clin Microbiol 40: 4. 1427-1435 Apr  
Abstract: Infections caused by methicillin-resistant Staphylococcus aureus (MRSA) are increasingly a main health concern worldwide for hospitalized patients. In addition, the prevalence of community-acquired infection has risen continuously during the last few years. Some MRSA clones spread easier than others within the hospital environment and therefore are frequently implicated in outbreaks. Thus, the spread of a unique epidemic multiresistant clone, the so-called South American clone, is the main cause of nosocomial infections produced by this bacterium in Brazil and in some regions of Argentina, Chile, and Uruguay. In the present work we describe the identification of a novel clone of MRSA that is involved in nosocomial infections and that shows a prevalence as high as that for the South American clone. A total of 53 consecutive single-patient MRSA isolates were recovered during a 3-month period (May to July 1999) from six different hospitals (955 beds) in Córdoba. The isolates were initially typed according the antibiotic resistance and phage susceptibility patterns, followed by genotyping using pulsed-field gel electrophoresis (PFGE). PFGE analysis of the 53 MRSA isolates revealed six major types (A to F) and 25 subtypes. The B-type DNA pattern was indistinguishable from that of the South American epidemic clone observed in 34% of the isolates. A novel highly prevalent clone, showing the A-type DNA pattern and representing 38% of the isolates, was also identified. Moreover, the most frequent subtype of the A clonal family triggered an outbreak in a hospital 2 months later, further confirming its epidemic feature.
Notes:
Claudia Cristina Motrán, Fernando López Díaz, Adriana Gruppi, Daniela Slavin, Bruno Chatton, José Luis Bocco (2002)  Human pregnancy-specific glycoprotein 1a (PSG1a) induces alternative activation in human and mouse monocytes and suppresses the accessory cell-dependent T cell proliferation.   J Leukoc Biol 72: 3. 512-521 Sep  
Abstract: It has been proposed that pregnancy-specific factors induce the suppression of a specific arm of the maternal response accompanied by activation of the nonspecific, innate immune system. The aim of this study was to determine whether pregnancy-specific glycoprotein 1a (PSG1a), the major variant of PSG polypeptides, is able to modulate the monocyte/macrophage (Mo) metabolism to regulate T cell activation and proliferation. Using the recombinant form of this glycoprotein (rec-PSG1a), expressed in mammalian cells with a vaccinia-based expression vector, we have demonstrated that human PSG1a induces arginase activity in peripheral blood human Mo and human and murine Mo cell lines. In addition, rec-PSG1a is able to induce alternative activation because it up-regulates the arginase activity and inhibits the nitric oxide production in Mo activated by lipopolysaccharides. We also observed that rec-PSG1a is an important accessory cells-dependent T cell suppressor factor that causes partial growth arrest at the S/G2/M phase of the cell cycle. Additionally, an impaired T cell proliferative response induced by mitogens and specific antigen was observed in BALB/c mice upon in vivo expression of PSG1a. Our results suggest that PSG1a function contributes to the immunomodulation during pregnancy, having opposite effects on maternal innate and adaptative systems.
Notes:
2001
J G Blanco, R R Gil, J L Bocco, T L Meragelman, S Genti-Raimondi, A Flury (2001)  Aromatase inhibition by an 11,13-dihydroderivative of a sesquiterpene lactone.   J Pharmacol Exp Ther 297: 3. 1099-1105 Jun  
Abstract: Compounds that inhibit aromatase activity are used for the treatment of breast cancer. A group of sesquiterpene lactones inhibit aromatase activity and also exert cytotoxicity through their reactive alpha-methylene-gamma-lactone group. To synthesize sesquiterpene lactones with greater specificity for aromatase inhibition and lower cytotoxicity, we chemically reduced the alpha-methylene-gamma-lactone group in the active aromatase inhibitor 10-epi-8-deoxycumambrin B (compound 1), to obtain the new compound 11betaH,13-dihydro-10-epi-8-deoxycumambrin B (compound 2). Reduction of the alpha-methylene-gamma-lactone group abrogated the cytotoxic activity of compound 1 against the JEG-3, HeLa, and COS-7 cell lines. Compound 2 had higher aromatase inhibitory activity than compound 1 (IC(50) = 2 +/- 0.5 microM versus 7 +/- 0.5 microM, K(i) = 1.5 microM versus 4.0 microM) and was a more potent type II ligand to the heme iron present in the cytochrome P450(arom) active site. Compound 2 inhibited aromatase activity in JEG-3 cells in a comparable manner to the inhibitor aminoglutethimide (AG) used clinically for the treatment of breast cancer. Additionally, compound 2 inhibited androstenedione-induced uterine hypertrophy in sexually immature mice (41% of uterine weight suppression for compound 2 versus 51% for AG). We conclude that the anti-aromatase activity of sesquiterpene lactones does not depend on the presence of the highly reactive alpha-methylene-gamma-lactone group, whereas their cytotoxicity does. These findings may facilitate the development of safer agents for breast cancer therapy.
Notes:
L Blanchon, J L Bocco, D Gallot, A M Gachon, D Lémery, P Déchelotte, B Dastugue, V Sapin (2001)  Co-localization of KLF6 and KLF4 with pregnancy-specific glycoproteins during human placenta development.   Mech Dev 105: 1-2. 185-189 Jul  
Abstract: Pregnancy-specific glycoproteins (PSGs) are major placental proteins essential for the maintenance of normal gestation. However, little is known about their gene expression regulation during placentation. It was previously demonstrated that the human core promoter binding protein recently renamed Krüppel-like factor (KLF) 6 binds to a highly conserved sequence within the PSG promoters and is mainly expressed in human term placenta. Here, we determined the expression pattern of the 13 other KLFs during human placental development. We demonstrate that eight KLFs exhibit specific expression patterns in human placental tissues and membranes, in favor of a functional cooperation of specific KLFs during placentation. In addition, we demonstrate that KLF6, KLF4 and PSG proteins are co-expressed in same cell types of placental villi and membranes. This experimental evidence further strengthens the potential cross talk of both transcription factors for PSG gene regulation in vivo.
Notes:
2000
E Zuñiga, C Motran, C L Montes, F L Diaz, J L Bocco, A Gruppi (2000)  Trypanosoma cruzi-induced immunosuppression: B cells undergo spontaneous apoptosis and lipopolysaccharide (LPS) arrests their proliferation during acute infection.   Clin Exp Immunol 119: 3. 507-515 Mar  
Abstract: Acute infection with Trypanosoma cruzi is characterized by multiple manifestations of immunosuppression of both cellular and humoral responses. B cells isolated at the acute stage of infection have shown marked impairment in their response to polyclonal activators in vitro. The present work aims at studying the B cell compartment in the context of acute T. cruzi infection to provide evidence for B cell activation, spontaneous apoptosis and arrest of the cell cycle upon mitogenic stimulation as a mechanism underlying B cell hyporesponse. We found that B cells from acutely infected mice, which fail to respond to the mitogen LPS, showed spontaneous proliferation and production of IgM, indicating a high level of B cell activation. Furthermore, these activated B cells also exhibited an increase in Fas expression and apoptosis in cultures without an exogenous stimulus. On the other hand, B cells from early acute and chronic infected mice did not present activation or apoptosis, and were able to respond properly to the mitogen. Upon in vitro stimulation with LPS, B cells from hyporesponder mice failed to progress through the cell cycle (G0/G1 arrest), nor did they increase the levels of apoptosis. These results indicate that B cell apoptosis and cell cycle arrest could be the mechanisms that control intense B cell expansion, but at the same time could be delaying the emergence of a specific immune response against the parasite.
Notes:
G M Panzetta-Dutari, N P Koritschoner, J L Bocco, R Nores, C I Dumur, L C Patrito (2000)  Transcription of genes encoding pregnancy-specific glycoproteins is regulated by negative promoter-selective elements.   Biochem J 350 Pt 2: 511-519 Sep  
Abstract: The human pregnancy-specific glycoprotein (PSG) genes comprise a family of 11 highly conserved members whose expression is maximal in placental cells and marginal in other cell types. We have investigated here the molecular basis of PSG regulation by analysing a large regulatory region of the PSG-5 gene in cells that do and do not express these genes. The promoter region (-254 to -43), which does not contain a TATA-box, large GC-rich sequences or a classical initiator, was active in all cell types analysed. Additional upstream sequences up to position -3204 repressed promoter activity. Two independent repressor regions were identified and found to operate effectively in HeLa, COS-7 and HTR8/SVneo placental cells. More significantly, these negatively acting modules failed to repress a heterologous TATA-containing thymidine kinase promoter. Detailed transcriptional and DNA-protein analyses of the proximal repressor region (-605 to -254) revealed the presence of both negative and positive cis-acting elements. Disruption of the repressive functions resulted in an enhanced transcription of the reporter constructs. In conclusion, these results demonstrate that PSG-5 gene transcription is highly repressed by promoter-selective negative regulatory regions and the relief of repression allows enhanced PSG-5 gene transcription irrespective of the cell type. Furthermore, our findings suggest that PSG genes are expressed mainly through a derepression mechanism.
Notes:
G A Rabinovich, C R Alonso, C E Sotomayor, S Durand, J L Bocco, C M Riera (2000)  Molecular mechanisms implicated in galectin-1-induced apoptosis: activation of the AP-1 transcription factor and downregulation of Bcl-2.   Cell Death Differ 7: 8. 747-753 Aug  
Abstract: Galectins are emerging as a new class of bioactive molecules with specific immunomodulatory properties. Galectin-1 (Gal-1), a member of this family, has been shown to induce apoptosis of mature T cells and immature thymocytes. To gain insight into the intracellular signals transduced by Gal-1 upon binding to mature T cells, we investigated whether this protein triggered activation of the dimeric AP-1 transcription factor. A marked increase in the binding of nuclear extracts to synthetic oligonucleotides containing the AP-1 consensus sequence, could be detected by an electrophoretic mobility shift assay, when T cells were cultured for 30 min in the presence of Gal-1. This DNA-binding activity was preceded by a rapid increase in the levels of c-Jun mRNA, as determined by Northern blot analysis. Requirement of AP-1 for Gal-1-induced apoptosis was confirmed by the dose-dependent reduction on the level of DNA fragmentation observed when cells were pre-treated with curcumin (an inhibitor of AP-1 activation) before exposure to Gal-1. Finally, evidence is also provided by Western blot analysis, showing that Gal-1 inhibits Concanavalin A (Con A) induction of Bcl-2 protein. Results presented in this study provide the first experimental evidence regarding AP-1 and Bcl-2 as targets of the signal transduction pathway triggered by Gal-1 and set the basis for a more in depth understanding of the molecular mechanisms of T-cell death regulation.
Notes:
1999
E E Montamat, S Durand, J L Bocco, G M De De D'Oro, A Blanco (1999)  Identification of Trypanosoma cruzi zymodemes by kinetoplast DNA probes.   J Eukaryot Microbiol 46: 2. 155-159 Mar/Apr  
Abstract: Analysis of zymograms of extracts of Trypanosoma cruzi isolated from different hosts in Argentina allowed characterization of 12 zymodemes or "isozymic strains," only six of which were found in human patients. Two of these six zymodemes (Z1 and Z12) were widely distributed and found in more than 80% of human patients. These two "major natural clones" differed significantly in pathogenic activity. Because the groupings obtained by studying enzymes and kinetoplast DNA (kDNA) were similar, it is possible to identify the zymodeme by analyzing kDNA. A 290-bp fragment was amplified by PCR using primers for the sequences flanking the hypervariable regions of kDNA minicircles. Labeled probes for this fragment, prepared from Z1 and Z12 reference stocks, hybridized specifically with PCR-amplified kDNA from parasite stocks, allowing identification of zymodemes.
Notes:
D Slavin, V Sapin, F López-Diaz, P Jacquemin, N Koritschoner, B Dastugue, I Davidson, B Chatton, J L Bocco (1999)  The Krüppel-like core promoter binding protein gene is primarily expressed in placenta during mouse development.   Biol Reprod 61: 6. 1586-1591 Dec  
Abstract: The human core promoter binding protein (hCPBP) has been identified as a DNA-binding protein involved in the regulation of TATA box-less genes like those encoding the pregnancy-specific glycoproteins. Structurally, hCPBP contains three zinc fingers in the C-terminal domain, which is highly conserved in a number of proteins that constitute the Krüppel-like family of transcription factors. In the present work, we report the molecular cloning of the mouse CPBP (mCPBP) and its expression pattern during development as well as in adult tissues. The mouse cDNA encodes a protein of 283 amino acids that share 94.4% of identity with the hCPBP. The highest level of mCPBP transcript was detected in placenta, and its expression was lower in total embryos and in adult tissues. We also show by in situ hybridization that during embryonic development the mCPBP gene is mainly expressed in extra-embryonic structures throughout gestation; essentially no specific expression was detected in embryonic tissues. Our data demonstrate that CPBP transcript is enriched in the trophoblastic tissue and strongly suggest that its encoded polypeptide regulates target genes involved in placental development and pregnancy maintenance.
Notes:
1998
C I Dumur, N P Koritschoner, A Flury, G Panzetta-Dutari, J L Bocco, L C Patrito (1998)  Differential expression of a tumor necrosis factor receptor-related transcript in gestational trophoblastic diseases in women.   Biol Reprod 59: 3. 621-625 Sep  
Abstract: Gestational trophoblastic diseases comprise a group of interrelated neoplasms, including complete hydatidiform mole (CHM), persistent gestational trophoblastic tumor (GTT), and choriocarcinoma. To better define the molecular features of these diseases, a CHM cDNA library was constructed and a novel cDNA sequence, named CHMS-1, was isolated by differential screening. The CHMS-1 sequence showed a 62% homology with the tumor necrosis factor receptor (TNF-R2) cDNA, and its amino acid deduced sequence shared a high level of homology with the "death domain" region found in various proteins, including two members of the TNF receptor superfamily, the TNF-R1 and Fas. We also determined the CHMS-1, TNF-R1, and TNF-R2 expression patterns among different CHM tissues and cell lines of trophoblastic (JEG-3) and nontrophoblastic (HeLa and COS-7) origin. Our results indicated that the CHMS-1 transcript is highly expressed in CHM in comparison with both normal early and term placenta and that it exhibits an expression profile identical to that of TNF-R1. Furthermore, the CHMS-1 transcript was undetectable in CHM-derived GTT and in the human choriocarcinoma-derived JEG-3 cells, suggesting that its expression is down-regulated in the malignant transformation of trophoblast. The presence of a potential "death domain" in CHMS-1, together with its high expression level in CHM, strongly suggests that the CHMS-1 gene encodes a protein that might be involved in tumor regression processes occurring at later stages of molar development.
Notes:
1997
N P Koritschoner, J L Bocco, G M Panzetta-Dutari, C I Dumur, A Flury, L C Patrito (1997)  A novel human zinc finger protein that interacts with the core promoter element of a TATA box-less gene.   J Biol Chem 272: 14. 9573-9580 Apr  
Abstract: We describe a novel human cDNA isolated by target site screening of a placental expression library, using as a probe, an essential element of a TATA box-less promoter corresponding to a pregnancy-specific glycoprotein gene. The cDNA encoded a predicted protein of 290 amino acids, designated core promoter-binding protein (CPBP), which has three zinc fingers (type Cys2-His2) at the end of its C-terminal domain, a serine/threonine-rich central region and an acidic domain lying within the N-terminal region. Additional sequence analysis and data base searches revealed that only the zinc finger domains are conserved (60-80% identity) in other transcription factors. In cotransfection assays, CPBP increased the transcription from a minimal promoter containing its natural DNA-binding site. Moreover, a chimeric protein between CPBP and Gal4 DNA binding domain also increased the activity of an heterologous reporter gene containing Gal4 DNA binding sites. The tissue distribution analysis of CPBP mRNA revealed that it is differentially expressed with an apparent enrichment in placental cells. The DNA binding and transcriptional activity of CPBP, in conjunction with its expression pattern, strongly suggests that this protein may participate in the regulation and/or maintenance of the basal expression of PSG and possibly other TATA box-less genes.
Notes:
1996
N P Koritschoner, G M Panzetta-Dutari, J L Bocco, C I Dumur, A Flury, L C Patrito (1996)  Analyses of cis-acting and trans-acting elements that are crucial to sustain pregnancy-specific glycoprotein gene expression in different cell types.   Eur J Biochem 236: 2. 365-372 Mar  
Abstract: Pregnancy-specific beta 1 glycoprotein genes (PSG) are mainly expressed during human placental development, though their expression has been reported in other normal and pathological tissues, e.g. hydatidiform mole (HM), of distinct origins. However, the molecular components implicated in the regulation of PSG are not well understood. To identify some of the regulatory elements involved in the transcriptional control of PSG expression, the DNA-protein interactions and the basal activities of the TATA-box-less PSG5 promoter were determined in different tissues and cell types. In DNAse-I protection assays, DNA-binding proteins from human term placenta (HTP) protected a region of 27 bp located from nucleotides --150 to --124, overlapping the farthest 5' upstream cap site and resembling an initiator-like element. In electrophoretic mobility shift assays (EMSA), three complexes were detected using nuclear extracts from HTP and an oligonucleotide containing the 27-bp motif. In situ ultraviolet crosslinking analysis of the specific complexes revealed that two proteins of 78.0 kDa and 53.0 kDa are involved in such interactions, in accordance with the bands of 80.0 kDa and 57.5 kDa observed by Southwestern blotting. Competitive EMSA using mutant oligonucleotides with the substitution of 5'ACCCAT3' by 5'GATATC3' within the 27-bp motif revealed that this sequence is fundamental for the formation of the specific DNA-protein complexes. We show in transient transfection experiments performed in HeLa, COS-7 and JEG-3 cells, that such mutation completely abolished the transcriptional activity of the PSG5 promoter, independently of the cell type. Moreover, this mutation disrupted the formation of the specific DNA-protein complexes which were essentially the same as those displayed by HTP. We also determined the binding activities of nucleoproteins derived from placental tissues in earlier developmental and pathological stages, i.e. first trimester placenta (1-TRIM) and HM, respectively, showing that the DNA-binding patterns were different from each other and distinct from those elicited by HTP. Our results indicate that the cis-acting and trans-acting elements analyzed are indispensable to support PSG5 promoter activity in cell lines which do or do not produce PSG. In addition, these elements appear to play a role in the mechanisms involved in PSG basal expression during placental development and differentiation.
Notes:
J L Bocco, A Bahr, J Goetz, C Hauss, T Kallunki, C Kedinger, B Chatton (1996)  In vivo association of ATFa with JNK/SAP kinase activities.   Oncogene 12: 9. 1971-1980 May  
Abstract: The human ATFa proteins belong to the CREB/ATF family of transcription factors. We have previously shown that the ATFa proteins may contribute to the modulation of the transcriptional activity of the Jun/Fos complexes (Chatton et al. (1994). Oncogene, 9, 375-385). We now show that a protein kinase activity is strongly associated with ATFa in vivo, as revealed by coimmunoprecipitation of ATFa/kinase complexes from whole cell extracts, with antibodies against ATFa. Two independent regions were found to be implicated in kinase binding: a major interaction site is located within the N-terminal 82 residues comprising an important metal-chelating element; a weaker binding site corresponds to the basic sequence element preceding the C-terminal leucine-zipper of ATFa. Induction experiments suggest that each of these ATFa domains may interact with different kinases. The major activity is associated with the ATFa N-terminal domain. Based on its response to various inducers, on both in vitro and in vivo binding assays, and on its immunological properties, this activity most likely corresponds to the 54/55 kDa JNK2 protein. Taken together, these observations suggest that the ATFa proteins, among other CREB/ATF proteins, may be important effectors of cell signalling pathways.
Notes:
1994
B Chatton, J L Bocco, J Goetz, M Gaire, Y Lutz, C Kedinger (1994)  Jun and Fos heterodimerize with ATFa, a member of the ATF/CREB family and modulate its transcriptional activity.   Oncogene 9: 2. 375-385 Feb  
Abstract: Three related clones encoding proteins (ATFa1, 2 and 3) with specific ATF/CRE DNA-binding activities have been isolated from HeLa cell cDNA libraries. All three isoforms have weak effects on the basal activity of the adenovirus E2a promoter. We present evidence suggesting that a C-terminal element of the ATFa molecules negatively interferes with the intrinsic activation function of these proteins. We also show that coexpression of ATFa with c-Jun, Jun-B or Jun-D stimulates ATFa-dependent reporter activity, while coexpression of c-Fos has no effect. Deletion analyses indicate that the metal-binding region of ATFa is dispensible for this effect, but that the domain comprising the leucine-zipper region of ATFa is required. Reciprocal co-immunoprecipitation experiments and electrophoretic band-shift assays with in vitro synthesized proteins reveal direct interactions between ATFa and Jun or Fos. The ATFa/c-Jun heterodimers, but not the ATFa/c-Fos complexes, bind efficiently to ATF, CRE or AP1 sites. The detection of ATFa-Jun complexes in crude extracts from HeLa cells transfected with ATFa and c-Jun expression vectors suggests that such ATFa/c-Jun heterodimers also form in vivo. Altogether these results indicate that the ATFa proteins may contribute to the modulation of the activity of the Jun/Fos complexes by altering their DNA-binding and transcriptional properties.
Notes:
1993
B Chatton, J L Bocco, M Gaire, C Hauss, B Reimund, J Goetz, C Kedinger (1993)  Transcriptional activation by the adenovirus larger E1a product is mediated by members of the cellular transcription factor ATF family which can directly associate with E1a.   Mol Cell Biol 13: 1. 561-570 Jan  
Abstract: We recently isolated three cDNA clones encoding closely related proteins (ATFa1, ATFa2, and ATFa3) that belong to the activating transcription factor-cyclic AMP-responsive element family of cellular transcription factors. Using cotransfection experiments, we showed that these proteins mediate the transcriptional activation induced by the adenovirus E1a 13S mRNA gene product and that the zinc-binding domains present in both E1a conserved region 3 and the most N-terminal portion of the ATFa proteins play crucial roles in this activity. Reciprocal coimmunoprecipitation experiments demonstrated direct interactions between these proteins. Neither the conserved region 3 domain of E1a nor the N-terminal metal-binding element of ATFa is essential for these interactions. The simultaneous alteration of both the N-terminal and the C-terminal domains of ATFa abolished E1a binding, while either mutation alone failed to impair these interactions.
Notes:
J L Bocco, B Reimund, B Chatton, C Kedinger (1993)  Rb may act as a transcriptional co-activator in undifferentiated F9 cells.   Oncogene 8: 11. 2977-2986 Nov  
Abstract: The reversible interaction of the retinoblastoma susceptibility gene product (Rb) with the cellular transcription factor E2F has recently been demonstrated. Activation of the adenovirus E2a promoter by the products of the viral E1a gene correlates with the ability of both early E1a proteins to sequester Rb, thereby releasing E2F from inactive complexes with this protein. The E2a promoter is also efficiently stimulated by a product (17.5 kDa) of the viral E4 gene. The specific interaction of this E4 protein with E2F results in the formation of complexes that bind cooperatively to the two neighboring E2F binding sites in the E2a promoter. We have previously shown that in undifferentiated F9 cells (F9EC) the E2a promoter is refractory to E2F-mediated activation by E1a, but not by E4. Using both band-shift and transfection experiments, we now demonstrate (i) that in F9EC cells the E4 product, in combination with E2F, recruits Rb into a stable multiprotein complex and (ii) that in these undifferentiated cells, as opposed to their differentiated counterpart, Rb is actively involved in the transcriptional stimulation of the E2a promoter by E4. Our results suggest that, depending on the cell state, Rb may behave either as a transcriptional activator (F9EC cells) or as a transcriptional inhibitor (differentiated F9 cells).
Notes:
1992
G M Panzetta-Dutari, J L Bocco, B Reimund, A Flury, L C Patrito (1992)  Nucleotide sequence of a pregnancy-specific beta 1 glycoprotein gene family member. Identification of a functional promoter region and several putative regulatory sequences.   Mol Biol Rep 16: 4. 255-262 Sep  
Abstract: The pregnancy-specific beta 1 glycoprotein (PSG) genes encode a group of heterogeneous proteins produced in large amounts by the human syncytiotrophoblast. Their expression seems to be regulated at the transcriptional level during normal pregnancy. In the present work, we isolated from a human placental library a 17 kb genomic fragment corresponding to a member of the PSG multigene family. DNA sequence analysis of 1190 nucleotides upstream of the translational start and of the first intron, revealed the presence of several putative regulatory sequences. In a transient chloramphenicol acetyltransferase expression assay, 5' flanking sequences within 123 nucleotides upstream to the first major transcription initiation site, functioned as a strong promoter in COS-7 cells. Meanwhile, sequences 5' further upstream had the ability to abolish this promoter activity. The sequence analyzed did not contain any obvious TATA-like boxes or G+C-rich regions, suggesting the existence of unique promoter elements implicated in transcription initiation and regulation of this PSG gene family member.
Notes:
1989
J L Bocco, G Panzetta, A Flury, L C Patrito (1989)  Expression of pregnancy specific beta 1-glycoprotein gene in human placenta and hydatiform mole.   Biochem Int 18: 5. 999-1008 May  
Abstract: Transcriptional studies of the placental protein Pregnancy Specific beta 1-Glycoprotein (SP1 or PS beta G) gene with a cDNA probe in Northern blot analysis showed 15-20 folds mRNA increase in term placenta compared with early placenta and hydatiform mole. This value parallels the SP1 amount translated in wheat germ cell-free system. We conclude that SP1 biosynthesis is regulated at transcriptional level during placental development and a similar mechanism would occur in hydatiform mole which is a hyperplastic trophoblast tumor.
Notes:
1988
J L Bocco, G M Panzetta, A Flury, L C Patrito (1988)  Processing of SP1 precursor in a cell-free system from poly(A+) mRNA of human placenta.   Mol Biol Rep 13: 1. 45-51  
Abstract: Cell-free translation of polyadenylated mRNA from human term placenta in a wheat germ extract, after immunoprecipitation with antibodies directed against purified pregnant serum SP1, yielded a single polypeptide of 31 kDa. Addition of dog pancreatic microsomal vesicles to the translation system resulted in the appearance of two polypeptides, one of them of 46 kDa and the other of 28 kDa. Both polypeptides were protected from limited proteolysis and when the assay was performed with lytic detergent concentrations in addition to proteases, this protection was abolished indicating that the polypeptides were segregated into the microsomal vesicles. The cleavage of a signal peptide of 3 kDa from the 31 kDa primary translation product gives rise to 28 kDa and accounts for the slight increase in electrophoretic mobility. The treatment of the immunoprecipitated products with Endoglycosidase H and alpha-mannosidase, suggested that only the 46 kDa polypeptide is a glycoprotein. From the results obtained we conclude that SP1 is synthesized and processed to a glycoprotein of 46 kDa which would be a protomeric form of the oligomers reported in pregnant serum by other authors.
Notes:
1987
J L Bocco, A Actis, A Flury, L C Patrito (1987)  Identification and molecular weight of SP1 synthesized from mRNA of human placenta in a wheat germ cell-free system.   Mol Biol Rep 12: 1. 55-59  
Abstract: Poly (A+)-mRNA obtained from human term placenta using guanidine HCl and oligo (dT) cellulose chromatography was translated in a wheat germ cell-free system. SDS-polyacrylamide gel electrophoresis analysis of the translation products revealed the presence of several polypeptides with molecular weights ranging from 10 KD to 70 KD. A single protein band representing around 1% of the total radioactive proteins synthesized in the presence of 2.5 micrograms of mRNA was isolated by immunoprecipitation, using specific antiserum against either the native 'Pregnancy-specific beta 1-glycoprotein' or a reduced and carboxymethylated derivative. The molecular weight of 31-2 KD of this translation product corresponding to the nonprocessed precursor could account for the 43 KD value assigned to the protein purified form human pregnant serum.
Notes:
Powered by PublicationsList.org.