hosted by
publicationslist.org
    

Joana Costa


jcosta@cnc.uc.pt

Journal articles

2012
Joana Costa, d'Avó Ana Filipa, Milton S da Costa, António Veríssimo (2012)  Molecular evolution of key genes for type II secretion in Legionella pneumophila.   Environ Microbiol 14: 8. 2017-2033 Aug  
Abstract: Given the role of type II protein secretion system (T2S) in the ecology and pathogenesis of Legionella pneumophila, it is possible that this system is a target for adaptive evolution. The population genetic structure of L.pneumophila was inferred from the partial sequences of rpoB and from the complete sequence of three T2S structural components (lspD, lspE and pilD) and from two T2S effectors critical for intracellular infection of protozoa (proA and srnA) of 37 strains isolated from natural and man-made environments and disease-related from worldwide sources. A phylogenetic analysis was obtained for the concatenated alignment and for each individual locus. Seven main groups were identified containing the same L.pneumophila strains, suggesting an ancient divergence for each cluster and indicating that the operating selective pressures have equally affected the evolution of the five genes. Although linkage disequilibrium analysis indicate a clonal nature for population structure in this sample, our results indicate that recombination is a common phenomenon among T2S-related genes on this species, as 24 of the 37 L.pneumophila isolates contained at least one locus in which recombination was identified. Furthermore, neutral selection acting on the analysed T2S-related genes emerged as a clear result, namely on T2S effectors, ProA and SrnA, indicating that they are probably implicated in conserved virulence mechanisms through legionellae hosts.
Notes:
2011
Nuno Empadinhas, Pedro José Barbosa Pereira, Luciana Albuquerque, Joana Costa, Bebiana Sá-Moura, Alexandra T Marques, Sandra Macedo-Ribeiro, Milton S da Costa (2011)  Functional and structural characterization of a novel mannosyl-3-phosphoglycerate synthase from Rubrobacter xylanophilus reveals its dual substrate specificity.   Mol Microbiol 79: 1. 76-93 Jan  
Abstract: Rubrobacter xylanophilus is the only actinobacterium known to accumulate the organic solute mannosylglycerate (MG); moreover, the accumulation of MG is constitutive. The key enzyme for MG synthesis, catalysing the conversion of GDP-mannose (GDP-Man) and D-3-phosphoglycerate (3-PGA) into the phosphorylated intermediate mannosyl-3-phosphoglycerate and GDP, was purified from R. xylanophilus cell extracts and the corresponding gene was expressed in E. coli. Despite the related solute glucosylglycerate (GG) having never been detected in R. xylanophilus, the cell extracts and the pure recombinant mannosyl-3-phosphoglycerate synthase (MpgS) could also synthesize glucosyl-3-phosphoglycerate (GPG), the precursor of GG, in agreement with the higher homology of the novel MpgS towards GPG-synthesizing mycobacterial glucosyl-3-phosphoglycerate synthases (GpgS) than towards MpgSs from hyper/thermophiles, known to accumulate MG under salt or thermal stress. To understand the specificity and substrate ambiguity of this novel enzyme, we determined the crystal structure of the unliganded MpgS and of its complexes with the nucleotide and sugar donors, at 2.2, 2.8 and 2.5 Ã… resolution respectively. The first three-dimensional structures of a protein from this extremely gamma-radiation-resistant thermophile here reported show that MpgS (GT81 family) contains a GT-A like fold and clearly explain its nucleotide and sugar-donor specificity. In the GDP-Man complex, a flexible loop ((254) RQNRHQ(259) ), located close to the active site moves towards the incoming sugar moiety, providing the ligands for both magnesium ion co-ordination and sugar binding. A triple mutant of R. xylanophilus MpgS, mimicking the (206) PLAGE(210) loop stabilizing hydrogen bond network observed for mycobacterial GpgSs, reduces significantly the affinity to GDP-Man, implicating this loop in the sugar-donor discrimination.
Notes:
2010
Joana Costa, Milton S da Costa, António Veríssimo (2010)  Colonization of a therapeutic spa with Legionella spp: a public health issue.   Res Microbiol 161: 1. 18-25 Jan/Feb  
Abstract: Traditional geothermally heated therapeutic spas, widely distributed in Europe, use water that is not disinfected. The colonization of therapeutic spas by Legionella spp. has been reported and several outbreaks and sporadic cases of legionellosis have been associated with the use of these facilities. We tested the effectiveness of hyperchlorination and the combination of hyperchlorination and ultraviolet light (UV) disinfection against legionellae which were persistently detected in the water used to supply the therapeutic spa. The hyperchlorination of the water distribution system was performed with a free residual chlorine concentration of 50 mg/l for 4h. An initial reduction in the numbers of legionellae was determined, but it rapidly increased to the original values. A UV unit was installed at the entrance to the spa's water distribution system and a new hyperchlorination procedure was performed immediately before UV irradiation (40 mJ/cm(2)), which was in use continuously for a nine-month period. While legionellae were not recovered during the irradiation period, these organisms were detected immediately after deactivation of the UV unit. We demonstrated that UV disinfection provides effective control of Legionella spp., with the advantage of being a method that, unlike chemical disinfectants, does not affect the physicochemical composition of the water. These findings suggest that UV irradiation, applied at key points in therapeutic spas, can be used to control colonization of water distribution systems by Legionella spp.
Notes:
Joana Costa, Igor Tiago, Milton S Da Costa, António Veríssimo (2010)  Molecular evolution of Legionella pneumophila dotA gene, the contribution of natural environmental strains.   Environ Microbiol 12: 10. 2711-2729 Oct  
Abstract: Given the role of DotA protein in establishing successful infections and the diversity of host cells interacting with Legionella pneumophila in nature, it is possible that this gene product is a target for adaptive evolution. We investigated the influence of L. pneumophila isolates from natural environments with the molecular evolution of this crucial virulence-related gene. The population genetic structure of L. pneumophila was inferred from the partial sequences of rpoB and dotA of 303 worldwide strains. The topology of the two inferred trees was not congruent and in the inferred dotA tree the vast majority of the natural environmental isolates were clustered in a discrete group. The Ka/Ks ratio demonstrated that this group, contrary to all others, has been under strong diversifying selection. The alignment of all DotA sequences allowed the identification of several alleles and the amino acid variations were not randomly distributed. Moreover, from these results we can conclude that dotA from L. pneumophila clinical and man-made environmental strains belong to a sub-set of all genotypes existing in nature. A split graph analysis showed evidence of a network-like organization and several intergenic recombination events were detected within L. pneumophila strains resulting in mosaic genes in which different gene segments exhibited different evolutionary histories. We have determined that the allelic diversity of dotA is predominantly found in L. pneumophila isolates from natural environments, suggesting that niche-specific selection pressures have been operating on this gene. Indeed, the high level of dotA allelic diversity may reflect fitness variation in the persistence of those strains in distinct environmental niches and/or tropism to various protozoan hosts.
Notes:
Chantal Fernandes, Vitor Mendes, Joana Costa, Nuno Empadinhas, Carla Jorge, Pedro Lamosa, Helena Santos, Milton S da Costa (2010)  Two alternative pathways for the synthesis of the rare compatible solute mannosylglucosylglycerate in Petrotoga mobilis.   J Bacteriol 192: 6. 1624-1633 Mar  
Abstract: The compatible solute mannosylglucosylglycerate (MGG), recently identified in Petrotoga miotherma, also accumulates in Petrotoga mobilis in response to hyperosmotic conditions and supraoptimal growth temperatures. Two functionally connected genes encoding a glucosyl-3-phosphoglycerate synthase (GpgS) and an unknown glycosyltransferase (gene Pmob_1143), which we functionally characterized as a mannosylglucosyl-3-phosphoglycerate synthase and designated MggA, were identified in the genome of Ptg. mobilis. This enzyme used the product of GpgS, glucosyl-3-phosphoglycerate (GPG), as well as GDP-mannose to produce mannosylglucosyl-3-phosphoglycerate (MGPG), the phosphorylated precursor of MGG. The MGPG dephosphorylation was determined in cell extracts, and the native enzyme was partially purified and characterized. Surprisingly, a gene encoding a putative glucosylglycerate synthase (Ggs) was also identified in the genome of Ptg. mobilis, and an active Ggs capable of producing glucosylglycerate (GG) from ADP-glucose and d-glycerate was detected in cell extracts and the recombinant enzyme was characterized, as well. Since GG has never been identified in this organism nor was it a substrate for the MggA, we anticipated the existence of a nonphosphorylating pathway for MGG synthesis. We putatively identified the corresponding gene, whose product had some sequence homology with MggA, but it was not possible to recombinantly express a functional enzyme from Ptg. mobilis, which we named mannosylglucosylglycerate synthase (MggS). In turn, a homologous gene from Thermotoga maritima was successfully expressed, and the synthesis of MGG was confirmed from GDP-mannose and GG. Based on the measurements of the relevant enzyme activities in cell extracts and on the functional characterization of the key enzymes, we propose two alternative pathways for the synthesis of the rare compatible solute MGG in Ptg. mobilis.
Notes:
2007
Joana Costa, Nuno Empadinhas, Milton S da Costa (2007)  Glucosylglycerate biosynthesis in the deepest lineage of the Bacteria: characterization of the thermophilic proteins GpgS and GpgP from Persephonella marina.   J Bacteriol 189: 5. 1648-1654 Mar  
Abstract: The pathway for the synthesis of glucosylglycerate (GG) in the thermophilic bacterium Persephonella marina is proposed based on the activities of recombinant glucosyl-3-phosphoglycerate (GPG) synthase (GpgS) and glucosyl-3-phosphoglycerate phosphatase (GpgP). The sequences of gpgS and gpgP from the cold-adapted bacterium Methanococcoides burtonii were used to identify the homologues in the genome of P. marina, which were separately cloned and overexpressed as His-tagged proteins in Escherichia coli. The recombinant GpgS protein of P. marina, unlike the homologue from M. burtonii, which was specific for GDP-glucose, catalyzed the synthesis of GPG from UDP-glucose, GDP-glucose, ADP-glucose, and TDP-glucose (in order of decreasing efficiency) and from d-3-phosphoglycerate, with maximal activity at 90 degrees C. The recombinant GpgP protein, like the M. burtonii homologue, dephosphorylated GPG and mannosyl-3-phosphoglycerate (MPG) to GG and mannosylglycerate, respectively, yet at high temperatures the hydrolysis of GPG was more efficient than that of MPG. Gel filtration indicates that GpgS is a dimeric protein, while GpgP is monomeric. This is the first characterization of genes and enzymes for the synthesis of GG in a thermophile.
Notes:
2006
Joana Costa, Nuno Empadinhas, Luís Gonçalves, Pedro Lamosa, Helena Santos, Milton S da Costa (2006)  Characterization of the biosynthetic pathway of glucosylglycerate in the archaeon Methanococcoides burtonii.   J Bacteriol 188: 3. 1022-1030 Feb  
Abstract: The pathway for the synthesis of the organic solute glucosylglycerate (GG) is proposed based on the activities of the recombinant glucosyl-3-phosphoglycerate synthase (GpgS) and glucosyl-3-phosphoglycerate phosphatase (GpgP) from Methanococcoides burtonii. A mannosyl-3-phosphoglycerate phosphatase gene homologue (mpgP) was found in the genome of M. burtonii (http://www.jgi.doe.gov), but an mpgS gene coding for mannosyl-3-phosphoglycerate synthase (MpgS) was absent. The gene upstream of the mpgP homologue encoded a putative glucosyltransferase that was expressed in Escherichia coli. The recombinant product had GpgS activity, catalyzing the synthesis of glucosyl-3-phosphoglycerate (GPG) from GDP-glucose and d-3-phosphoglycerate, with a high substrate specificity. The recombinant MpgP protein dephosphorylated GPG to GG and was also able to dephosphorylate mannosyl-3-phosphoglycerate (MPG) but no other substrate tested. Similar flexibilities in substrate specificity were confirmed in vitro for the MpgPs from Thermus thermophilus, Pyrococcus horikoshii, and "Dehalococcoides ethenogenes." GpgS had maximal activity at 50 degrees C. The maximal activity of GpgP was at 50 degrees C with GPG as the substrate and at 60 degrees C with MPG. Despite the similarity of the sugar donors GDP-glucose and GDP-mannose, the enzymes for the synthesis of GPG or MPG share no amino acid sequence identity, save for short motifs. However, the hydrolysis of GPG and MPG is carried out by phosphatases encoded by homologous genes and capable of using both substrates. To our knowledge, this is the first report of the elucidation of a biosynthetic pathway for glucosylglycerate.
Notes:
2005
Joana Costa, Igor Tiago, Milton S da Costa, António Veríssimo (2005)  Presence and persistence of Legionella spp. in groundwater.   Appl Environ Microbiol 71: 2. 663-671 Feb  
Abstract: Groundwater samples (111) from six different boreholes located in two geographical areas were examined for the presence of legionellae over a 7-year period. The number of Legionella isolates detected was generally low. The colonization of the aquifers was not uniform, and the persistence of Legionella was independent of the hydraulic pumps and the plumbing system present in the borehole. A total of 374 isolates identified by fatty acid methyl ester analysis belonged to Legionella pneumophila, L. oakridgensis, L. sainthelensi, and L. londiniensis. In area 1, L. oakridgensis constituted the major population detected, exhibiting only one random amplified polymorphic DNA (RAPD)-PCR profile. L. sainthelensi strains were less frequently isolated and also displayed a single RAPD profile, while L. pneumophila was only sporadically detected. In contrast, L. pneumophila comprised the vast majority of the isolates in area 2 and exhibited six distinct RAPD patterns, indicating the presence of different genetic groups; three L. londiniensis RAPD types were also detected. Two of the L. pneumophila and one of the L. londiniensis RAPD types were persistent in this environment for at least 12 years. The genetic structure of L. pneumophila groundwater populations, inferred from rpoB and dotA gene sequences, was peculiar, since the majority of the isolates were allied in a discrete group different from the lineages containing most of the type and reference strains of the three subspecies of L. pneumophila. Furthermore, gene exchange events related to the dotA allele could be envisioned.
Notes:
2004
Nuno Empadinhas, Luciana Albuquerque, Joana Costa, Stephen H Zinder, Manuel A S Santos, Helena Santos, Milton S da Costa (2004)  A gene from the mesophilic bacterium Dehalococcoides ethenogenes encodes a novel mannosylglycerate synthase.   J Bacteriol 186: 13. 4075-4084 Jul  
Abstract: Mannosylglycerate (MG) is a common compatible solute found in thermophilic and hyperthermophilic prokaryotes. In this study we characterized a mesophilic and bifunctional mannosylglycerate synthase (MGSD) encoded in the genome of the bacterium Dehalococcoides ethenogenes. mgsD encodes two domains with extensive homology to mannosyl-3-phosphoglycerate synthase (MPGS, EC 2.4.1.217) and to mannosyl-3-phosphoglycerate phosphatase (MPGP, EC 3.1.3.70), which catalyze the consecutive synthesis and dephosphorylation of mannosyl-3-phosphoglycerate to yield MG in Pyrococcus horikoshii, Thermus thermophilus, and Rhodothermus marinus. The bifunctional MGSD was overproduced in Escherichia coli, and we confirmed the combined MPGS and MPGP activities of the recombinant enzyme. The optimum activity of the enzyme was at 50 degrees C. To examine the properties of each catalytic domain of MGSD, we expressed them separately in E. coli. The monofunctional MPGS was unstable, while the MPGP was stable and was characterized. Dehalococcoides ethenogenes cannot be grown sufficiently to identify intracellular compatible solutes, and E. coli harboring MGSD did not accumulate MG. However, Saccharomyces cerevisiae expressing mgsD accumulated MG, confirming that this gene product can synthesize this compatible solute and arguing for a role in osmotic adjustment in the natural host. We did not detect MGSD activity in cell extracts of S. cerevisiae. Here we describe the first gene and enzyme for the synthesis of MG from a mesophilic microorganism and discuss the possible evolution of this bifunctional MGSD by lateral gene transfer from thermophilic and hyperthermophilic organisms.
Notes:
2003
Paula Santos, Isabel Pinhal, Fred A Rainey, Nuno Empadinhas, Joana Costa, Barry Fields, Robert Benson, António Veríssimo, Milton S Da Costa (2003)  Gamma-proteobacteria Aquicella lusitana gen. nov., sp. nov., and Aquicella siphonis sp. nov. infect protozoa and require activated charcoal for growth in laboratory media.   Appl Environ Microbiol 69: 11. 6533-6540 Nov  
Abstract: Several isolates, belonging to two new species of the same novel genus of gamma-proteobacteria, were recovered from drilled well (borehole) and spa water at São Gemil in central Portugal. These organisms are phylogenetically most closely related to the strictly intracellular uncultured species of the genus Rickettsiella, which cause disease in arthropods, and to the facultatively intracellular species of the genus Legionella, some of which cause Legionnaires' disease and Pontiac fever. The São Gemil strains grew only on media containing charcoal, as is also true of the species of the genus LEGIONELLA: Unlike the vast majority of Legionella isolates, the new isolates did not require L-cysteine or ferric pyrophosphate for growth but like the legionellae had an absolute requirement for alpha-ketoglutarate. Strains SGT-39(T) and SGT-56 grew consistently between 30 and 43 degrees C, while strains SGT-108(T) and SGT-109 grew between 30 and 40 degrees C. The pH ranges for growth of these organisms were surprisingly narrow: strains SGT-39(T) and SGT-56 grew between pH 6.3 and 7.3, while strains SGT-108(T) and SGT-109 grew between pH 6.3 and 7.0. Both organisms proliferated in the amoeba Hartmannella vermiformis but did not grow in U937 human cells. Based on 16S rRNA gene sequence analysis and physiological, biochemical, and chemical analysis we describe two new species of one novel genus; one species is represented by strain SGT-39(T), for which we propose the name Aquicella lusitana, while strain SGT-108(T) represents a second species of the same genus, for which we propose the name Aquicella siphonis.
Notes:
Powered by PublicationsList.org.