hosted by
publicationslist.org
    
jean-yves bouet

jean-yves.bouet@ibcg.biotoul.fr

Journal articles

2009
 
DOI   
PMID 
Jean-Yves Bouet, David Lane (2009)  Molecular basis of the supercoil deficit induced by the mini-F plasmid partition complex.   J Biol Chem 284: 1. 165-173 Jan  
Abstract: Formation of a partition complex on plasmid F by binding of SopB protein to the sopC centromere is the first step in the partition process that ensures stability of F in dividing cells. Establishment of the complex enables nonspecific binding of SopB to neighboring DNA, which extends the partition complex and provokes reduction of negative supercoiling of the plasmid. This reduction is believed to reflect winding of DNA into positive supercoils about SopB to create a nucleoprotein structure of probable importance to partition. We have searched for evidence that SopB alters plasmid topology. Permutation analysis indicated only modest bending of linear DNA fragments, and in vivo DNase I footprinting revealed no enhanced cleavages indicating curvature. In vitro, SopB binding left no topological trace in relaxed-circular DNA treated with topoisomerase I or in nicked circles closed by ligase. In vivo, novobiocin-mediated inhibition of DNA gyrase relaxed a plasmid carrying the partition complex but left no residue of positive supercoils. Hence, SopB does not reduce plasmid supercoiling directly. We did observe that SopB partly prevented removal of negative supercoils from plasmid DNA by topoisomerase I and partly prevented ligation of nicked circles, indicating that it acts as a physical obstacle. The supercoil deficit is thus better explained as SopB recoating of just-replicated DNA, which shelters it from gyrase and from topological changes in SopB-free DNA. This topological simplicity distinguishes the Sop partition complex from other complexes described.
Notes:
2008
 
DOI   
PMID 
Jean-Philippe Castaing, Jean-Yves Bouet, David Lane (2008)  F plasmid partition depends on interaction of SopA with non-specific DNA.   Mol Microbiol 70: 4. 1000-1011 Nov  
Abstract: Bacterial ATPases belonging to the ParA family assure partition of their replicons by forming dynamic assemblies which move replicon copies into the new cell-halves. The mechanism underlying partition is not understood for the Walker-box ATPase class, which includes most plasmid and all chromosomal ParAs. The ATPases studied both polymerize and interact with non-specific DNA in an ATP-dependent manner. Previous work showed that in vitro, polymerization of one such ATPase, SopA of plasmid F, is inhibited by DNA, suggesting that interaction of SopA with the host nucleoid could regulate partition. In an attempt to identify amino acids in SopA that are needed for interaction with non-specific DNA, we have found that mutation of codon 340 (lysine to alanine) reduces ATP-dependent DNA binding > 100-fold and correspondingly diminishes SopA activities that depend on it: inhibition of polymer formation and persistence, stimulation of basal-level ATP hydrolysis and localization over the nucleoid. The K340A mutant retained all other SopA properties tested except plasmid stabilization; substitution of the mutant SopA for wild-type nearly abolished mini-F partition. The behaviour of this mutant indicates a causal link between interaction with the cell's non-specific DNA and promotion of the dynamic behaviour that ensures F plasmid partition.
Notes:
2007
 
DOI   
PMID 
Jean-Yves Bouet, Yoan Ah-Seng, Nacer Benmeradi, David Lane (2007)  Polymerization of SopA partition ATPase: regulation by DNA binding and SopB.   Mol Microbiol 63: 2. 468-481 Jan  
Abstract: In bacteria, mitotic stability of plasmids and many chromosomes depends on replicon-specific systems which comprise a centromere, a centromere-binding protein and an ATPase. Dynamic self-assembly of the ATPase appears to enable active partition of replicon copies into cell-halves, but for most ATPases (the Walker-box type) the mechanism is unknown. Also unknown is how the host cell contributes to partition. We have examined the effects of non-sequence-specific DNA on in vitro self-assembly of the SopA partition ATPase of plasmid F. SopA underwent polymerization provided ATP was present. DNA inhibited this polymerization and caused breakdown of pre-formed polymers. Centromere-binding protein SopB counteracted DNA-mediated inhibition by itself binding to and masking the DNA, as well as by stimulating polymerization directly. The results suggest that in vivo, SopB smothers DNA by spreading from sopC, allowing SopA-ATP polymerization which initiates plasmid displacement. We propose that SopB and nucleoid DNA regulate SopA polymerization and hence partition.
Notes:
 
DOI   
PMID 
Jean-Yves Bouet, Kurt Nordström, David Lane (2007)  Plasmid partition and incompatibility--the focus shifts.   Mol Microbiol 65: 6. 1405-1414 Sep  
Abstract: The mitotic apparatus that a plasmid uses to ensure its stable inheritance responds to the appearance of an additional copy of the plasmid's centromere by segregating it from the pre-existing copies: if the new copy arises by replication of the plasmid the result is partition, if it arrives on a different plasmid the result is incompatibility. Incompatibility thus serves as a probe of the partition mechanism. Coupling of distinct plasmids via their shared centromeres to form mixed pairs has been the favoured explanation for centromere-based incompatibility, because it supports a long-standing assumption that pairing of plasmid replicas is a prerequisite for their partition into daughter cells. Recent results from molecular genetic and fluorescence microscopy studies challenge this mixed pairing model. Partition incompatibility is seen to result from various processes, including titration, randomized positioning and a form of mixed pairing that is based on co-activation of the same partition event rather than direct contact between partition complexes. The perspectives thus opened onto the partition mechanism confirm the continuing utility of incompatibility as an approach to understanding bacterial mitosis. The results considered are compatible with the view that direct pairing of plasmids is not essential to plasmid partition.
Notes:
2006
 
DOI   
PMID 
Jean-Yves Bouet, Marie Bouvier, David Lane (2006)  Concerted action of plasmid maintenance functions: partition complexes create a requirement for dimer resolution.   Mol Microbiol 62: 5. 1447-1459 Dec  
Abstract: Partition of prokaryotic DNA requires formation of specific protein-centromere complexes, but an excess of the protein can disrupt segregation. The mechanisms underlying this destabilization are unknown. We have found that destabilization by the F plasmid partition protein, SopB, of plasmids carrying the F centromere, sopC, results from the capacity of the SopB-sopC partition complex to stimulate plasmid multimerization. Mutant SopBs unable to destabilize failed to increase multimerization. Stability of wild-type mini-F, whose ResD/rfsF site-specific recombination system enables it to resolve multimers to monomers, was barely affected by excess SopB. Destabilization of plasmids lacking the rfsF site was suppressed by recF, recO and recR, but not by recB, mutant alleles, indicating that multimerization is initiated from single-strand gaps. SopB did not alter the amounts or distribution of replication intermediates, implying that SopB-DNA complexes do not create single-strand gaps by blocking replication forks. Rather, the results are consistent with SopB-DNA complexes channelling gapped molecules into the RecFOR recombination pathway. We suggest that extended SopB-DNA complexes increase the likelihood of recombination between sibling plasmids by keeping them in close contact prior to SopA-mediated segregation. These results cast plasmid site-specific resolution in a new role - compensation for untoward consequences of partition complex formation.
Notes:
2005
 
DOI   
PMID 
Jean-Yves Bouet, Jérôme Rech, Sylvain Egloff, Donald P Biek, David Lane (2005)  Probing plasmid partition with centromere-based incompatibility.   Mol Microbiol 55: 2. 511-525 Jan  
Abstract: Low-copy number plasmids of bacteria rely on specific centromeres for regular partition into daughter cells. When also present on a second plasmid, the centromere can render the two plasmids incompatible, disrupting partition and causing plasmid loss. We have investigated the basis of incompatibility exerted by the F plasmid centromere, sopC, to probe the mechanism of partition. Measurements of the effects of sopC at various gene dosages on destabilization of mini-F, on repression of the sopAB operon and on occupancy of mini-F DNA by the centromere-binding protein, SopB, revealed that among mechanisms previously proposed, no single one fully explained incompatibility. sopC on multicopy plasmids depleted SopB by titration and by contributing to repression. The resulting SopB deficit is proposed to delay partition complex formation and facilitate pairing between mini-F and the centromere vector, thereby increasing randomization of segregation. Unexpectedly, sopC on mini-P1 exerted strong incompatibility if the P1 parABS locus was absent. A mutation preventing the P1 replication initiation protein from pairing (handcuffing) reduced this strong incompatibility to the level expected for random segregation. The results indicate the importance of kinetic considerations and suggest that mini-F handcuffing promotes pairing of SopB-sopC complexes that can subsequently segregate as intact aggregates.
Notes:
2001
 
DOI   
PMID 
E Fung, J Y Bouet, B E Funnell (2001)  Probing the ATP-binding site of P1 ParA: partition and repression have different requirements for ATP binding and hydrolysis.   EMBO J 20: 17. 4901-4911 Sep  
Abstract: The ParA family of proteins is involved in partition of a variety of plasmid and bacterial chromosomes. P1 ParA plays two roles in partition: it acts as a repressor of the par operon and has an undefined yet indispensable role in P1 plasmid localization. We constructed seven mutations in three putative ATP-binding motifs of ParA. Three classes of phenotypes resulted, each represented by mutations in more than one motif. Three mutations created 'super-repressors', in which repressor activity was much stronger than in wild-type ParA, while the remainder damaged repressor activity. All mutations eliminated partition activities, but two showed a plasmid stability defect that was worse than that of a null mutation. Four mutant ParAs, two super-repressors and two weak repressors, were analyzed biochemically, and all exhibited damaged ATPase activity. The super-repressors bound site-specifically to the par operator sequence, and this activity was strongly stimulated by ATP and ADP. These results support the proposal that ATP binding is essential but hydrolysis is inhibitory for ParA's repressor activity and suggest that ATP hydrolysis is essential for plasmid localization.
Notes:
2000
 
PMID 
M Lemonnier, J Y Bouet, V Libante, D Lane (2000)  Disruption of the F plasmid partition complex in vivo by partition protein SopA.   Mol Microbiol 38: 3. 493-505 Nov  
Abstract: The SopA protein plays an essential, though so far undefined, role in partition of the mini-F plasmid but, when overproduced, it causes loss of mini-F from growing cells. Our investigation of this phenomenon has revealed that excess SopA protein reduces the linking number of mini-F. It appears to do so by disturbing the partition complex, in which SopB normally introduces local positive supercoiling upon binding to the sopC centromere, as it occurs only in plasmids carrying sopC and in the presence of SopB protein. SopA-induced reduction in linking number is not associated with altered sop promoter activity or levels of SopB protein and occurs in the absence of changes in overall supercoil density. SopA protein mutated in the ATPase nucleotide-binding site (K120Q) or lacking the presumed SopB interaction domain does not induce the reduction in linking number, suggesting that excess SopA disrupts the partition complex by interacting with SopB to remove positive supercoils in an ATP-dependent manner. Destabilization of mini-F also depends on sopC and SopB, but the K120Q mutant retains some capacity for destabilizing mini-F. SopA-induced destabilization thus appears to be complex and may involve more than one SopA activity. The results are interpreted in terms of a regulatory role for SopA in the oligomerization of SopB dimers bound to the centromere.
Notes:
 
PMID 
J Y Bouet, J A Surtees, B E Funnell (2000)  Stoichiometry of P1 plasmid partition complexes.   J Biol Chem 275: 11. 8213-8219 Mar  
Abstract: The P1 plasmid prophage is faithfully partitioned by a high affinity nucleoprotein complex assembled at the centromere-like parS site. This partition complex is composed of P1 ParB and Escherichia coli integration host factor (IHF), bound specifically to parS. We have investigated the assembly of ParB at parS and its stoichiometry of binding. Measured by gel mobility shift assays, ParB and IHF bind tightly to parS and form a specific complex, called I + B1. We observed that as ParB concentration was increased, a second, larger complex (I + B2) formed, followed by the formation of larger complexes, indicating that additional ParB molecules joined the initial complex. Shift Western blotting experiments indicated that the I + B2 complex contained twice as much ParB as the I + B1 complex. Using mixtures of ParB and a larger polyhistidine-tagged version of ParB (His-ParB) in DNA binding assays, we determined that the initial I + B1 complex contains one dimer of ParB. Therefore, one dimer of ParB binds to its recognition sequences that span an IHF-directed bend in parS. Once this complex forms, a second dimer can join the complex, but this assembly requires much higher ParB concentrations.
Notes:
1999
 
DOI   
PMID 
J Y Bouet, B E Funnell (1999)  P1 ParA interacts with the P1 partition complex at parS and an ATP-ADP switch controls ParA activities.   EMBO J 18: 5. 1415-1424 Mar  
Abstract: The partition system of P1 plasmids is composed of two proteins, ParA and ParB, and a cis-acting site parS. parS is wrapped around ParB and Escherichia coli IHF protein in a higher order nucleoprotein complex called the partition complex. ParA is an ATPase that autoregulates the expression of the par operon and has an essential but unknown function in the partition process. In this study we demonstrate a direct interaction between ParA and the P1 partition complex. The interaction was strictly dependent on ParB and ATP. The consequence of this interaction depended on the ParB concentration. At high ParB levels, ParA was recruited to the partition complex via a ParA-ParB interaction, but at low ParB levels, ParA removed or disassembled ParB from the partition complex. ADP could not support these interactions, but could promote the site-specific DNA binding activity of ParA to parOP, the operator of the par operon. Conversely, ATP could not support a stable interaction of ParA with parOP in this assay. Our data suggest that ParA-ADP is the repressor of the par operon, and ParA-ATP, by interacting with the partition complex, plays a direct role in partition. Therefore, one role of adenine nucleotide binding and hydrolysis by ParA is that of a molecular switch controlling entry into two separate pathways in which ParA plays different roles.
Notes:
1998
 
PMID 
J Y Bouet, H M Krisch, J M Louarn (1998)  Ndd, the bacteriophage T4 protein that disrupts the Escherichia coli nucleoid, has a DNA binding activity.   J Bacteriol 180: 19. 5227-5230 Oct  
Abstract: Early in a bacteriophage T4 infection, the phage ndd gene causes the rapid destruction of the structure of the Escherichia coli nucleoid. Even at very low levels, the Ndd protein is extremely toxic to cells. In uninfected E. coli, overexpression of the cloned ndd gene induces disruption of the nucleoid that is indistinguishable from that observed after T4 infection. A preliminary characterization of this protein indicates that it has a double-stranded DNA binding activity with a preference for bacterial DNA rather than phage T4 DNA. The targets of Ndd action may be the chromosomal sequences that determine the structure of the nucleoid.
Notes:
1996
 
PMID 
J Y Bouet, N J Campo, H M Krisch, J M Louarn (1996)  The effects on Escherichia coli of expression of the cloned bacteriophage T4 nucleoid disruption (ndd) gene.   Mol Microbiol 20: 3. 519-528 May  
Abstract: Immediately after T4 bacteriophage infection, the Escherichia coli nucleoid undergoes rapid delocalization. The ndd gene of T4 is responsible for this nuclear disruption phenomenon. We have cloned two alleles of this gene and studied the effects of their expression on E. coli cells. We have shown that the Ndd protein (i) is able to reproduce the disruption of the nucleoid characteristic of T4 infection, (ii) is highly toxic and results in a logarithmic decrease in cell viability, and (iii) inhibits genomic DNA replication by blocking progression of replication forks. Induction of Ndd does not result in degradation of genomic DNA and does not significantly alter the general processes of transcription and translation during the entire period of exponential cell death. These results support the notion that the target of Ndd is some aspect of the nucleoid architecture.
Notes:
1994
 
PMID 
J Y Bouet, J Woszczyk, F Repoila, V François, J M Louarn, H M Krisch (1994)  Direct PCR sequencing of the ndd gene of bacteriophage T4: identification of a product involved in bacterial nucleoid disruption.   Gene 141: 1. 9-16 Apr  
Abstract: The rapid disruption of the Escherichia coli nucleoid after T4 infection requires the activity of the phage-encoded ndd gene. We have genetically identified the sequence encoding ndd. Determination of the sequence of a 2.5-kb segment including ndd closed the last significant gap in the sequence of the T4 genome. This analysis was performed on PCR-amplified fragments that were purified by gel-exclusion chromatography and then submitted to linear amplification cycle sequencing. This technology permitted sequence comparison of two ndd mutants (ndd44 and ndd98) with the wild-type gene. The analysis of ndd from six bacteriophages of the T-even family indicated that the protein encoded by this nonessential gene is surprisingly conserved.
Notes:
 
PMID 
F Repoila, F Tétart, J Y Bouet, H M Krisch (1994)  Genomic polymorphism in the T-even bacteriophages.   EMBO J 13: 17. 4181-4192 Sep  
Abstract: We have compared the genomes of 49 bacteriophages related to T4. PCR analysis of six chromosomal regions reveals two types of local sequence variation. In four loci, we found only two alternative configurations in all the genomes that could be analyzed. In contrast, two highly polymorphic loci exhibit variations in the number, the order and the identity of the sequences present. In phage T4, both highly polymorphic loci encode internal proteins (IPs) that are encapsidated in the phage particle and injected with the viral DNA. Among the various T4-related phages, 10 different ORFs have been identified in the IP loci; their amino acid sequences have the characteristics of internal proteins. At the beginning of each of these coding sequences is a highly conserved 11 amino acid leader motif. In addition, both 5' and 3' to most of these ORFs, there is a approximately 70 bp sequence that contains a T4 early promoter sequence with an overlapping inversely repeated sequence. The homologies within these flanking sequences may mediate the recombinational shuffling of the IP sequences within the locus. A role for the new IP-like sequences in determining the phage host range is proposed since such a role has been previously demonstrated for the IP1 gene of T4.
Notes:
Powered by publicationslist.org.