hosted by
publicationslist.org
    

jenny renaut


renaut@lippmann.lu

Journal articles

2010
Jenny Renaut (2010)  Difference gel electrophoresis as a tool to discover stress-regulated proteins.   Methods Mol Biol 639: 207-218  
Abstract: Two-dimensional electrophoresis is a powerful tool to explore the plant proteome and to unravel changes in protein expression between samples. However, the acquisition of images on which thousands of spots may be resolved has some weak points, as always pointed out by scientists working with gel-free techniques, such as the lack of reproducibility. Nowadays, this inconvenience can be bypassed by the use of a technique known as "difference gel electrophoresis" or DIGE. This technique requires the labelling of proteins by fluorochromes before their separation on 2DE gels. This technique may be applied to a wide array of plant stress studies. Providing accurate quantitative results, differentially abundant spots are usually subjected to tryptic digestion and identified using electrospray ionization, matrix-assisted laser desorption/ionization-time of flight-MS and/or tandem MS.
Notes:
Matias Pasquali, Frédéric Giraud, Jean Paul Lasserre, Sebastien Planchon, Lucien Hoffmann, Torsten Bohn, Jenny Renaut (2010)  Toxin induction and protein extraction from Fusarium spp. cultures for proteomic studies.   J Vis Exp 36. 02  
Abstract: Fusaria are filamentous fungi able to produce different toxins. Fusarium mycotoxins such as deoxynivalenol, nivalenol, T2, zearelenone, fusaric acid, moniliformin, etc... have adverse effects on both human and animal health and some are considered as pathogenicity factors. Proteomic studies showed to be effective for deciphering toxin production mechanisms (Taylor et al., 2008) as well as for identifying potential pathogenic factors (Paper et al., 2007, Houterman et al., 2007) in Fusaria. It becomes therefore fundamental to establish reliable methods for comparing between proteomic studies in order to rely on true differences found in protein expression among experiments, strains and laboratories. The procedure that will be described should contribute to an increased level of standardization of proteomic procedures by two ways. The filmed protocol is used to increase the level of details that can be described precisely. Moreover, the availability of standardized procedures to process biological replicates should guarantee a higher robustness of data, taking into account also the human factor within the technical reproducibility of the extraction procedure. The protocol described requires 16 days for its completion: fourteen days for cultures and two days for protein extraction (figure 1). Briefly, Fusarium strains are grown on solid media for 4 days; they are then manually fragmented and transferred into a modified toxin inducing media (Jiao et al., 2008) for 10 days. Mycelium is collected by filtration through a Miracloth layer. Grinding is performed in a cold chamber. Different operators performed extraction replicates (n=3) in order to take into account the bias due to technical variations (figure 2). Extraction was based on a SDS/DTT buffer as described in Taylor et al. (2008) with slight modifications. Total protein extraction required a precipitation process of the proteins using Aceton/TCA/DTT buffer overnight and Acetone /DTT washing (figure 3a,3b). Proteins were finally resolubilized in the protein-labelling buffer and quantified. Results of the extraction were visualized on a 1D gel (Figure 4, SDS-PAGE), before proceeding to 2D gels (IEF/SDS-PAGE). The same procedure can be applied for proteomic analyses on other growing media and other filamentous fungi (Miles et al., 2007).
Notes:
Thomas C Durand, Kjell Sergeant, Sébastien Planchon, Sabine Carpin, Philippe Label, Domenico Morabito, Jean-François Hausman, Jenny Renaut (2010)  Acute metal stress in Populus tremula x P. alba (717-1B4 genotype): leaf and cambial proteome changes induced by cadmium 2+.   Proteomics 10: 3. 349-368 Feb  
Abstract: The comprehension of metal homeostasis in plants requires the identification of molecular markers linked to stress tolerance. Proteomic changes in leaves and cambial zone of Populus tremula x P. alba (717-1B4 genotype) were analyzed after 61 days of exposure to cadmium (Cd) 360 mg/kg soil dry weight in pot-soil cultures. The treatment led to an acute Cd stress with a reduction of growth and photosynthesis. Cd stress induced changes in the display of 120 spots for leaf tissue and 153 spots for the cambial zone. It involved a reduced photosynthesis, resulting in a profound reorganisation of carbon and carbohydrate metabolisms in both tissues. Cambial cells underwent stress from the Cd actually present inside the tissue but also a deprivation of photosynthates caused by leaf stress. An important tissue specificity of the response was observed, according to the differences in cell structures and functions.
Notes:
Florence Piette, Salvino D'Amico, Caroline Struvay, Gabriel Mazzucchelli, Jenny Renaut, Maria Luisa Tutino, Antoine Danchin, Pierre Leprince, Georges Feller (2010)  Proteomics of life at low temperatures: trigger factor is the primary chaperone in the Antarctic bacterium Pseudoalteromonas haloplanktis TAC125.   Mol Microbiol 76: 1. 120-132 Apr  
Abstract: The proteomes expressed at 4 degrees C and 18 degrees C by the psychrophilic Antarctic bacterium Pseudoalteromonas haloplanktis have been compared using two-dimensional differential in-gel electrophoresis, showing that translation, protein folding, membrane integrity and anti-oxidant activities are upregulated at 4 degrees C. This proteomic analysis revealed that the trigger factor is the main upregulated protein at low temperature. The trigger factor is the first molecular chaperone interacting with virtually all newly synthesized polypeptides on the ribosome and also possesses a peptidyl-prolyl cis-trans isomerase activity. This suggests that protein folding at low temperatures is a rate-limiting step for bacterial growth in cold environments. It is proposed that the psychrophilic trigger factor rescues the chaperone function as both DnaK and GroEL (the major bacterial chaperones but also heat-shock proteins) are downregulated at 4 degrees C. The recombinant psychrophilic trigger factor is a monomer that displays unusually low conformational stability with a Tm value of 33 degrees C, suggesting that the essential chaperone function requires considerable flexibility and dynamics to compensate for the reduction of molecular motions at freezing temperatures. Its chaperone activity is strongly temperature-dependent and requires near-zero temperature to stably bind a model-unfolded polypeptide.
Notes:
2009
Pol Kieffer, Peter Schröder, Jacques Dommes, Lucien Hoffmann, Jenny Renaut, Jean-François Hausman (2009)  Proteomic and enzymatic response of poplar to cadmium stress.   J Proteomics 72: 3. 379-396 Apr  
Abstract: This study highlights proteomic and enzymatic changes in roots and leaves of actively growing poplar plants upon a cadmium stress exposure. Proteomic changes in response to a short-term (14 days), as well as a longer term (56 days) treatment are observed between the different organs. In leaves, stress-related proteins, like heat shock proteins, proteinases and pathogenesis-related proteins increased in abundance. A response similar to a hypersensitive response upon plant-pathogen interaction seemed to be induced. Concerning roots it appeared that the metabolic impact of cadmium was more deleterious than in leaves. This is evidenced by the early increase in abundance of many typical stress-related proteins like heat shock proteins, or glutathione-S-transferases, while most proteins from the primary metabolism (glycolysis, tricarboxylic acid cycle, nitrogen metabolism, sulfur metabolism) were severely decreased in abundance. Additionally the impact of cadmium on the glutathione metabolism could be assessed by activity assays of several important enzymes. Cadmium treatment had an inhibitory effect on glutathione reductase and ascorbate peroxidase in leaves, but not in roots. Conversely, glutathione-S-transferase showed a higher activity (and abundance) in roots but not in leaves.
Notes:
Pierre Delaplace, Marie-Laure Fauconnier, Kjell Sergeant, Jean-François Dierick, Mouhssin Oufir, Froukje van der Wal, Antoine H P America, Jenny Renaut, Jean-François Hausman, Patrick du Jardin (2009)  Potato (Solanum tuberosum L.) tuber ageing induces changes in the proteome and antioxidants associated with the sprouting pattern.   J Exp Bot 60: 4. 1273-1288 02  
Abstract: During post-harvest storage, potato tubers age as they undergo an evolution of their physiological state influencing their sprouting pattern. In the present study, physiological and biochemical approaches were combined to provide new insights on potato (Solanum tuberosum L. cv. Désirée) tuber ageing. An increase in the physiological age index (PAI) value from 0.14 to 0.83 occurred during storage at 4 degrees C over 270 d. Using this reference frame, a proteomic approach was followed based on two-dimensional electrophoresis. In the experimental conditions of this study, a marked proteolysis of patatin occurred after the PAI reached a value of 0.6. In parallel, several glycolytic enzymes were up-regulated and cellular components influencing protein conformation and the response to stress were altered. The equilibrium between the 20S and 26S forms of the proteasome was modified, the 20S form that recycles oxidized proteins being up-regulated. Two proteins belonging to the cytoskeleton were also differentially expressed during ageing. As most of these changes are also observed in an oxidative stress context, an approach focused on antioxidant compounds and enzymes as well as oxidative damage on polyunsaturated fatty acids and proteins was conducted. All the changes observed during ageing seemed to allow the potato tubers to maintain their radical scavenging activity until the end of the storage period as no accumulation of oxidative damage was observed. These data are interpreted considering the impact of reactive oxygen species on the development and the behaviour of other plant systems undergoing ageing or senescence processes.
Notes:
Pol Kieffer, Sébastien Planchon, Mouhssin Oufir, Johanna Ziebel, Jacques Dommes, Lucien Hoffmann, Jean-François Hausman, Jenny Renaut (2009)  Combining proteomics and metabolite analyses to unravel cadmium stress-response in poplar leaves.   J Proteome Res 8: 1. 400-417 Jan  
Abstract: A proteomic analysis of poplar leaves exposed to cadmium, combined with biochemical analysis of pigments and carbohydrates revealed changes in primary carbon metabolism. Proteomic results suggested that photosynthesis was slightly affected. Together with a growth inhibition, photoassimilates were less needed for developmental processes and could be stored in the form of hexoses or complex sugars, acting also as osmoprotectants. Simultaneously, mitochondrial respiration was upregulated, providing energy needs of cadmium-exposed plants.
Notes:
Kjell Sergeant, Carla Pinheiro, Jean-François Hausman, Cândido Pinto Ricardo, Jenny Renaut (2009)  Taking advantage of nonspecific trypsin cleavages for the identification of seed storage proteins in cereals.   J Proteome Res 8: 6. 3182-3190 Jun  
Abstract: The lack of basic amino acids in seed storage proteins has resulted in the proposal to use chymotrypsin in their study. A comparative study of trypsin and chymotrypsin digestion initially confirmed this preference; however, reanalysis of the trypsin data set defining the specificity as 'semitrypsin' provided enough extra data to bridge the gap between both proteases. Rationale as to why numerous semitryptic peptides are observed in the study of these proteins is provided.
Notes:
Jenny Renaut, Sacha Bohler, Jean-François Hausman, Lucien Hoffmann, Kjell Sergeant, Nagib Ahsan, Yves Jolivet, Pierre Dizengremel (2009)  The impact of atmospheric composition on plants: a case study of ozone and poplar.   Mass Spectrom Rev 28: 3. 495-516 May/Jun  
Abstract: Tropospheric ozone is the main atmospheric pollutant that causes damages to trees. The estimation of the threshold for ozone risk assessment depends on the evaluation of the means that this pollutant impacts the plant and, especially, the foliar organs. The available results show that, before any visible symptom appears, carbon assimilation and the underlying metabolic processes are decreased under chronic ozone exposure. By contrast, the catabolic pathways are enhanced, and contribute to the supply of sufficient reducing power necessary to feed the detoxification processes. Reactive oxygen species delivered during ozone exposure serve as toxic compounds and messengers for the signaling system. In this review, we show that the contribution of genomic tools (transcriptomics, proteomics, and metabolomics) for a better understanding of the mechanistic cellular responses to ozone largely relies on spectrometric measurements.
Notes:
Nagib Ahsan, Jenny Renaut, Setsuko Komatsu (2009)  Recent developments in the application of proteomics to the analysis of plant responses to heavy metals.   Proteomics 9: 10. 2602-2621 May  
Abstract: Pollution of soils by heavy metals is an ever-growing problem throughout the world, and is the result of human activities as well as geochemical weathering of rocks and other environmental causes such as volcanic eruptions, acid rain and continental dusts. Plants everywhere are continuously exposed to metal-contaminated soils. The uptake of heavy metals not only constrains crop yields, but can also be a major hazard to the health of humans and to the entire ecosystem. Although analysis of gene expression at the mRNA level has enhanced our understanding of the response of plants to heavy metals, many questions regarding the functional translated portions of plant genomes under metal stress remain unanswered. Proteomics offers a new platform for studying complex biological functions involving large numbers and networks of proteins, and can serve as a key tool for revealing the molecular mechanisms that are involved in interactions between toxic metals and plant species. This review focuses on recent developments in the applications of proteomics to the analysis of the responses of plants to heavy metals; such studies provide a deeper understanding of protein responses and the interactions among the possible pathways that are involved in detoxification of toxic metals in plant cells. In addition, the challenges faced by proteomics in understanding the responses of plants to toxic metal are discussed, and some possible future strategies for meeting these challenges are proposed.
Notes:
Jean-Paul Lasserre, Fred Fack, Dominique Revets, Sébastien Planchon, Jenny Renaut, Lucien Hoffmann, Arno C Gutleb, Claude P Muller, Torsten Bohn (2009)  Effects of the endocrine disruptors atrazine and PCB 153 on the protein expression of MCF-7 human cells.   J Proteome Res 8: 12. 5485-5496 Dec  
Abstract: Polychlorinated biphenyls (PCBs) and a number of pesticides can act as endocrine disrupting compounds (EDCs). These molecules exhibit hormonal activity in vivo, and can therefore interact and perturb normal physiological functions. Many of these compounds are persistent in the environment, and their bioaccumulation may constitute a significant threat for human health. Physiological abnormalities following exposure to these xenobiotic compounds go along with alterations at the protein level of individual cells. In this study, MCF-7 cells were exposed to environmentally relevant concentrations of atrazine, PCB153 (100 ppb, respectively), 17-beta estradiol (positive control, 10 nM) and a negative control (solvent) for t = 24 h (n = 3 replicates/exposure group). After trizol extraction and protein solubilization, protein expression levels were studied by 2D-DIGE. Proteins differentially expressed were excised, trypsin-digested, and identified by MALDI-ToF-ToF, followed by NCBInr database search. 2D-DIGE experiments demonstrated that 49 spots corresponding to 29 proteins were significantly differentially expressed in MCF-7 cells (>1.5-fold, P < 0.05, Student's paired t test). These proteins belonged to various cellular compartments (nucleus, cytosol, membrane), and varied in function; 88% of proteins were down-regulated during atrazine exposure, whereas 75% of proteins were up-regulated by PCB153. Affected proteins included those regulating oxidative stress such as superoxide dismutase and structural proteins such as actin or tropomyosin, which may explain morphological changes of cells already observed under the microscope. This study highlights the susceptibility of human cells to compounds with endocrine disrupting properties.
Notes:
Anne-Françoise Rénert, Pierre Leprince, Marc Dieu, Jenny Renaut, Martine Raes, Vincent Bours, Jean-Paul Chapelle, Jacques Piette, Marie-Paule Merville, Marianne Fillet (2009)  The proapoptotic C16-ceramide-dependent pathway requires the death-promoting factor Btf in colon adenocarcinoma cells.   J Proteome Res 8: 10. 4810-4822 Oct  
Abstract: Ceramides are central molecules in sphingolipid metabolism. They are involved in the regulation of cancer-cell growth, differentiation, senescence and apoptosis. To better understand how these secondary messengers induce their biological effects, adenocarcinoma cells (HCT116) were treated with exogenous long-chain ceramides (C16-ceramide) in order to mimic endogenous sphingolipids. This treatment induced a decrease of cell viability partly due to apoptosis as shown by PARP cleavage and a decrease of pro-caspase 3. Two-dimensional differential in-gel electrophoresis (2D-DIGE) revealed the differential expression of 51 proteins in response to C16-ceramide. These proteins are notably involved in cell proliferation, apoptosis, protein transport and transcriptional regulation. Among them, the cell death-promoting factor Btf was found to be implicated in the apoptotic signal triggered by ceramide. In adenocarcinoma cells, Btf regulates apoptosis related proteins such as Mdm2, p53, BAX and pBcl-2 and thus plays an important role in the ceramide mediated cell death. These findings bring new insight into the proapoptotic ceramide-dependent signaling pathway.
Notes:
Inês Chaves, Carla Pinheiro, Jorge A P Paiva, Sébastien Planchon, Kjell Sergeant, Jenny Renaut, José A Graça, Gonçalo Costa, Ana V Coelho, Cândido P Pinto Ricardo (2009)  Proteomic evaluation of wound-healing processes in potato (Solanum tuberosum L.) tuber tissue.   Proteomics 9: 17. 4154-4175 Sep  
Abstract: Proteins from potato (Solanum tuberosum L.) tuber slices, related to the wound-healing process, were separated by 2-DE and identified by an MS analysis in MS and MS/MS mode. Slicing triggered differentiation processes that lead to changes in metabolism, activation of defence and cell-wall reinforcement. Proteins related to storage, cell growth and division, cell structure, signal transduction, energy production, disease/defence mechanisms and secondary metabolism were detected. Image analysis of the 2-DE gels revealed a time-dependent change in the complexity of the polypeptide patterns. By microscopic observation the polyalyphatic domain of suberin was clearly visible by D4, indicating that a closing layer (primary suberisation) was formed by then. A PCA of the six sampling dates revealed two time phases, D0-D2 and D4-D8, with a border position between D2 and D4. Moreover, a PCA of differentially expressed proteins indicated the existence of a succession of proteomic events leading to wound-periderm reconstruction. Some late-expressed proteins (D6-D8), including a suberisation-associated anionic peroxidase, have also been identified in the native periderm. Despite this, protein patterns of D8 slices and native periderm were still different, suggesting that the processes of wound-periderm formation are extended in time and not fully equivalent. The information presented in this study gives clues for further work on wound healing-periderm formation processes.
Notes:
2008
Jean-Etienne Poirrier, François Guillonneau, Jenny Renaut, Kjell Sergeant, Andre Luxen, Pierre Maquet, Pierre Leprince (2008)  Proteomic changes in rat hippocampus and adrenals following short-term sleep deprivation.   Proteome Sci 6: 05  
Abstract: BACKGROUND: To identify the biochemical changes induced by sleep deprivation at a proteomic level, we compared the hippocampal proteome of rats either after 4 hours of sleep or sleep deprivation obtained by gentle handling. Because sleep deprivation might induce some stress, we also analyzed proteomic changes in rat adrenals in the same conditions. After sleep deprivation, proteins from both tissues were extracted and subjected to 2D-DIGE analysis followed by protein identification through mass spectrometry and database search. RESULTS: In the hippocampus, 87 spots showed significant variation between sleep and sleep deprivation, with more proteins showing higher abundance in the latter case. Of these, 16 proteins were present in sufficient amount for a sequencing attempt and among the 12 identified proteins, inferred affected cellular functions include cell metabolism, energy pathways, transport and vesicle trafficking, cytoskeleton and protein processing. Although we did not observe classical, macroscopic effect of stress in sleep-deprived rats, 47 protein spots showed significant variation in adrenal tissue between sleep and sleep deprivation, with more proteins showing higher abundance following sleep. Of these, 16 proteins were also present in sufficient amount for a sequencing attempt and among the 13 identified proteins, the most relevant cellular function that was affected was cell metabolism. CONCLUSION: At a proteomic level, short term sleep deprivation is characterized by a higher expression of some proteins in the hippocampus and a lower abundance of other proteins in the adrenals (compared to normal sleep control). Altogether, this could indicate a general activation of a number of cellular mechanisms involved in the maintenance of wakefulness and in increased energy expenditure during sleep deprivation. These findings are relevant to suggested functions of sleep like energy repletion and the restoration of molecular stocks or a more global homeostasis of synaptic processes.
Notes:
Sebastien Christian Carpentier, Bart Panis, Annelies Vertommen, Rony Swennen, Kjell Sergeant, Jenny Renaut, Kris Laukens, Erwin Witters, Bart Samyn, Bart Devreese (2008)  Proteome analysis of non-model plants: a challenging but powerful approach.   Mass Spectrom Rev 27: 4. 354-377 Jul/Aug  
Abstract: Biological research has focused in the past on model organisms and most of the functional genomics studies in the field of plant sciences are still performed on model species or species that are characterized to a great extent. However, numerous non-model plants are essential as food, feed, or energy resource. Some features and processes are unique to these plant species or families and cannot be approached via a model plant. The power of all proteomic and transcriptomic methods, that is, high-throughput identification of candidate gene products, tends to be lost in non-model species due to the lack of genomic information or due to the sequence divergence to a related model organism. Nevertheless, a proteomics approach has a great potential to study non-model species. This work reviews non-model plants from a proteomic angle and provides an outline of the problems encountered when initiating the proteome analysis of a non-model organism. The review tackles problems associated with (i) sample preparation, (ii) the analysis and interpretation of a complex data set, (iii) the protein identification via MS, and (iv) data management and integration. We will illustrate the power of 2DE for non-model plants in combination with multivariate data analysis and MS/MS identification and will evaluate possible alternatives.
Notes:
Pol Kieffer, Jacques Dommes, Lucien Hoffmann, Jean-François Hausman, Jenny Renaut (2008)  Quantitative changes in protein expression of cadmium-exposed poplar plants.   Proteomics 8: 12. 2514-2530 Jun  
Abstract: Cadmium (Cd) pollution is a worldwide major concern having, among others, deleterious effects on plants. In the present work, the effects of a 20 microM Cd exposure in hydroponics culture during 14 days were evaluated in young poplar leaves. Proteins were analysed by 2-D DIGE, followed by MALDI-TOF-TOF identification. Additionally, growth and other physiological parameters were monitored during the experiment. Treated plants exhibited an inhibition of growth and visual symptoms appeared after 7 days. A significant accumulation of Cd in all organs was recorded by ICP-MS analysis. A number of changes in the expression of proteins with various functions were identified; in particular a decreased abundance of oxidative stress regulating proteins, whereas pathogenesis-related proteins showed a drastic increase in abundance. Furthermore, a large number of proteins involved in carbon metabolism showed a decrease in abundance, while proteins involved in remobilizing carbon from other energy sources were upregulated. In conclusion, the negative effect of Cd could be explained by a deleterious effect on protein expression from the primary carbon metabolism and from the oxidative stress response mechanism. Accumulation of Cd in stems of poplar, coupled with a low impact of Cd on physiological parameters, promotes the use of poplar trees for phytoremediation purposes.
Notes:
Nagib Ahsan, Dong-Gi Lee, Iftekhar Alam, Pil Joo Kim, Jeung Joo Lee, Young-Ock Ahn, Sang-Soo Kwak, In-Jung Lee, Jeong Dong Bahk, Kyu Young Kang, Jenny Renaut, Setsuko Komatsu, Byung-Hyun Lee (2008)  Comparative proteomic study of arsenic-induced differentially expressed proteins in rice roots reveals glutathione plays a central role during As stress.   Proteomics 8: 17. 3561-3576 Sep  
Abstract: While the phytotoxic responses of arsenic (As) on plants have been studied extensively, based on physiological and biochemical aspects, very little is known about As stress-elicited changes in plants at the proteome level. Hydroponically grown 2-wk-old rice seedlings were exposed to different doses of arsenate, and roots were collected after 4 days of treatment, as well as after a recovery period. To gain a comprehensive understanding of the precise mechanisms underlying As toxicity, metabolism, and the defense reactions in plants, a comparative proteomic analysis of rice roots has been conducted in combination with physiological and biochemical analyses. Arsenic treatment resulted in increases of As accumulation, lipid peroxidation, and in vivo H(2)O(2) contents in roots. A total of 23 As-regulated proteins including predicted and novel ones were identified using 2-DE coupled with MS analyses. The expression levels of S-adenosylmethionine synthetase (SAMS), GSTs, cysteine synthase (CS), GST-tau, and tyrosine-specific protein phosphatase proteins (TSPP) were markedly up-regulated in response to arsenate, whereas treatment by H(2)O(2) also regulated the levels of CS suggesting that its expression was certainly regulated by As or As-induced oxidative stress. In addition, an omega domain containing GST was induced only by arsenate. However, it was not altered by treatment of arsenite, copper, or aluminum, suggesting that it may play a particular role in arsenate stress. Analysis of the total glutathione (GSH) content and enzymatic activity of glutathione reductase (GR) in rice roots during As stress revealed that their activities respond in a dose-dependent manner of As. These results suggest that SAMS, CS, GSTs, and GR presumably work synchronously wherein GSH plays a central role in protecting cells against As stress.
Notes:
2007
Marie-Béatrice Bogeat-Triboulot, Mikael Brosché, Jenny Renaut, Laurent Jouve, Didier Le Thiec, Payam Fayyaz, Basia Vinocur, Erwin Witters, Kris Laukens, Thomas Teichmann, Arie Altman, Jean-François Hausman, Andrea Polle, Jaakko Kangasjärvi, Erwin Dreyer (2007)  Gradual soil water depletion results in reversible changes of gene expression, protein profiles, ecophysiology, and growth performance in Populus euphratica, a poplar growing in arid regions.   Plant Physiol 143: 2. 876-892 Feb  
Abstract: The responses of Populus euphratica Oliv. plants to soil water deficit were assessed by analyzing gene expression, protein profiles, and several plant performance criteria to understand the acclimation of plants to soil water deficit. Young, vegetatively propagated plants originating from an arid, saline field site were submitted to a gradually increasing water deficit for 4 weeks in a greenhouse and were allowed to recover for 10 d after full reirrigation. Time-dependent changes and intensity of the perturbations induced in shoot and root growth, xylem anatomy, gas exchange, and water status were recorded. The expression profiles of approximately 6,340 genes and of proteins and metabolites (pigments, soluble carbohydrates, and oxidative compounds) were also recorded in mature leaves and in roots (gene expression only) at four stress levels and after recovery. Drought successively induced shoot growth cessation, stomatal closure, moderate increases in oxidative stress-related compounds, loss of CO2 assimilation, and root growth reduction. These effects were almost fully reversible, indicating that acclimation was dominant over injury. The physiological responses were paralleled by fully reversible transcriptional changes, including only 1.5% of the genes on the array. Protein profiles displayed greater changes than transcript levels. Among the identified proteins for which expressed sequence tags were present on the array, no correlation was found between transcript and protein abundance. Acclimation to water deficit involves the regulation of different networks of genes in roots and shoots. Such diverse requirements for protecting and maintaining the function of different plant organs may render plant engineering or breeding toward improved drought tolerance more complex than previously anticipated.
Notes:
Sacha Bohler, Matthieu Bagard, Mouhssin Oufir, Sébastien Planchon, Lucien Hoffmann, Yves Jolivet, Jean-François Hausman, Pierre Dizengremel, Jenny Renaut (2007)  A DIGE analysis of developing poplar leaves subjected to ozone reveals major changes in carbon metabolism.   Proteomics 7: 10. 1584-1599 May  
Abstract: Tropospheric ozone pollution is described as having major negative effects on plants, compromising plant survival. Carbon metabolism is especially affected. In the present work, the effects of chronic ozone exposure were evaluated at the proteomic level in developing leaves of young poplar plants exposed to 120 ppb of ozone for 35 days. Soluble proteins (excluding intrinsic membrane proteins) were extracted from leaves after 3, 14 and 35 days of ozone exposure, as well as 10 days after a recovery period. Proteins (pI 4 to 7) were analyzed by 2-D DIGE experiments, followed by MALDI-TOF-TOF identification. Additional observations were obtained on growth, lesion formation, and leaf pigments analysis. Although treated plants showed large necrotic spots and chlorosis in mature leaves, growth decreased only slightly and plant height was not affected. The number of abscised leaves was higher in treated plants, but new leaf formation was not affected. A decrease in chlorophylls and lutein contents was recorded. A large number of proteins involved in carbon metabolism were identified. In particular, proteins associated with the Calvin cycle and electron transport in the chloroplast were down-regulated. In contrast, proteins associated with glucose catabolism increased in response to ozone exposure. Other identified enzymes are associated with protein folding, nitrogen metabolism and oxidoreductase activity.
Notes:
Anja M Billing, Fred Fack, Jenny Renaut, Christophe M Olinger, Andrea B Schote, Jonathan D Turner, Claude P Muller (2007)  Proteomic analysis of the cortisol-mediated stress response in THP-1 monocytes using DIGE technology.   J Mass Spectrom 42: 11. 1433-1444 Nov  
Abstract: The glucocorticoid (GC) cortisol, the main mediator of the hypothalamic-pituitary-adrenal axis has many implications in metabolism, stress response and the immune system. Its function is mediated via binding to the glucocorticoid receptor (GR), a member of the superfamily of ligand-activated nuclear hormone receptors. The activity of the ligated GR results from its binding as a transcription factor to glucocorticoid response elements (GREs). Two-dimensional gel electrophoresis with DIGE (fluorescence difference gel electrophoresis) technology was applied to study the effects of cortisol on the human THP-1 monocytic cell line. A total of 28 cortisol-modulated proteins were identified belonging to five functional groups: cytoskeleton (8), chaperones (9), immune response (4), metabolism (3) and transcription/translation (4). Their corresponding genes were screened for putative GREs in their + 10 kb/- 0.2 kb promoter regions including all alternative promoters available within the Database for Transcription Start Sites (DBTSS). FKBP51, known to be induced by cortisol, was identified as the strongest differentially expressed protein, and contains the highest number of strict GREs. Genomic analysis of five alternative FKBP5 promoter regions suggests GC inducibility of all transcripts. Additionally, proteomics (2D DIGE and 2D immunoblotting) revealed the existence of several FKBP51 isoforms, which were not previously described. To our knowledge this is the first proteomic study that addresses the effects of cortisol on immune cells. FKBP51 isoforms found on the gel map were linked to alternative promoter usage on the genetic level, successfully correlating both the specific proteomic and genomic findings.
Notes:
Nagib Ahsan, Dong-Gi Lee, Sang-Hoon Lee, Kyu Young Kang, Jeong Dong Bahk, Myung Suk Choi, In-Jung Lee, Jenny Renaut, Byung-Hyun Lee (2007)  A comparative proteomic analysis of tomato leaves in response to waterlogging stress.   Physiol Plant 131: 4. 555-570 Dec  
Abstract: A comparative proteomic approach has been adopted in combination with physiological and biochemical analysis of tomato leaves responding to waterlogging stress. Waterlogging resulted in increases of relative ion leakage, lipid peroxidation and in vivo H2O2 content, whereas the chlorophyll content was decreased. Histocytochemical investigations with 3,3'-diaminobenzidine to localize H2O2 and Evans blue to detect dead cells suggested that oxidative stress has a significant role to leaf senescence. Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco), the most abundant leaf protein, was successfully reduced from the samples by a fractionation method based on 15% polyethylene glycol (PEG). Elimination of Rubisco was further confirmed by Western blot analysis. To elucidate the temporal changes of the protein patterns in tomato leaves, the total soluble and the PEG-fractionated proteins were separated by two-dimensional electrophoresis (2-DE) and visualized by Coomassie Brilliant Blue staining. A total of 52 protein spots were differentially expressed, wherein 33 spots were identified by matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometry or electrospray ionization tandem mass spectrometry (ESI-MS/MS) analysis. The identified proteins are involved in several processes, i.e. photosynthesis, disease resistance, stress and defense mechanisms, energy and metabolism and protein biosynthesis. Results from 2-DE analysis, combined with immunoblotting clearly showed that the fragments of Rubisco large subunit were significantly degraded. This could result from a higher production of reactive oxygen species in leaves under waterlogging stress. Furthermore, four differentially accumulated proteins were analyzed at the mRNA level, confirming the differential gene expression levels and revealing that transcription levels are not always concomitant to the translation level. A number of novel proteins were differentially expressed or appeared only in the PEG-fractionated protein samples, indicating that PEG fractionation system can be used as a versatile protein fractionation technique in proteomic analysis to identify novel or low-abundant proteins from all kinds of plant species.
Notes:
2006
Michael E Wisniewski, Carole L Bassett, Jenny Renaut, Robert Farrell, Thomas Tworkoski, Timothy S Artlip (2006)  Differential regulation of two dehydrin genes from peach (Prunus persica) by photoperiod, low temperature and water deficit.   Tree Physiol 26: 5. 575-584 May  
Abstract: Dehydrins are one of several proteins that have been specifically associated with qualitative and quantitative changes in cold hardiness. Recent evidence indicates that the regulation of dehydrin genes by low nonfreezing temperature (LT) and short photoperiod (SD) can be complex and deserves more detailed analysis to better understand the role of specific dehydrin genes and proteins in the response of woody plants to environmental stress. We have identified a new peach (Prunus persica (L.) Batsch) dehydrin gene (PpDhn2) and examined the responses of this gene and a previously identified dehydrin (PpDhn1) to SD, LT and water deficit. PpDhn2 was strongly induced by water deficit but not by LT or SD. It was also present in the mature embryos of peach. In contrast, PpDhn1 was induced by water deficit and LT but not by SD. We conducted an in silico analysis of the promoters of these genes and found that the promoter region of PpDhn1 contained two dehydration-responsive-elements (DRE)/C-repeats that are responsive to LT and several abscisic acid (ABA)-response elements (ABREs). In contrast, the promoter region of PpDhn2 contained no LT elements but contained several ABREs and an MYCERD1 motif. Both promoter analyses were consistent with the observed expression patterns. The discrepancy between field-collected samples and growth-chamber experiments in the expression of PpDhn1 in response to SD suggests that SD-induced expression of dehydrin genes is complex and may be the result of several interacting factors.
Notes:
2005
2004
J Renaut, S Lutts, L Hoffmann, J - F Hausman (2004)  Responses of poplar to chilling temperatures: proteomic and physiological aspects.   Plant Biol (Stuttg) 6: 1. 81-90 Jan/Feb  
Abstract: The effects of cold acclimation on primary metabolism in actively growing poplar ( Populus tremula L. x P. tremuloides Michaux) were studied. Three-month-old poplar plants were exposed to chilling stress (4 degrees C) and compared to plant material kept at a control temperature (23 degrees C). This treatment did not affect the survival of the plants but growth was almost stopped. The freezing tolerance of the adult leaves increased from -5.7 degrees C for the control plants to -9.8 degrees C after 14 days of exposure to 4 degrees C. During acclimation, the evolution of soluble carbohydrate contents was followed in the leaves. Sucrose, glucose, fructose and trehalose accumulated rapidly under chilling conditions, while raffinose content increased after one week at 4 degrees C. Proteomic analyses, by bidimensional electrophoresis, performed during this stage revealed that a large number of proteins had higher expression, while much less proteins disappeared or had a lower abundance. MALDI-TOF-MS analyses enabled ca. 30 spots to be proposed for candidate proteins. Among the accumulating or appearing proteins proposed, about a third presented similarities with chaperone-like proteins (heat shock proteins, chaperonins). In addition, dehydrins and other late embryogenesis abundant proteins, i.e., stress-responsive proteins, detoxifying enzymes, proteins involved in stress signalling and transduction pathways were also activated or newly synthesised. Finally, cold exposure induced a decrease in the candidate proteins involved in cell wall or energy production.
Notes:
Powered by PublicationsList.org.