hosted by
publicationslist.org
    

Janos Juhasz


janos.juhasz@jcc.hhsc.ca

Journal articles

2010
Janos Juhasz, James H Davis, Frances J Sharom (2010)  Fluorescent probe partitioning in giant unilamellar vesicles of 'lipid raft' mixtures.   Biochem J 430: 3. 415-423 Aug  
Abstract: Direct visualization of raft-like l(o) (liquid-ordered) domains in model systems and cells using microscopic techniques requires fluorescence probes with known partitioning preference for one of the phases present. However, fluorescent probes may display dissimilar partitioning preferences in different lipid systems and can also affect the phase behaviour of the host lipid bilayer. Therefore a detailed understanding of the behaviour of fluorescent probes in defined lipid bilayer systems with known phase behaviour is essential before they can be used for identifying domain phase states. Using giant unilamellar vesicles composed of the ternary lipid mixture DOPC (1,2-dioleoyl-sn-glycero-3-phosphocholine)/DPPC (1,2-dipalmitoyl-sn-glycero-3-phosphocholine)/cholesterol, for which the phase behaviour is known, we examined nine commonly used fluorescent probes using confocal fluorescence microscopy. The partitioning preference of each probe was assigned either on the basis of quantification of the domain area fractions or by using a well-characterized l(d) (liquid-disordered)-phase marker. Fluorescent probes were examined both individually and using dual or triple labelling approaches. Most of the probes partitioned individually into the l(d) phase, whereas only NAP (naphtho[2,3-a]pyrene) and NBD-DPPE [1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine-N-(7-nitro-2-1,3-benzoxadiazol-4-yl] preferred the l(o) phase. We found that Rh-DPPE (Lissamine rhodamine B-1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine) increased the miscibility transition temperature, T(mix). Interestingly, the partitioning of DiIC18 (1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate) was influenced by Bodipy-PC [2-(4,4-difluoro-5,7-dimethyl-4-bora-3a,4a-diaza-s-indacene-3-pentanoyl)-1-hexa-decanoyl-sn-glycero-3-phosphocholine]. The specific use of each of the fluorescent probes is determined by its photostability, partitioning preference, ability to detect lipid phase separations and induced change in T(mix). We demonstrate the importance of testing a specific fluorescent probe in a given model membrane system, rather than assuming that it labels a particular lipid phase.
Notes:
2009
James H Davis, Jesse James Clair, Janos Juhasz (2009)  Phase equilibria in DOPC/DPPC-d62/cholesterol mixtures.   Biophys J 96: 2. 521-539 Jan  
Abstract: There is broad interest in the question of fluid-fluid phase coexistence in membranes, in particular, whether evidence for liquid-disordered (l(d))-liquid-ordered (l(o)) two-phase regions or membrane "rafts" can be found in natural membranes. In model membrane systems, such phase behavior is observed, and we have used deuterium nuclear magnetic resonance spectroscopy to map the phase boundaries of ternary mixtures containing 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC), chain-perdeuterated 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC-d(62)), and cholesterol. For both this ternary model system and the binary DPPC-d(62)/cholesterol system, we present clear evidence for l(d)-l(o) two-phase coexistence. We have selected sample compositions to focus on this region of fluid-fluid phase coexistence and to determine its temperature and composition ranges. The deuterium nuclear magnetic resonance spectra for compositions near the l(d)-l(o) phase boundary at high cholesterol concentrations show evidence of exchange broadening or critical fluctuations in composition, similar to that reported by Vist and Davis. There appears to be a line of critical compositions ranging from 48 degrees C for a DOPC/DPPC-d(62)/cholesterol composition of 0:75:25, to approximately -8 degrees C for the composition 57:14:29. At temperatures below this two-phase region, there is a region of three-phase coexistence (l(d)-l(o)-gel). These results are collected and presented in terms of a partial ternary phase diagram that is consistent with previously reported results of Vist and Davis.
Notes:
Janos Juhasz, Frances J Sharom, James H Davis (2009)  Quantitative characterization of coexisting phases in DOPC/DPPC/cholesterol mixtures: comparing confocal fluorescence microscopy and deuterium nuclear magnetic resonance.   Biochim Biophys Acta 1788: 12. 2541-2552 Dec  
Abstract: The differential miscibility of membrane lipids is thought to be the basis for the formation of dynamic microdomain assemblies in cell membranes known as membrane rafts. Because of their relevance to the existence of rafts, there has been much interest in recent years in model membrane systems that display coexisting liquid ordered (l(o)) and liquid disordered phases (l(d)), such as the ternary mixture composed of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC), 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and cholesterol. Carefully equilibrating the samples at well controlled temperatures allows us to use a quantitative confocal fluorescence microscopy approach to measure the area fractions of coexisting fluid phases in DOPC/DPPC/cholesterol mixtures. We can then compare the behaviour of a large population of unilamellar vesicles with the domain fractions deduced from (2)H NMR experiments. The fluorescence results are established for the first time to be in quantitative agreement with those obtained using (2)H NMR spectroscopy within the two phase region of the phase diagram. We are also able to describe fine details of the phase separation and the approach to equilibrium not previously reported, in particular the existence of small spots of l(o) phase at temperatures higher than that at which the samples display domain fluctuations. A better understanding of coexisting fluid phases in model systems will assist in interpreting the behaviour of rafts in more complex biological membranes.
Notes:
Powered by PublicationsList.org.