hosted by
publicationslist.org
    
Jose Luis Barredo
Antibioticos S.A.
Avda. Antibioticos 59-61
24009 Leon - Spain
JBarredo@antibioticos.it

Journal articles

2007
 
DOI   
PMID 
Katarina Kosalková, Marta Rodríguez-Sáiz, José Luis Barredo, Juan-Francisco Martín (2007)  Binding of the PTA1 transcriptional activator to the divergent promoter region of the first two genes of the penicillin pathway in different Penicillium species.   Curr Genet 52: 5-6. 229-237 Nov  
Abstract: The aim of this work is to establish the correlation between the transcriptional activator PTA1 and the expression of the penicillin genes in different penicillin-producing strains. The level of expression of the first two genes of the penicillin pathway was clearly higher in Penicillium chrysogenum than in Penicillium notatum and Penicillium nalgiovense. The divergent promoter pcbAB-pcbC region contains binding sequences for several transcriptional factors that are conserved in P. notatum and P. chrysogenum, but not in P. nalgiovense. Binding of the purified P. chrysogenum transcriptional activator PTA1 to the palindromic heptamer TTAGTAA took place when the P. chrysogenum 35 bp DNA fragment containing the heptamer was used as a probe, but not when the sequence occurring in P. nalgiovense was used. P. nalgiovense protein fractions purified by heparin agarose chromatography did not bind to the 35-bp DNA fragment either from P. nalgiovense or P. chrysogenum, although some degree of binding was observed when crude extracts were used. This finding may explain the low expression of pcbC in P. nalgiovense. All the P. chrysogenum strains, including the industrial strain E1, showed the same nucleotide sequence, including the consensus PTA1 binding site.
Notes:
 
DOI   
PMID 
Marta Rodríguez-Sáiz, Cristina Sánchez-Porro, Juan Luis De La Fuente, Encarnación Mellado, José Luis Barredo (2007)  Engineering the halophilic bacterium Halomonas elongata to produce beta-carotene.   Appl Microbiol Biotechnol 77: 3. 637-643 Dec  
Abstract: Engineering halophilic bacteria to produce carotenoids is a subject of great scientific and commercial interest, as carotenoids are desirable products used as additives and colorants in the food industry, with beta-carotene the most prominent. With this target, we expressed the beta-carotene biosynthetic genes crtE, crtY, crtI, and crtB from Pantoea agglomerans and the cDNA encoding isopentenyl pyrophosphate isomerase from Haematococcus pluvialis in the halophilic bacterium Halomonas elongata obtaining a strain able to produce practically pure beta-carotene. Reverse transcription-polymerase chain reaction analysis showed crtY, crtI, and crtB heterologous expression in a selected exconjugant of H. elongata. Biosynthesis of beta-carotene was dependent on NaCl concentration in the culture medium, with the highest production (560 mug per g of dry weight) in 2% NaCl. On the contrary, no beta-carotene was detected in 15% NaCl. Successful construction of the beta-carotene biosynthetic pathway in H. elongata opens the possibility of engineering halophilic bacteria for carotenoid production.
Notes:
2006
 
DOI   
PMID 
Vanessa Alvarez, Marta Rodríguez-Sáiz, Juan Luis de la Fuente, Eduardo J Gudiña, Ramiro P Godio, Juan F Martín, José Luis Barredo (2006)  The crtS gene of Xanthophyllomyces dendrorhous encodes a novel cytochrome-P450 hydroxylase involved in the conversion of beta-carotene into astaxanthin and other xanthophylls.   Fungal Genet Biol 43: 4. 261-272 Apr  
Abstract: The conversion of beta-carotene into xanthophylls is a subject of great scientific and industrial interest. We cloned the crtS gene involved in astaxanthin biosynthesis from two astaxanthin producing strains of Xanthophyllomyces dendrorhous: VKPM Y2410, an astaxanthin overproducing strain, and the wild type ATCC 24203. In both cases, the ORF has a length of 3166 bp, including 17 introns, and codes for a protein of 62.6 kDa with similarity to cytochrome-P450 hydroxylases. crtS gene sequences from strains VKPM Y2410, ATCC 24203, ATCC 96594, and ATCC 96815 show several nucleotide changes, but none of them causes any amino acid substitution, except a G2268 insertion in the 13th exon of ATCC 96815 which causes a change in the reading frame. A G1470 --> A change in the 5' splicing region of intron 8 was also found in ATCC 96815. Both point mutations explain astaxanthin idiotrophy and beta-carotene accumulation in ATCC 96815. Mutants accumulating precursors of the astaxanthin biosynthetic pathway were selected from the parental strain VKPM Y2410 (red) showing different colors depending on the compound accumulated. Two of them were blocked in the biosynthesis of astaxanthin, M6 (orange; 1% astaxanthin, 71 times more beta-carotene) and M7 (orange; 1% astaxanthin, 58 times more beta-carotene, 135% canthaxanthin), whereas the rest produced lower levels of astaxanthin (5-66%) than the parental strain. When the crtS gene was expressed in M7, canthaxanthin accumulation disappeared and astaxanthin production was partially restored. Moreover, astaxanthin biosynthesis was restored when X. dendrorhous ATCC 96815 was transformed with the crtS gene. The crtS gene was heterologously expressed in Mucor circinelloides conferring to this fungus an improved capacity to synthesize beta-cryptoxanthin and zeaxanthin, two hydroxylated compounds from beta-carotene. These results show that the crtS gene is involved in the conversion of beta-carotene into xanthophylls, being potentially useful to engineer carotenoid pathways.
Notes:
2005
 
DOI   
PMID 
Bruno Díez, Marta Rodríguez-Sáiz, Juan Luis de la Fuente, Miguel Angel Moreno, José Luis Barredo (2005)  The nagA gene of Penicillium chrysogenum encoding beta-N-acetylglucosaminidase.   FEMS Microbiol Lett 242: 2. 257-264 Jan  
Abstract: We purified the beta-N-acetylglucosaminidase from the filamentous fungus Penicillium chrysogenum and its N-terminal sequence was determined, showing the presence of a mixture of two proteins (P1 and P2). A genomic DNA fragment was cloned by using degenerated oligonucleotides from the Nt sequences. The nucleotide sequence showed the presence of an ORF (nagA gene) lacking introns, with a length of 1791 bp, and coding for a protein of 66.5 kDa showing similarity to acetylglucosaminidases. The NagA deduced protein includes P1 and P2 as incomplete forms of the mature protein, and contains putative features for protein maturation: an 18-amino acid signal peptide, a KEX2 processing site, and four glycosylation motifs. The sequence just after the signal peptide corresponds to P2 and that after the KEX2 site to P1. The nagA transcript has a size of about 2.1 kb and is present until the end of the fermentation process for penicillin production. NagA is one of the most largely represented proteins in P. chrysogenum, increasing along the fermentation process. The suitability of the nagA promoter (PnagA) for gene expression in fungi was demonstrated by expressing the bleomycin resistance gene (ble(R)) from Streptoalloteichus hindustanus in P. chrysogenum.
Notes:
 
DOI   
PMID 
Marta Rodríguez-Sáiz, Ana Teresa Marcos, Begoña Paz, Juan Luis de la Fuente, José Luis Barredo (2005)  The gamma-actin encoding gene from the beta-carotene producer Blakeslea trispora.   FEMS Microbiol Lett 244: 1. 221-228 Mar  
Abstract: We determined the nucleotide sequence of a 4599-bp DNA genomic fragment including the gamma-actin encoding gene from Blakeslea trispora, showing an open reading frame of 1561 bp interrupted by four introns with fungal consensus splice-site junctions. The untranslated regions of the actA gene contain a consensus TATA box, a CCAAT motif, a large pyrimidine stretch, and the polyadenylation sequence AATAAA. The predicted protein (375 amino acids) revealed high identity to gamma-actins from fungi (>90%), and gene phylogenies support the grouping of B. trispora actin close to those from the majority of the filamentous fungi. actA transcript (1.4 kb) level in beta-carotene producing conditions was faintly higher than carRA (1.9 kb) and slightly lower than carB (1.8 kb) beta-carotene biosynthetic genes. The use of the actA promoter (PactA) for heterologous gene expression was ascertained by the transformation of gene fusions with the bleomycin resistance gene (bleR) from Streptoalloteichus hindustanus and the geneticin resistance marker (aphI) from Tn903, into Escherichia coli and Acremonium chrysogenum.
Notes:
 
DOI   
PMID 
Marta Rodríguez-Sáiz, Bruno Díez, José Luis Barredo (2005)  Why did the Fleming strain fail in penicillin industry?   Fungal Genet Biol 42: 5. 464-470 May  
Abstract: Penicillin, discovered 75 years ago by Sir Alexander Fleming in Penicillium notatum, laid the foundations of modern antibiotic chemotherapy. Early work was carried out on the original Fleming strain, but it was later replaced by overproducing strains of Penicillium chrysogenum, which became the industrial penicillin producers. We show how a C(1357)-->T (A394V) change in the gene encoding PahA in P. chrysogenum may help to explain the drawback of P. notatum. PahA is a cytochrome P450 enzyme involved in the catabolism of phenylacetic acid (PA; a precursor of penicillin G). We expressed the pahA gene from P. notatum in P. chrysogenum obtaining transformants able to metabolize PA (P. chrysogenum does not), and observing penicillin production levels about fivefold lower than that of the parental strain. Our data thus show that a loss of function in P. chrysogenum PahA is directly related to penicillin overproduction, and support the historic choice of P. chrysogenum as the industrial producer of penicillin.
Notes:
2004
 
DOI   
PMID 
M Rodríguez-Sáiz, B Paz, J L De La Fuente, M J López-Nieto, W Cabri, J L Barredo (2004)  Blakeslea trispora genes for carotene biosynthesis.   Appl Environ Microbiol 70: 9. 5589-5594 Sep  
Abstract: We cloned the carB and carRA genes involved in beta-carotene biosynthesis from overproducing and wild-type strains of Blakeslea trispora. The carB gene has a length of 1,955 bp, including two introns of 141 and 68 bp, and encodes a protein of 66.4 kDa with phytoene dehydrogenase activity. The carRA gene contains 1,894 bp, with a single intron of 70 bp, and encodes a protein of 69.6 kDa with separate domains for lycopene cyclase and phytoene synthase. The estimated transcript sizes for carB and carRA were 1.8 and 1.9 kb, respectively. CarB from the beta-carotene-overproducing strain B. trispora F-744 had an S528R mutation and a TAG instead of a TAA stop codon. The overproducing strain also had a P143S mutation in CarRA. Both B. trispora genes could complement mutations in orthologous genes in Mucor circinelloides and could be used to construct transformed strains of M. circinelloides that produced higher levels of beta-carotene than did the nontransformed parent. The results show that these genes are conserved across the zygomycetes and that the B. trispora carB and carRA genes are functional and potentially useable to increase carotenoid production.
Notes:
 
DOI   
PMID 
M J López-Nieto, J Costa, E Peiro, E Méndez, M Rodríguez-Sáiz, J L de la Fuente, W Cabri, J L Barredo (2004)  Biotechnological lycopene production by mated fermentation of Blakeslea trispora.   Appl Microbiol Biotechnol 66: 2. 153-159 Dec  
Abstract: A semi-industrial process (800-l fermentor) for lycopene production by mated fermentation of Blakeslea trispora plus (+) and minus (-) strains has been developed. The culture medium was designed at the flask scale, using a program based on a genetic algorithm; and a fermentation process by means of this medium was developed. Fermentation involves separate vegetative phases for (+) and (-) strains and inoculation of the production medium with a mix of both together. Feeding with imidazole or pyridine, molecules known to inhibit lycopene cyclase enzymatic activity, enhanced lycopene accumulation. Different raw materials and physical parameters, including dissolved oxygen, stirring speed, air flow rate, temperature, and pH, were checked in the fermentor to get maximum lycopene production. Typical data for the fermentation process are presented and discussed. This technology can be easily scaled-up to an industrial application for the production of this carotenoid nowadays widely in demand.
Notes:
 
DOI   
PMID 
Marta Rodríguez-Sáiz, Marianna Lembo, Luca Bertetti, Roberto Muraca, Javier Velasco, Antonella Malcangi, Juan Luis de la Fuente, José Luis Barredo (2004)  Strain improvement for cephalosporin production by Acremonium chrysogenum using geneticin as a suitable transformation marker.   FEMS Microbiol Lett 235: 1. 43-49 Jun  
Abstract: An Acremonium chrysogenum strain improvement program based on the transformation with cephalosporin biosynthetic genes was carried out to enhance cephalosporin C production. Best results were obtained with cefEF and cefG genes, selecting transformants with increased cephalosporin C production and lower accumulation of biosynthetic intermediates. Phleomycin resistant transformants, designated B1 and C1, showed a single copy random integration event, higher levels of cefEF transcript and, according to immunoblotting analyses, higher amounts of deacetylcephalosporin C acetyltransferase (DAC-AT) protein than their parental strains. Moreover, DAC-AT activity was higher in the transformants. Plasmids carrying geneticin resistance markers based on the nptII gene from Tn5 and the aphI gene from Tn903 were constructed to transform again B1 and C1, showing that the cassette Pgdh-nptII-trpC was able to confer geneticin resistance to A. chrysogenum and demonstrating that geneticin is a helpful selection marker.
Notes:
2002
 
PMID 
Encarnación Mellado, Luis Miguel Lorenzana, Marta Rodríguez-Sáiz, Bruno Díez, Paloma Liras, José Luis Barredo (2002)  The clavulanic acid biosynthetic cluster of Streptomyces clavuligerus: genetic organization of the region upstream of the car gene.   Microbiology 148: Pt 5. 1427-1438 May  
Abstract: The genetic organization of the region upstream of the car gene of the clavulanic acid biosynthetic gene cluster of Streptomyces clavuligerus has been determined. Sequence analysis of a 12.1 kb region revealed the presence of 10 ORFs whose putative functions, according to database searches, are discussed. Three co-transcriptional units are proposed: ORF10-11, ORF12-13 and ORF15-16-17-18. Potential transcriptional terminators were identified downstream of ORF11 (fd) and ORF15. Targeted disruption of ORF10 (cyp) gave rise to transformants unable to produce clavulanic acid, but with a considerably higher production of cephamycin C. Transformants inactivated at ORF14 had a remarkably lower production of clavulanic acid and similar production of cephamycin C. Significant improvements of clavulanic acid production, associated with a drop in cephamycin C biosynthesis, were obtained with transformants of S. clavuligerus harbouring multiple copies of plasmids carrying different constructions from the ORF10-14 region. This information can be used to guide strain improvement programs, blending random mutagenesis and molecular cloning, to optimize the yield of clavulanic acid.
Notes:
2001
 
PMID 
R Fouces, B Díez, J Velasco, J L Barredo (2001)  The ddcA gene from Streptomyces fradiae encodes an extracellular beta-lactamase with penicillinase and cephalosporinase activities.   J Biotechnol 84: 2. 127-132 Nov  
Abstract: The ddcA gene from Streptomyces fradiae, which is located adjacent to the left edge of the tylosin biosynthetic cluster, has been cloned and sequenced. DNA sequence analysis revealed an ORF of 1194 bp that encodes a product of 42.6 kDa. This protein showed significant similarity to the extracellular endopeptidase with beta-lactamase activity encoded by the adp gene from Bacillus cereus and to PBPs (DD-carboxypeptidases and DD-endopeptidases) and beta-lactamases. Moreover, it contains three characteristic motifs conserved in PBPs and beta-lactamases, including an essential serine residue in the active centre and a putative leader peptide. Heterologous expression of the ddcA gene in Streptomyces lividans demonstrated the presence in the transformants of an extracellular beta-lactamase active against penicillin G, ampicillin and the chromogenic cephalosporin nitrocefin.
Notes:
 
DOI   
PMID 
M Rodríguez-Sáiz, J L Barredo, M A Moreno, J M Fernández-Cañón, M A Peñalva, B Díez (2001)  Reduced function of a phenylacetate-oxidizing cytochrome p450 caused strong genetic improvement in early phylogeny of penicillin-producing strains.   J Bacteriol 183: 19. 5465-5471 Oct  
Abstract: The single-copy pahA gene from Penicillium chrysogenum encodes a phenylacetate 2-hydroxylase that catalyzes the first step of phenylacetate catabolism, an oxidative route that decreases the precursor availability for penicillin G biosynthesis. PahA protein is homologous to cytochrome P450 monooxygenases involved in the detoxification of xenobiotic compounds, with 84% identity to the Aspergillus nidulans homologue PhacA. Expression level of pahA displays an inverse correlation with the penicillin productivity of the strain and is subject to induction by phenylacetic acid. Gene expression studies have revealed a reduced oxidative activity of the protein encoded by pahA genes from penicillin-overproducing strains of P. chrysogenum compared to the activity conferred by phacA of A. nidulans. Sequencing and expression of wild-type pahA from P. chrysogenum NRRL 1951 revealed that an L181F mutation was responsible for the reduced function in present industrial strains. The mutation has been tracked down to Wisconsin 49-133, a mutant obtained at the Department of Botany of the University of Wisconsin in 1949, at the beginning of the development of the Wisconsin family of strains.
Notes:
 
PMID 
B Díez, A T Marcos, M Rodríguez, J L de la Fuente, J L Barredo (2001)  Structural and phylogenetic analysis of the gamma-actin encoding gene from the penicillin-producing fungus Penicillium chrysogenum.   Curr Microbiol 42: 2. 117-121 Feb  
Abstract: The nucleotide sequence of a 2994-bp genomic fragment, including the gamma-actin encoding gene from Penicillium chrysogenum, has been determined, showing an open reading frame (ORF) of 1756 bp interrupted by five introns with fungal consensus splice-site junctions. The 5' untranslated region contains a consensus TATA box, five CAAT motifs, and two large pyrimidine stretches. The predicted protein (375 amino acids) revealed high identity to gamma-actins from fungi (>90%), and gene phylogenies support the grouping of P. chrysogenum actin close to those from the majority of the filamentous fungi. The actA gene is present as a single copy in the genome of P. chrysogenum, and its expression is constitutive during penicillin fermentation, showing a single 1.4-kb transcript.
Notes:
 
PMID 
J L Adrio, J Velasco, G Soler, M Rodriguez-Saiz, J L Barredo, M A Moreno (2001)  Extracellular production of biologically active deacetoxycephalosporin C synthase from Streptomyces clavuligerus in Pichia pastoris.   Biotechnol Bioeng 75: 4. 485-491 Nov  
Abstract: We have successfully expressed and observed secretion of the Streptomyces clavuligerus deacetoxycephalosporin C synthase (DAOCS) using the Pichia pastoris expression system. Two clones having multiple copies of the expression cassette were selected and used for protein-expression analysis. SDS-PAGE showed efficient expression and secretion of the bacterial recombinant DAOCS. The highest yield (120 microg/mL) was obtained when expression was induced with 2% methanol. Free and immobilized protein were assayed for biological activity and found to expand penicillin N (its natural substrate) and penicillin G to deacetoxycephalosporin C (DAOC) and deacetoxycephalosporin G (DAOG), respectively.
Notes:
2000
 
PMID 
B Díez, J Velasco, A T Marcos, M Rodríguez, J L de la Fuente, J L Barredo (2000)  The gene encoding gamma-actin from the cephalosporin producer Acremonium chrysogenum.   Appl Microbiol Biotechnol 54: 6. 786-791 Dec  
Abstract: The nucleotide sequence of a 3240-bp genomic fragment including the gamma-actin-encoding gene from Acremonium chrysogenum has been determined, showing an open reading frame of 1691 bp, interrupted by five introns with fungal consensus splice-site junctions. The untranslated regions of the actA gene contain a consensus TATA box, a CCAAT motif, pyrimidine stretches and the polyadenylation sequence AATAA. The predicted protein (375 amino acids) revealed high identity to gamma-actins from fungi (> 90%). Gene phylogenies constructed using DNA and protein sequences support the grouping of A. chrysogenum actin close to those from the majority of the filamentous fungi. The actA gene is present as a single copy in the genome of A. chrysogenum; and its expression level, opposite to pcbC and cefEF cephalosporin biosynthetic genes, was steady during cephalosporin fermentation, showing a single 1.4-kb transcript.
Notes:
 
DOI   
PMID 
J Velasco, J Luis Adrio, M Angel Moreno, B Díez, G Soler, J L Barredo (2000)  Environmentally safe production of 7-aminodeacetoxycephalosporanic acid (7-ADCA) using recombinant strains of Acremonium chrysogenum.   Nat Biotechnol 18: 8. 857-861 Aug  
Abstract: Medically useful semisynthetic cephalosporins are made from 7-aminodeacetoxycephalosporanic acid (7-ADCA) or 7-aminocephalosporanic acid (7-ACA). Here we describe a new industrially amenable bioprocess for the production of the important intermediate 7-ADCA that can replace the expensive and environmentally unfriendly chemical method classically used. The method is based on the disruption and one-step replacement of the cefEF gene, encoding the bifunctional expandase/hydroxylase activity, of an actual industrial cephalosporin C production strain of Acremonium chrysogenum. Subsequent cloning and expression of the cefE gene from Streptomyces clavuligerus in A. chrysogenum yield recombinant strains producing high titers of deacetoxycephalosporin C (DAOC). Production level of DAOC is nearly equivalent (75-80%) to the total beta-lactams biosynthesized by the parental overproducing strain. DAOC deacylation is carried out by two final enzymatic bioconversions catalyzed by D-amino acid oxidase (DAO) and glutaryl acylase (GLA) yielding 7-ADCA. In contrast to the data reported for recombinant strains of Penicillium chrysogenum expressing ring expansion activity, no detectable contamination with other cephalosporin intermediates occurred.
Notes:
 
PMID 
R Fouces, M Rodríguez, E Mellado, B Díez, J L Barredo (2000)  Conjugation and transformation of Streptomyces species by tylosin resistance.   FEMS Microbiol Lett 186: 2. 319-325 May  
Abstract: The tlrB gene from Streptomyces fradiae has been cloned and used to construct bifunctional Streptomyces-Escherichia coli shuttle vectors carrying the antibiotic resistance genes to kanamycin-neomycin, thiostrepton and tylosin as selection markers. In the same way, the tlrB gene was subcloned in plasmids including the apramycin resistance gene and the oriT sequence from the plasmid pSET152 to facilitate conjugation of Streptomyces spores. The usefulness of the tlrB gene as tylosin resistance marker was ascertained in Streptomyces lividans, Streptomyces parvulus and Streptomyces coelicolor, but not in Streptomyces clavuligerus. The tlrB gene constitutes a useful selection marker when high-frequency of conjugation/transformation is not required or as secondary marker in recombinant Streptomyces species where thiostrepton and kanamycin have been utilized for primary selection.
Notes:
1999
 
PMID 
P Armisén, C Mateo, E Cortés, J L Barredo, F Salto, B Diez, L Rodés, J L García, R Fernández-Lafuente, J M Guisán (1999)  Selective adsorption of poly-His tagged glutaryl acylase on tailor-made metal chelate supports.   J Chromatogr A 848: 1-2. 61-70 Jul  
Abstract: A poly-His tag was fused in the glutaryl acylase (GA) from Acinetobacter sp. strain YS114 cloned in E. coli yielding a fully active enzyme. Biochemical analyses showed that the tag did not alter the maturation of the chimeric GA (poly-His GA) that undergoes a complex post-translational processing from an inactive monomeric precursor to the active heterodimeric enzyme. This enzyme has been used as a model to develop a novel and very simple procedure for one-step purification of poly-His proteins via immobilized metal-ion affinity chromatography on tailor-made supports. It was intended to improve the selectivity of adsorption of the target protein on tailor-made chelate supports instead of performing a selective desorption. The rate and extent of the adsorption of proteins from a crude extract from E. coli and of pure poly-His tagged GA on different metal chelate supports was studied. Up to 90% of proteins from E. coli were adsorbed on commercial chelate supports having a high density of ligands attached to the support through long spacer arms, while this adsorption becomes almost negligible when using low ligand densities, short spacer arms and Zn2+ or Co2+ as cations. On the contrary, poly-His GA adsorbs strongly enough on all supports. A strong affinity interaction between the poly-His tail and a single chelate moiety seems to be the responsible for the adsorption of poly-His GA. By contrast, multipoint weak interactions involving a number of chelate moieties seem to be mainly responsible for adsorption of natural proteins. By using tailor-made affinity supports, a very simple procedure for one-step purification of GA with minimal adsorption of host proteins could be performed. Up to 20 mg of GA were adsorbed on each ml of chelate support while most of accompanying proteins were hardly adsorbed on such supports. Following few washing steps, the target enzyme was finally recovered (80% yield) by elution with 50 mM imidazole with a very high increment of specific activity (up to a 120 purification factor).
Notes:
 
PMID 
R Fouces, E Mellado, B Díez, J L Barredo (1999)  The tylosin biosynthetic cluster from Streptomyces fradiae: genetic organization of the left region.   Microbiology 145 ( Pt 4): 855-868 Apr  
Abstract: The genetic organization of the left edge (tyIEDHFJ region) of the tylosin biosynthetic gene cluster from Streptomyces fradiae has been determined. Sequence analysis of a 12.9 kb region has revealed the presence of 11 ORFs, 10 of them belonging to the biosynthetic cluster. The putative functions of the proteins encoded by these genes are as follows: peptidase (ORF1, ddcA), tylosin resistance determinant (ORF2, tlrB), glycosyltransferase (ORF3, tylN), methyltransferase (ORF4, tylE), ketoreductase (ORF5, tylD), ferredoxin (ORF6, tylH2), cytochrome P450 (ORF7, tylH1), methyltransferase (ORF8, tylF), epimerase (ORF9, tylJ), acyl-CoA oxidase (ORF10, tylP) and receptor of regulatory factors (ORF11, tylQ). The functional identification of the genes in the proposed tylosin biosynthetic pathway has been deduced by database searches and previous genetic complementation studies performed with tylosin idiotrophic mutants blocked at various stages in tylosin biosynthesis. The tlrB gene has been shown to be useful as a tylosin resistance marker in Streptomyces lividans, Streptomyces parvulus and Streptomyces coelicolor and the effect of tylF on macrocin depletion has been confirmed. A pathway for the biosynthesis of 6-deoxy-D-allose, the unmethylated mycinose precursor, involving the genes tylD, tylJ and tylN is proposed.
Notes:
 
PMID 
B Díez, E Mellado, M Rodríguez, E Bernasconi, J L Barredo (1999)  The NADP-dependent glutamate dehydrogenase gene from Penicillium chrysogenum and the construction of expression vectors for filamentous fungi.   Appl Microbiol Biotechnol 52: 2. 196-207 Aug  
Abstract: The gdhA gene encoding the NADP-dependent glutamate dehydrogenase activity from Penicillium chrysogenum has been isolated and characterized for its use in gene expression. The nucleotide sequence of a 2816-bp genomic fragment was determined, showing an open reading frame of 1600 bp interrupted by two introns, of 160 bp and 57 bp respectively, with fungal consensus splice-site junctions. The predicted amino acid sequence revealed a high degree of identity to glutamate dehydrogenase enzymes, especially to those from the fungi Aspergillus nidulans (82%) and Neurospora crassa (78%). The gdhA gene was found to be present in a single copy in the genome of several P. chrysogenum strains with different penicillin productivity. The use of the gdhA promoter for homologous and heterologous gene expression in fungi and Escherichia coli was analyzed. Heterologous gene expression was ascertained by the construction of gene fusions with the lacZ gene from E. coli and the bleomycin-resistance determinant (bleR) from Streptoalloteichus hindustanus. Homologous gene expression was shown through the use of the penicillin-biosynthetic genes pchC and penDE from P. chrysogenum and the cephalosporin biosynthetic genes cefEF and cefG from Acremonium chrysogenum.
Notes:
1998
 
PMID 
J Alonso, J L Barredo, B Díez, E Mellado, F Salto, J L García, E Cortés (1998)  D-amino-acid oxidase gene from Rhodotorula gracilis (Rhodosporidium toruloides) ATCC 26217.   Microbiology 144 ( Pt 4): 1095-1101 Apr  
Abstract: The complete nucleotide sequence of the DAO1 gene encoding D-amino-acid oxidase (DAAO) in the yeast Rhodotorula gracilis (Rhodosporidium toruloides) ATCC 26217 has been determined. The primary structure of DAAO was deduced from the nucleotide sequence of a cDNA clone that covered the entire amino acid coding sequence. Comparison of cDNA and genomic sequences of DAO1 revealed the presence of five introns. Because this is the first gene of strain ATCC 26217 that has been cloned so far, the nucleotide sequences of these introns were compared to those from other fungi. Upstream of the structural gene there was a stretch of C + T-rich DNA similar to that found in the promoter region of a number of yeast genes. The cDNA gene, which encoded a protein of 368 amino acids (molecular mass 40 kDa), was overexpressed in Escherichia coli under the control of the strong lipoprotein promoter. Interestingly, a significant fraction (13-62%) of the total DAAO activity was recovered in its apoenzyme form, the percentage depending on the culture conditions. This fact allowed a rapid purification of the recombinant DAAO by affinity chromatography. The high level of expression achieved in E. coli and the possibility of modifying its catalytic properties by protein engineering provide a new model for the study of this enzyme.
Notes:
 
PMID 
B Díez, C Schleissner, M A Moreno, M Rodríguez, A Collados, J L Barredo (1998)  The manganese superoxide dismutase from the penicillin producer Penicillium chrysogenum.   Curr Genet 33: 6. 387-394 Jun  
Abstract: The antioxidant enzyme superoxide dismutase has been studied in order to define mechanisms for the influence of oxygen on penicillin production. Manganese-containing SOD activity was purified from penicillin-producing cultures of the filamentous fungus Penicillium chrysogenum and reverse genetics was used to identify full-length cDNA and genomic clones. Sequence analysis revealed a 630-bp ORF containing three exons and two introns with fungal consensus splice-site junctions. The deduced amino-acid sequence (210 amino acids; 23.13 kDa) includes conserved residues required for enzymatic activity and metal binding, and shares significant similarity with Mn- and Fe-containing superoxide dismutases. The sod gene is present as a single copy in the genome of different P. chrysogenum strains and its expression level is not correlated with penicillin-G productivity.
Notes:
1997
 
PMID 
S Gutiérrez, J Velasco, A T Marcos, F J Fernández, F Fierro, J L Barredo, B Díez, J F Martín (1997)  Expression of the cefG gene is limiting for cephalosporin biosynthesis in Acremonium chrysogenum.   Appl Microbiol Biotechnol 48: 5. 606-614 Nov  
Abstract: The conversion of deacetylcephalosporin C to cephalosporin C is inefficient in most Acremonium chrysogenum strains. The cefG gene, which encodes deacetylcephalosporin C acetyltransferase, is expressed very poorly in A. chrysogenum as compared to other genes of the cephalosporin pathway. Introduction of additional copies of the cefG gene with its native promoter (in two different constructions with upstream regions of 1056 bp and 538 bp respectively) did not produce a significant increase of the steady-state level of the cefG transcript. Expression of the cefG gene from the promoters of (i) the glyceraldehyde-3-phosphate dehydrogenase (gpd) gene of Aspergillus nidulans, (ii) the glucoamylase (gla) gene of Aspergillus niger, (iii) the glutamate dehydrogenase (gdh) and (iv) the isopenicillin N synthase (pcbC) genes of Penicillium chrysogenum, led to very high steady-state levels of cefG transcript and to increased deacetylcephalosporin-C acetyltransferase protein concentration (as shown by immunoblotting) and enzyme activity in the transformants. Southern analysis showed that integration of the new constructions occurred at sites different from that of the endogenous cefG gene. Cephalosporin production was increased two- to threefold in A. chrysogenum C10 transformed with constructions in which the cefG gene was expressed from the gdh or gpd promoters as a result of a more efficient acetylation of deacetylcephalosporin C.
Notes:
1996
 
PMID 
B Miñambres, H Martínez-Blanco, E R Olivera, B García, B Díez, J L Barredo, M A Moreno, C Schleissner, F Salto, J M Luengo (1996)  Molecular cloning and expression in different microbes of the DNA encoding Pseudomonas putida U phenylacetyl-CoA ligase. Use of this gene to improve the rate of benzylpenicillin biosynthesis in Penicillium chrysogenum.   J Biol Chem 271: 52. 33531-33538 Dec  
Abstract: The gene encoding phenylacetyl-CoA ligase (pcl), the first enzyme of the pathway involved in the aerobic catabolism of phenylacetic acid in Pseudomonas putida U, has been cloned, sequenced, and expressed in two different microbes. In both, the primary structure of the protein was studied, and after genetic manipulation, different recombinant proteins were analyzed. The pcl gene, which was isolated from P. putida U by mutagenesis with the transposon Tn5, encodes a 48-kDa protein corresponding to the phenylacetyl-CoA ligase previously purified by us (Martínez-Blanco, H., Reglero, A. Rodríguez-Aparicio, L. B., and Luengo, J. M. (1990) J. Biol. Chem. 265, 7084-7090). Expression of the pcl gene in Escherichia coli leads to the appearance of this enzymatic activity, and cloning and expression of a 10.5-kb DNA fragment containing this gene confer this bacterium with the ability to grow in chemically defined medium containing phenylacetic acid as the sole carbon source. The appearance of phenylacetyl-CoA ligase activity in all of the strains of the fungus Penicillium chrysogenum transformed with a construction bearing this gene was directly related to a significant increase in the quantities of benzylpenicillin accumulated in the broths (between 1.8- and 2.2-fold higher), indicating that expression of this bacterial gene (pcl) helps to increase the pool of a direct biosynthetic precursor, phenylacetyl-CoA. This report describes the sequence of a phenylacetyl-CoA ligase for the first time and provides direct evidence that the expression in P. chrysogenum of a heterologous protein (involved in the catabolism of a penicillin precursor) is a useful strategy for improving the biosynthetic machinery of this fungus.
Notes:
 
PMID 
B Díez, E Mellado, R Fouces, M Rodríguez, J L Barredo (1996)  Recombinant Acremonium chrysogenum strains for the industrial production of cephalosporin.   Microbiologia 12: 3. 359-370 Sep  
Abstract: Conventional strain improvement programs based on random mutagenesis and rational screening have meant valuable results to the antibiotic producing companies. The development of recombinant DNA techniques and their applications to the industrially-used cephalosporin-producing fungus Acremonium chrysogenum has provided a new tool, complementary to classical mutation, promoting the design of alternative biosynthetic pathways making it possible to obtain new antibiotics and to improve cephalosporin production. Yield increases have been achieved by increasing the dosage of the biosynthetic genes cefEF (deacetoxycephalosporin C expandase/hydroxylase) and cefG (deacetylcephalosporin C acetyltransferase) or enhancing the oxygen uptake by expressing a bacterial oxygen-binding heme protein (Vitreoscilla hemoglobin). New biosynthetic capacities such as the production of 7-aminocephalosporanic acid (7-ACA) or penicillin G have been achieved through the expression of the foreign genes dao (D-amino acid oxidase) coupled with cephalosporin acylase or penDE(acyl-CoA:6-APA acyltransferase) respectively. Confined manipulation of the above-mentioned recombinant strains must be performed according to standing rules.
Notes:
1995
 
PMID 
F Fierro, J L Barredo, B Díez, S Gutierrez, F J Fernández, J F Martín (1995)  The penicillin gene cluster is amplified in tandem repeats linked by conserved hexanucleotide sequences.   Proc Natl Acad Sci U S A 92: 13. 6200-6204 Jun  
Abstract: The penicillin biosynthetic genes (pcbAB, pcbC, penDE) of Penicillium chrysogenum AS-P-78 were located in a 106.5-kb DNA region that is amplified in tandem repeats (five or six copies) linked by conserved TTTACA sequences. The wild-type strains P. chrysogenum NRRL 1951 and Penicillium notatum ATCC 9478 (Fleming's isolate) contain a single copy of the 106.5-kb region. This region was bordered by the same TTTACA hexanucleotide found between tandem repeats in strain AS-P-78. A penicillin overproducer strain, P. chrysogenum E1, contains a large number of copies in tandem of a 57.9-kb DNA fragment, linked by the same hexanucleotide or its reverse complementary TGTAAA sequence. The deletion mutant P. chrysogenum npe10 showed a deletion of 57.9 kb that corresponds exactly to the DNA fragment that is amplified in E1. The conserved hexanucleotide sequence was reconstituted at the deletion site. The amplification has occurred within a single chromosome (chromosome I). The tandem reiteration and deletion appear to arise by mutation-induced site-specific recombination at the conserved hexanucleotide sequences.
Notes:
1993
 
PMID 
E Alvarez, B Meesschaert, E Montenegro, S Gutiérrez, B Díez, J L Barredo, J F Martín (1993)  The isopenicillin-N acyltransferase of Penicillium chrysogenum has isopenicillin-N amidohydrolase, 6-aminopenicillanic acid acyltransferase and penicillin amidase activities, all of which are encoded by the single penDE gene.   Eur J Biochem 215: 2. 323-332 Jul  
Abstract: The isopenicillin-N acyltransferase of Penicillium chrysogenum catalyzes the conversion of the biosynthetic intermediate isopenicillin N to the hydrophobic penicillins. The isopenicillin-N acyltransferase copurified with the acyl-CoA:6-aminopenicillanic acid (6-APA) acyltransferase activity which transfers an acyl residue from acyl-CoA derivatives (e.g. phenylacetyl-CoA, phenoxyacetyl-CoA) to 6-APA. Other thioesters of phenylacetic acid were also used as substrates. An amino acid sequence similar to that of the active site of thioesterases was found in the isopenicillin-N acyltransferase, suggesting that this site is involved in the transfer of phenylacetyl residues from phenylacetyl thioesters. Purified isopenicillin-N acyltransferase also showed isopenicillin-N amidohydrolase, penicillin transacylase and penicillin amidase activities. The isopenicillin-N amidohydrolase (releasing 6-APA) showed a much lower specific activity than the isopenicillin-N acyltransferase of the same enzyme preparation, suggesting that in the isopenicillin-N acyltransferase reaction the 6-APA is not released and is directly converted into benzylpenicillin. Penicillin transacylase exchanged side chains between two hydrophobic penicillin molecules; or between one penicillin molecule and 6-APA. The penicillin amidase activity is probably the reverse of the biosynthetic acyl-CoA:6-APA acyltransferase. Four P. chrysogenum mutants deficient in acyl-CoA:6-APA acyltransferase lacked the other four related activities. Transformation of these mutants with the penDE gene restored all five enzyme activities.
Notes:
1991
 
PMID 
J L Barredo, J F Martín (1991)  Genes directly involved in the biosynthesis of beta-lactam antibiotics.   Microbiologia 7: 1. 1-12 Jun  
Abstract: Several genes encoding enzymatic activities involved in penicillin and cephalosporin biosynthesis have been identified. The first two steps in the biosynthesis of both antibiotics are common in penicillin, cephalosporin and cephamycin producers: condensation of the three precursor amino acids to form the tripeptide delta-(L-alpha-aminoadipyl)-L-cysteinyl-D-valine, and oxidative cyclization of the tripeptide to form isopenicillin N. The genes involved in the two steps are pcbAB and pcbC respectively. The conversion of isopenicillin N to penicillin G is carried out by the enzyme isopenicillin N:6-APA acyltransferase encoded by the gene penDE. The biosynthesis of cephalosporin diverges from that of penicillin G at the isopenicillin N level. The isopenicillin N is first isomerized to penicillin N by an epimerase that is encoded by the gene cefD. The penicillin N is converted in deacetoxycephalosporin C by an expansion of the five-membered thiazolidine ring to the six-membered dihydrothiazine ring. The deacetoxycephalosporin C is finally converted into cephalosporin C by a hydroxylation and O-acetylation. The enzymes which catalyze these last three steps are encoded by the genes cefE, cefF and cefG. The penicillin, cephalosporin and cephamycin biosynthetic genes are organized in clusters (and subclusters) of genes.
Notes:
 
PMID 
S Gutiérrez, B Díez, E Alvarez, J L Barredo, J F Martín (1991)  Expression of the penDE gene of Penicillium chrysogenum encoding isopenicillin N acyltransferase in Cephalosporium acremonium: production of benzylpenicillin by the transformants.   Mol Gen Genet 225: 1. 56-64 Jan  
Abstract: No DNA sequence homologous to the penDE gene of Penicillium chrysogenum was found in the genome of three different strains of Cephalosporium acremonium. The pcbC-penDE gene cluster of P. chrysogenum complemented the isopenicillin N synthase deficiency of C. acremonium mutant N2 and resulted in the production of penicillin, in addition to cephalosporin, in cultures supplemented with phenylacetic acid. The penicillin formed was identified as benzylpenicillin by HPLC and NMR studies. The penDE gene of P. chrysogenum is expressed in C. acremonium forming a transcript of 1.15 kb. The transcript is processed and translated in C. acremonium resulting in the formation of acyl CoA: isopenicillin N acyl transferase. When the penDE gene was introduced into a cephalosporin producing strain, the total titre of beta-lactam antibiotics comprised distinct proportions of penicillin and cephalosporin in different transformants. Analysis of the hybridization patterns of the DNA of C. acremonium transformed with the pcbC or penDE genes indicated that integration occurs by non-homologous recombination.
Notes:
1990
 
PMID 
E Montenegro, J L Barredo, S Gutiérrez, B Díez, E Alvarez, J F Martín (1990)  Cloning, characterization of the acyl-CoA:6-amino penicillanic acid acyltransferase gene of Aspergillus nidulans and linkage to the isopenicillin N synthase gene.   Mol Gen Genet 221: 3. 322-330 May  
Abstract: The penDE gene encoding acyl-CoA:6-amino penicillanic acid acyltransferase (AAT), the last enzyme of the penicillin biosynthetic pathway, has been cloned from the DNA of Aspergillus nidulans. The gene contains three introns which are located in the 5' region of the open reading frame. It encodes a protein of 357 amino acids with a molecular weight of 39,240 Da. The penDE gene of A. nidulans shows 73% similarity at the nucleotide level with the penDE gene of Penicillium chrysogenum. The A. nidulans gene was expressed in P. chrysogenum and complemented the AAT deficiency of the non-producer mutants of P. chrysogenum, npe6 and npe8. The penDE gene of A. nidulans is linked to the pcbC gene, which encodes the isopenicillin N synthase, as also occurs in P. chrysogenum. Both genes show the same orientation and are separated by an intergenic region of 822 nucleotides.
Notes:
 
PMID 
B Díez, S Gutiérrez, J L Barredo, P van Solingen, L H van der Voort, J F Martín (1990)  The cluster of penicillin biosynthetic genes. Identification and characterization of the pcbAB gene encoding the alpha-aminoadipyl-cysteinyl-valine synthetase and linkage to the pcbC and penDE genes.   J Biol Chem 265: 27. 16358-16365 Sep  
Abstract: Penicillium chrysogenum DNA fragments cloned in EMBL3 or cosmid vectors from the upstream region of the pcbC-penDE cluster carry a gene (pcbAB) that complemented the deficiency of alpha-aminoadipyl-cysteinyl-valine synthetase of mutants npe5 and npe10, and restored penicillin production to mutant npe5. A protein of about 250 kDa was observed in sodium dodecyl sulfate-polyacrylamide gel electrophoresis gels of cell-free extracts of complemented strains that was absent in the npe5 and npe10 mutants but exists in the parental strain from which the mutants were obtained. Transcriptional mapping studies showed the presence of one long transcript of about 11.5 kilobases that hybridized with several probes internal to the pcbAB gene, and two small transcripts of 1.15 kilobases that hybridized with the pcbC or the penDE gene, respectively. The transcription initiation and termination regions of the pcbAB gene were mapped by hybridization with several small probes. The region has been completely sequenced. It includes an open reading frame of 11,376 nucleotides that encodes a protein with a deduced Mr of 425,971. Three repeated dominia were found in the alpha-aminoadipyl-cysteinyl-valine synthetase which have high homology with the gramicidin synthetase I and tyrocidine synthetase I. The pcbAB is linked to the pcbC and penDE genes and is transcribed in the opposite orientation to them.
Notes:
1989
 
PMID 
J L Barredo, P van Solingen, B Díez, E Alvarez, J M Cantoral, A Kattevilder, E B Smaal, M A Groenen, A E Veenstra, J F Martín (1989)  Cloning and characterization of the acyl-coenzyme A: 6-aminopenicillanic-acid-acyltransferase gene of Penicillium chrysogenum.   Gene 83: 2. 291-300 Nov  
Abstract: A gene, aat, encoding acyl-CoA: 6-aminopenicillanic acid acyltransferase (AAT), the last enzyme of the penicillin (Pn) biosynthetic pathway, has been cloned from the genome of Penicillium chrysogenum AS-P-78. The gene contains three introns in the 5'-region and encodes a protein of 357 amino acids with an Mr of 39,943. It complements mutants of P. chrysogenum deficient in AAT activity. The aat gene is expressed as a 1.15-kb transcript and the encoded protein appears to be processed post-translationally into two nonidentical polypeptides of 102 and 255 aa, with Mrs of 11,498 and 28,461, respectively. Three proteins of 40, 11, and 29 kDa (the last one corresponding to the previously purified AAT), were identified in extracts of P. chrysogenum. The aa sequence of the N-terminal end of the 11-kDa polypeptide matched the nucleotide (nt) sequence of the 5'-region of aat. The N-terminal end of the 29-kDa polypeptide corresponded to the sequence beginning at nt position 916 of the sequenced DNA fragment (nt 441 of aat gene). The aat gene of P. chrysogenum resembles the genes encoding Pn acylases of Escherichia coli, Proteus rettgeri and Pseudomonas sp., all of which encode two nonidentical subunits derived from a common precursor, encoded by a single open reading frame.
Notes:
 
PMID 
J L Barredo, B Díez, E Alvarez, J F Martín (1989)  Large amplification of a 35-kb DNA fragment carrying two penicillin biosynthetic genes in high penicillin producing strains of Penicillium chrysogenum.   Curr Genet 16: 5-6. 453-459 Dec  
Abstract: The isopenicillin N synthase (pcbC) and acyl-CoA:6-APA acyltransferase (penDE) genes of Penicillium chrysogenum were located in a 19.5-kb DNA fragment that had been previously cloned in phage vector EMBL3. This 19.5-kb DNA fragment was mapped with several endonucleases, and the pcbC and penDE genes were located by hybridization with probes corresponding to internal fragments of each gene. A low penicillin producing strain (P. chrysogenum Wis 54-1255) and two high producing strains (AS-P-78 and P2) showed hybridizing fragments of identical sizes in their chromosomes. Dot-blot hybridization of serial dilutions of the total DNA of the three strains showed that the intensity of all the hybridizing bands was much higher in strains AS-P-78 and P2 than in Wis 54-1255. Hybridization of total DNA digestions with probes corresponding to fragments which mapped upstream or downstream of the pcbC-penDE region revealed that a fragment of at least 35 kb DNA has been amplified 9 to 14 fold in the high penicillin producing strains. The amplified region did not include the previously cloned pyrG gene that encodes OMP-decarboxylase, an enzyme involved in pyrimidine biosynthesis.
Notes:
 
PMID 
B Díez, J L Barredo, E Alvarez, J M Cantoral, P van Solingen, M A Groenen, A E Veenstra, J F Martín (1989)  Two genes involved in penicillin biosynthesis are linked in a 5.1 kb SalI fragment in the genome of Penicillium chrysogenum.   Mol Gen Genet 218: 3. 572-576 Sep  
Abstract: Two genes, pcbC and penDE (also named ips and aat, respectively) encoding the enzymes isopenicillin N synthase and acyl-CoA:6-amino penicillanic acid (6-APA) acyltransferase, which are involved in the penicillin biosynthetic pathway in Penicillium chrysogenum, were cloned. Both genes are clustered together in a 5.1 kb SalI DNA fragment and are separated by a nontranscribed intergenic region of 1.5 kb. These genes are transcribed from different promoters in two separate transcripts of about 1.15 kb each. The penDE gene complements mutants of P. chrysogenum deficient in acyltransferase and the pcbC gene increases the level of isopenicillin N synthase in strains containing low levels of this enzyme. The clustering of penicillin biosynthetic genes is of great interest in the light of previous claims of horizontal transfer of the pcbC gene from beta-lactam producing Streptomyces to filamentous fungi.
Notes:
 
PMID 
J L Barredo, J M Cantoral, E Alvarez, B Díez, J F Martín (1989)  Cloning, sequence analysis and transcriptional study of the isopenicillin N synthase of Penicillium chrysogenum AS-P-78.   Mol Gen Genet 216: 1. 91-98 Mar  
Abstract: A gene (ips) encoding the isopenicillin N synthase of Penicillium chrysogenum AS-P-78 was cloned in a 3.9 kb SalI fragment using a probe corresponding to the amino-terminal end of the enzyme. The SalI fragment was trimmed down to a 1.3 kb NcoI-BglII fragment that contained an open reading frame of 996 nucleotides encoding a polypeptide of 331 amino acids with an Mr of 38012 dalton. The predicted polypeptide encoded by the ips gene of strain AS-P-78 contains a tyrosine at position 195, whereas the gene of the high penicillin producing strain 23X-80-269-37-2 shows an isoleucine at the same position. The ips gene is expressed in Escherichia coli minicells using the lambda phage PL promoter. Some similar sequence motifs were found in the upstream region of the ips gene of P. chrysogenum when compared with the upstream sequences of the ips genes of Cephalosporium acremonium and Aspergillus nidulans. Primer extension studies indicated that the start of the mRNA coincides with a T in position -11 which is located in a conserved pyrimidine-rich sequence, near two CAAG boxes. Clones of P. chrysogenum Wis 54-1255 transformed with the ips gene showed a five-fold higher isopenicillin N synthase activity than the untransformed cultures.
Notes:
1988
 
PMID 
J L Barredo, E Alvarez, J M Cantoral, B Diez, J F Martin (1988)  Glucokinase-deficient mutant of Penicillium chrysogenum is derepressed in glucose catabolite regulation of both beta-galactosidase and penicillin biosynthesis.   Antimicrob Agents Chemother 32: 7. 1061-1067 Jul  
Abstract: One glucokinase-deficient mutant (glk1) of Penicillium chrysogenum AS-P-78 was isolated after germ tube-emitting spores were mutated with nitrosoguanidine and selected for growth on lactose-containing medium in the presence of inhibitory concentrations of D-2-deoxyglucose (3 mM). Penicillin biosynthesis was greatly reduced (55%) in D-glucose-grown cultures of the parental strain, but this sugar had no repressive effect on the rate of penicillin biosynthesis in the mutant glk1. This mutant was deficient in ATP-dependent glucokinase and showed a greatly reduced uptake of D-glucose. The parental strain P. chrysogenum AS-P-78 showed in vitro ATP-dependent phosphorylating activities of D-glucose, D-2-deoxyglucose, and D-galactose. The glk1 mutant was deficient in the in vitro phosphorylation of D-glucose and D-2-deoxyglucose but retained a normal D-galactose-phosphorylating activity. D-Glucose repressed both beta-galactosidase and isopenicillin-N-synthase but not acyl coenzyme A:6-aminopenicillanic acid acyltransferase in the parental strain. The glucokinase-deficient mutant was simultaneously derepressed in carbon catabolite regulation of beta-galactosidase and isopenicillin-N-synthase, suggesting that a common regulatory mechanism is involved in carbon catabolite regulation of both sugar utilization and penicillin biosynthesis.
Notes:
1987
 
PMID 
E Alvarez, J M Cantoral, J L Barredo, B Díez, J F Martín (1987)  Purification to homogeneity and characterization of acyl coenzyme A:6-aminopenicillanic acid acyltransferase of Penicillium chrysogenum.   Antimicrob Agents Chemother 31: 11. 1675-1682 Nov  
Abstract: The acyl coenzyme A (CoA):6-aminopenicillanic acid (6-APA) acyltransferase of Penicillium chrysogenum AS-P-78 was purified to homogeneity, as concluded by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and isoelectric focusing. The enzyme is a monomer with a molecular weight of 30,000 +/- 1,000 and a pI of about 5.5. The optimal pH and temperature were 8.0 and 25 degrees C, respectively. This enzyme converts 6-APA into penicillin by using phenylacetyl CoA or phenoxyacetyl CoA as acyl donors. The pure enzyme showed a high specificity and affinity for 6-APA and did not accept benzylpenicillin, 7-aminocephalosporanic acid, cephalosporin C, or isocephalosporin C as substrates. The enzyme converted isopenicillin N into penicillin G, although with a lower efficiency than when 6-APA was used as the substrate. It did not show penicillin G acylase activity. The acyl CoA:6-APA acyltransferase required dithiothreitol or other thiol-containing compounds, and it was protected by thiol-containing reagents against thermal inactivation. The acyltransferase was inhibited by several divalent and trivalent cations and by p-chloromercuribenzoate and N-ethylmaleimide. The activity was absent in four different mutants that were blocked in penicillin biosynthesis.
Notes:
Powered by publicationslist.org.