hosted by
publicationslist.org
    
Julie Dusseault

julie_alanine@yahoo.com

Journal articles

2007
 
DOI   
PMID 
Dusseault, Langlois, Meunier, Ménard, Perreault, Hallé (2007)  The effect of covalent cross-links between the membrane components of microcapsules on the dissemination of encapsulated malignant cells.   Biomaterials Nov  
Abstract: Stem cells and immortalized cells have considerable therapeutic potential but present risks of malignant transformation. Cell microencapsulation allows transplantation without immunosuppression. We have developed a method for microencapsulating living cells within covalently cross-linked membranes that are chemically and mechanically extremely resistant. We provide herein direct evidence that these microcapsules can prevent malignant cell dissemination. When 20,000 or more nonencapsulated EL-4 thymoma cells were implanted intraperitoneally in mice, all recipients died with widespread metastasis within 26.3+/-1.0 days. All recipients of 250,000 EL-4 cells microencapsulated in covalently cross-linked membranes were living and disease-free, 150 days post-implantation. Encapsulation in standard microcapsules only slightly delayed the recipient death. Pancreatic islets transplanted using either type of microcapsule presented similar survival. We conclude that microencapsulation in covalently cross-linked membranes prevents malignant cell dissemination.
Notes:
2006
 
DOI   
PMID 
Julie Dusseault, Susan K Tam, Martin Ménard, Stefania Polizu, Guillaume Jourdan, L'Hocine Yahia, Jean-Pierre Hallé (2006)  Evaluation of alginate purification methods: effect on polyphenol, endotoxin, and protein contamination.   J Biomed Mater Res A 76: 2. 243-251 Feb  
Abstract: Alginate, a polysaccharide extracted from brown seaweed, is widely used for the microencapsulation of islets of Langerhans, allowing their transplantation without immunosuppression. This natural polymer is known to be largely contaminated. The implantation of islets encapsulated using unpurified alginate leads to the development of fibrotic cell overgrowth around the microcapsules and normalization of the blood glucose is restricted to a very short period if it is achieved at all. Several research groups have developed their own purification method and obtained relatively good results. No comparative evaluation of the efficiencies of these methods has been published. We conducted an evaluative study of five different alginate preparations: a pharmaceutical-grade alginate in its raw state, the same alginate after purification according to three different published methods, and a commercially available purified alginate. The results showed that all purification methods reduced the amounts of known contaminants, that is, polyphenols, endotoxins, and proteins, although with varying efficiencies. Increased viscosity of alginate solutions was observed after purification of the alginates. Despite a general efficiency in decreasing contamination levels, all of the purified alginates contained relatively high residual amounts of protein contaminants. Because proteins may be immunogenic, these residual proteins may have a role in persisting microcapsule immunogenicity.
Notes:
 
DOI   
PMID 
Susan K Tam, Julie Dusseault, Stefania Polizu, Martin Ménard, Jean-Pierre Hallé, L'Hocine Yahia (2006)  Impact of residual contamination on the biofunctional properties of purified alginates used for cell encapsulation.   Biomaterials 27: 8. 1296-1305 Mar  
Abstract: Alginate is frequently used for cell encapsulation, but its biocompatibility is neither optimal nor reproducible. Purifying the alginate is critical for achieving a suitable biocompatibility. However, published purification methods vary in efficiency and may induce changes in polymer biofunctionality. Applying X-ray photoelectron spectroscopy, we showed that commercial alginates, purified by in-house and industrial methods, contained elemental impurities that contributed 0.41-1.73% of their atomic composition. Residual contaminants were identified to be proteins (nitrogen/COOH), endotoxins (phosphorus), and fucoidans (sulphur). Studies using attenuated total reflectance Fourier transform infrared spectroscopy suggested that trace contamination did not alter the alginate molecular structure. Alginate hydrophilicity increased by 19-40% after purification, in correlation with a reduction in protein and polyphenol content. Solution viscosity of the alginate increased by 28-108% after purification, in correlation with a reduction in protein content. These results demonstrate that commercial alginates contain potentially immunogenic contaminants that are not completely eliminated by current purification methods. Moreover, these contaminants alter the functional properties of the alginate in a manner that may compromise biocompatibility: Hydrophilicity may affect protein adsorption and solution viscosity influences the morphology of alginate-based microcapsules. These findings highlight the need to improve and better control alginate purity to ensure a reproducible biofunctionality and optimal biocompatibility of alginate and microcapsules.
Notes:
2005
 
DOI   
PMID 
Julie Dusseault, Francois A Leblond, Robert Robitaille, Guillaume Jourdan, Josée Tessier, Martin Ménard, Nathalie Henley, Jean-Pierre Hallé (2005)  Microencapsulation of living cells in semi-permeable membranes with covalently cross-linked layers.   Biomaterials 26: 13. 1515-1522 May  
Abstract: Microencapsulation in semi-permeable membranes protects transplanted cells against immune destruction. Microcapsule strength is critical. We describe a method to microencapsulate living cells in alginate-poly-L-lysine (PLL)-alginate membranes with covalent links between adjacent layers of microcapsule membranes, while preserving the desired membrane molecular weight cut-off (MWCO) and microencapsulated cell viability. A heterobifunctional photoactivatable cross-linker, N-5-azido-2-nitrobenzoyloxysuccinimide (ANB-NOS) was used. The N-hydroxysuccinimide ester group of ANB-NOS was covalently linked to PLL. Islets of Langerhans were immobilized in alginate beads, incubated in PLL-ANB-NOS and again in alginate. Upon illumination with UVA, covalent links were created between the phenyl azide residue of ANB-NOS and alginate from both the core bead and the outer coating. Covalently linked microcapsules remained intact after 3 years in a strong alkaline buffer (pH 12), whereas standard microcapsules disappeared within 45 s in the same solution. A standardized mechanical stress broke 22-fold more standard than covalently linked microcapsules. The MWCO and microencapsulated cell viability were similar with standard and covalently linked microcapsules. These microcapsules, extremely resistant to chemical and mechanical stresses, will be useful in numerous applications.
Notes:
 
DOI   
PMID 
Robert Robitaille, Julie Dusseault, Nathalie Henley, Karine Desbiens, Nathalie Labrecque, Jean-Pierre Hallé (2005)  Inflammatory response to peritoneal implantation of alginate-poly-L-lysine microcapsules.   Biomaterials 26: 19. 4119-4127 Jul  
Abstract: A thorough understanding of the mechanisms involved in the host reaction to alginate-poly-L-lysine microcapsules (HRM) is important to design methods for the evaluation, selection, and development of biocompatible biomaterials and microcapsules or treatments to control this reaction. The objective of this study was to identify those immune cells and cytokines involved in the pathogenesis of the HRM. The total and differential cell counts were evaluated, and the mRNA expression of TNF-alpha, IL-1beta, IL-6 and TGF-beta1 was measured in peritoneal washings at 3, 17, 48, 96 and 168 h after saline or microcapsule injections. Neutrophil number and IL-1beta and IL-6 m-RNA expression presented an early transient increase, with no differences between saline and microcapsule injections, suggesting a reaction to the procedure. Macrophages, lymphocytes and TNF-alpha were significantly more activated over a longer period of time, after microcapsule implantation than saline injection. They are likely involved in transforming the reaction into a chronic inflammatory process. TGF-beta1 and IL-1beta presented a late (day 7) significant increase after microcapsule but not saline injections. They are likely involved in transforming the reaction into a fibrogenic process. These results suggest that macrophages, lymphocytes, TNF-alpha, IL-1beta and TGF-beta1 play a role in the pathogenesis of the HRM.
Notes:
 
DOI   
PMID 
Susan K Tam, Julie Dusseault, Stefania Polizu, Martin Ménard, Jean-Pierre Hallé, L'hocine Yahia (2005)  Physicochemical model of alginate-poly-L-lysine microcapsules defined at the micrometric/nanometric scale using ATR-FTIR, XPS, and ToF-SIMS.   Biomaterials 26: 34. 6950-6961 Dec  
Abstract: Alginate-poly-L-lysine-alginate (APA) microcapsules are currently being investigated as a means to immuno-isolate transplanted cells, but their biocompatibility is limited. In this study, we verified the hypothesis that poly-L-lysine (PLL), which is immunogenic when unbound, is exposed at the APA microcapsule surface. To do so, we analysed the microcapsule membrane at the micrometric/nanometric scale using attenuated total reflectance Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, and time-of-flight secondary ion mass spectrometry. The results indicate that PLL and alginate molecules interact within the membrane. PLL exists in considerable amounts near the surface, contributing to the majority of the carbon within the outermost 100 Angstroms of the membrane. PLL was also detected at the true surface (the outermost monolayer) of the microcapsules. The exposure of PLL does not appear to result from defects in the outer alginate coating. This physicochemical model of APA microcapsules could explain their immunogenicity and will play an important role in the optimization of the microcapsule design.
Notes:
2003
 
PMID 
Robert Robitaille, Julie Dusseault, Nathalie Henley, Lawrence Rosenberg, Jean-Pierre Hallé (2003)  Insulin-like growth factor II allows prolonged blood glucose normalization with a reduced islet cell mass transplantation.   Endocrinology 144: 7. 3037-3045 Jul  
Abstract: IGF-II has been reported to decrease neonatal islet cell apoptosis and in vitro adult islet cell necrosis and apoptosis, but the usefulness of IGF-II in a transplantation setting is unknown. We evaluated the effect of in vitro IGF-II incubations on microencapsulated rat islet survival both in vitro and in minimal mass transplantations into diabetic mice. After 6 d in culture, fresh examinations, histology, fluorescence microscopy, sodium 3'-[1-(phenyl-amino-carbonyl)-3,4-tetrazolium]-bis (4-methoxy-6-nitro)-benzene sulfonic acid hydrate assay, and apoptosis studies all indicated that IGF-II significantly improves islet cell viability in a dose-dependent fashion. IGF-II 100 ng/ml and 500 ng/ml induced a 51% and 83% increase of viable islets (P = 0.052, P < 0.01). A 20%, 29%, and 33% reduction of the apoptotic index was observed with 50, 100, and 500 ng/ml incubations respectively (P < 0.05; P < 0.005; P < 0.001). Ten weeks after transplantation of 150 encapsulated rat islet equivalents incubated with IGF-II 500 ng/ml, 80% of diabetic mice were normoglycemic. Without IGF-II preincubation, only 8% of the recipients remained normoglycemic with the transplantation of 150 islets and 42% with 300 islets (P < 0.05). In conclusion, IGF-II promotes islet cell survival, and allows successful transplantation using a smaller number of islets.
Notes:
Powered by publicationslist.org.