hosted by
publicationslist.org
    

Dr. Kuldeep K. Roy

Post-doctoral Researcher
College of Pharmacy, Ewha Womans University,
Seoul, 120-750, South Korea
kuldeepkroy@gmail.com

Journal articles

2013
Shaheb Raj Khan, Supriya Singh, Kuldeep K Roy, Md Sohail Akhtar, Anil K Saxena, Manju Yasoda Krishnan (2013)  Biological evaluation of novel substituted chloroquinolines targeting mycobacterial ATP synthase.   Int J Antimicrob Agents 41: 1. 41-46 Jan  
Abstract: The ATP synthase of Mycobacterium tuberculosis is a validated drug target against which a diarylquinoline drug is under clinical trials. The enzyme is crucial for the viability both of actively replicating and non-replicating/dormant M. tuberculosis. Enzyme levels drop drastically as the bacilli enter dormancy and hence an inhibitor would make the dormant bacilli even more vulnerable. In this study, a set of 18 novel substituted chloroquinolines were screened against Mycobacterium smegmatis ATP synthase; 6 compounds with the lowest 50% inhibitory concentration (IC(50)) values (0.36-1.83 μM) were selected for further in vitro studies. All six compounds inhibited the growth of M. tuberculosis H37Rv in vitro, with minimum inhibitory concentrations (MICs) of 3.12 μg/mL (two compounds) or 6.25 μg/mL (four compounds). All of them were bactericidal to non-replicating M. tuberculosis H37Rv in hypoxic culture; three compounds caused a >2 log(10) reduction in CFU counts in 4 days at concentrations of 16× or 32× their MICs, compared with a 0.2 log(10) reduction by isoniazid and a >4 log(10) reduction by rifampicin at 100× their MICs. The compounds also contributed to a greater reduction in total cellular ATP of the bacilli compared with isoniazid and rifampicin during an exposure time of 18 h. The compounds at 100 μM caused only 5-35% inhibition of mouse liver mitochondrial ATP synthase, leading to selectivity indices ranging from >55-fold to >278-fold. In vitro cytotoxicity to the Vero cell line measured as the 50% cytotoxic concentration (CC(50)) of the compounds ranged between 55 μg/mL and >300 μg/mL.
Notes:
2012
Phaedra Eleftheriou, Athina Geronikaki, Dimitra Hadjipavlou-Litina, Paola Vicini, Olga Filz, Dmitry Filimonov, Vladimir Poroikov, Shailendra S Chaudhaery, Kuldeep K Roy, Anil K Saxena (2012)  Fragment-based design, docking, synthesis, biological evaluation and structure-activity relationships of 2-benzo/benzisothiazolimino-5-aryliden-4-thiazolidinones as cycloxygenase/lipoxygenase inhibitors.   Eur J Med Chem 47: 1. 111-124 Jan  
Abstract: Balanced modulation of several targets is one of the current strategies for the treatment of multi-factorial diseases. Based on the knowledge of inflammation mechanisms, it was inferred that the balanced inhibition of cyclooxygenase-1/cyclooxygenase-2/lipoxygenase might be a promising approach for treatment of such a multifactorial disease state as inflammation. Detection of fragments responsible for interaction with enzyme's binding site provides the basis for designing new molecules with increased affinity and selectivity. A new chemoinformatics approach was proposed and applied to create a fragment library that was used to design novel inhibitors of cycloxygenase-1/cycloxygenase-2/lipoxygenase enzymes. Potential binding sites were elucidated by docking. Synthesis of novel compounds, and the in vitro/in vivo biological testing confirmed the results of computational studies. The benzothiazolyl moiety was proved to be of great significance for developing more potent inhibitors.
Notes:
Kuldeep K Roy, Santoshkumar Tota, Tusha Tripathi, Subhash Chander, Chandishwar Nath, Anil K Saxena (2012)  Lead optimization studies towards the discovery of novel carbamates as potent AChE inhibitors for the potential treatment of Alzheimer's disease.   Bioorg Med Chem 20: 21. 6313-6320 Nov  
Abstract: The optimization of our previous lead compound 1 (AChE IC(50)=3.31μM) through synthesis and pharmacology of a series of novel carbamates is reported. The synthesized compounds were evaluated against mouse brain AChE enzyme using the colorimetric method described by Ellman et al. The three compounds 6a (IC(50)=2.57μM), 6b (IC(50)=0.70μM) and 6i (IC(50)=2.56μM) exhibited potent in vitro AChE inhibitory activities comparable to the drug rivastigmine (IC(50)=1.11μM). Among them, the compound 6b has been selected as possible optimized lead for further neuropharmacological studies. In addition, the AChE-carbamate Michaelis complexes of these potent compounds including rivastigmine and ganstigmine have been modeled using covalent docking protocol of GOLD and important direct/indirect interactions contributing to stabilization of the AChE-carbamate Michaelis complexes have been investigated.
Notes:
A K Saxena, K K Roy (2012)  Hierarchical virtual screening: identification of potential high-affinity and selective β(3)-adrenergic receptor agonists.   SAR QSAR Environ Res 23: 5-6. 389-407 Jul  
Abstract: The hierarchical virtual screening (HVS) study, consisting of pharmacophore modelling, docking and VS of the generated focussed virtual library, has been carried out to identify novel high-affinity and selective β(3)-adrenergic receptor (β-AR) agonists. The best pharmacophore model, comprising one H-bond donor, two hydrophobes, one positive ionizable and one negative ionizable feature, was developed based on a training set of 51 β(3)-AR agonists using the pharmacophore generation protocol implemented in Discovery Studio. The model was further validated with the test set, external set and ability of the pharmacophoric features to complement the active site amino acids of the homology modelled β(3)-AR developed using MODELLER software. The focussed virtual library was generated using the structure-based insights gained from our earlier reported comprehensive study focussing on the structural basis of β-AR subtype selectivity of representative agonists and antagonists. The HVS with the sequential use of the best pharmacophore model and homology modelled β(3)-AR in the screening of the generated focussed library has led to the identification of potential virtual leads as novel high-affinity and selective β(3)-AR agonists.
Notes:
2011
Kuldeep K Roy, Supriya Singh, Anil K Saxena (2011)  Integration-mediated prediction enrichment of quantitative model for Hsp90 inhibitors as anti-cancer agents: 3D-QSAR study.   Mol Divers 15: 2. 477-489 May  
Abstract: The present study describes a systematic 3D-QSAR study consisting of pharmacophore modeling, docking, and integration of ligand-based and structure-based drug design approaches, applied on a dataset of 72 Hsp90 inhibitors as anti-cancer agents. The best pharmacophore model, with one H-bond donor (HBD), one H-bond acceptor (HBA), one hydrophobic_aromatic (Hy_Ar), and two hydrophobic_aliphatic (Hy_Al) features, was developed using the Catalyst/HypoGen algorithm on a training set of 35 compounds. The model was further validated using test set, external set, Fisher's randomization method, and ability of the pharmacophoric features to complement the active site amino acids. Docking analysis was performed using Hsp90 chaperone (PDB-Id: 1uyf) along with water molecules reported to be crucial for binding and catalysis (Sgobba et al. ChemMedChem 4:1399-1409, 2009). Furthermore, an integration of the ligand-based as well as structure-based drug design approaches was done leading to the integrated model, which was found to be superior over the best pharmacophore model in terms of its predictive ability on internal [integrated model 2: R ((train)) = 0.954, R ((test)) = 0.888; Hypo-01: R ((train)) = 0.912 and R ((test)) = 0.819] as well as on external data set [integrated model 2: R ((ext.set)) = 0.801; Hypo-01: R ((ext.set)) = 0.604].
Notes:
Kuldeep K Roy, Anil K Saxena (2011)  Structural basis for the β-adrenergic receptor subtype selectivity of the representative agonists and antagonists.   J Chem Inf Model 51: 6. 1405-1422 Jun  
Abstract: The β(3)-adrenegic receptor (β(3)-AR) selectivity over β(1)- and β(2)-ARs has been the most important aspect for successful therapeutic agents for obesity and type-II diabetes, as the concomitant activation of β(1)- and β(2)-ARs would lead to undesirable side effects, such as increased heart rate. In order to explore the structural basis for the β-AR subtype selectivity of agonists and anatagonists, a three-dimensional structure of until date unresolved β(3)-AR has been modeled, compared with the resolved X-ray structures of β(1)- and β(2)-ARs, and used to study its stereoselective binding with until-date known diverse classes of representative agonists and antagonist. The obtained binding structures and calculated prime molecular mechanics-generalized Born surface area (MM-GBSA) binding free energies consistently reveal that while the subtype selectivity is strongly governed by the residues present in the extracellular ends of TM3, TM5, TM6, TM7 helices and of the ECL2 domain, the binding affinity is governed by the conserved residues present in the deep pocket limiting the degree of conformational and rotational freedoms to the bound ligand. The study demonstrates that the key structural requirements for the β(3)-selectivity are: (i) a negatively ionizable group (NIG) for direct interaction with β(3)-specific residue R315(6.58), (ii) a linker (9-10 Å length) between the protonated amine and NIG, and (iii) a substituted aryl ring directly attached to the β-hydroxyl carbon. The new computational insights acquired in this study are expected to be valuable in structure-based rational design of high-affinity agonists and antagonists with pronounced β(3)-selectivity for successful therapeutic agents for type-II diabetes and obesity.
Notes:
Kuldeep K Roy, Supriya Singh, Sandeep K Sharma, Ranjana Srivastava, Vinita Chaturvedi, Anil K Saxena (2011)  Synthesis and biological evaluation of substituted 4-arylthiazol-2-amino derivatives as potent growth inhibitors of replicating Mycobacterium tuberculosis H₃₇Rv.   Bioorg Med Chem Lett 21: 18. 5589-5593 Sep  
Abstract: In search of potential therapeutics for tuberculosis, we describe herein synthesis and biological evaluation of some substituted 4-arylthiazol-2-amino derivatives as modified analogues of the antiprotozoal drug Nitazoxanide (NTZ), which has recently been reported as potent inhibitor of Mtb H(37)Rv (Mtb MIC=52.12 μM) with an excellent ability to evade resistance. Among the synthesized derivatives, the two compounds 7a (MIC=15.28 μM) and 7c (MIC=17.03 μM) have exhibited about three times better Mtb growth inhibitory activity over NTZ and are free from any cytotoxicity (Vero CC(50) of 244 and 300 μM respectively). These two compounds represent promising leads for further optimization.
Notes:
Shome S Bhunia, Kuldeep K Roy, Anil K Saxena (2011)  Profiling the structural determinants for the selectivity of representative factor-Xa and thrombin inhibitors using combined ligand-based and structure-based approaches.   J Chem Inf Model 51: 8. 1966-1985 Aug  
Abstract: The current study deciphers the combined ligand- and structure-based computational insights to profile structural determinants for the selectivity of representative diverse classes of FXa-selective and thrombin-selective as well as dual FXa-thrombin high affinity inhibitors. The thrombin-exclusive insertion 60-loop (D-pocket) was observed to be one of the most notable recognition sites for the known thrombin-selective inhibitors. Based on the topological comparison of four common active-site pockets (S1-S4) of FXa and thrombin, the greater structural disparity was observed in the S4-pocket, which was more symmetrical (U-shaped) in FXa as compared to thrombin mainly due to the presence of L99 and I174 residues in latter in place of Y99 and F174 respectively in former protease. The S2 pocket forming partial roof at the entry of 12 Å deep S1-pocket, with two extended β-sheets running antiparallel to each other by undergoing U-turn (∼180̊), has two conserved glycine residues forming H-bonds with the bound ligand for governing ligand binding affinity. The docking, scoring, and binding pose comparison of the representative high-affinity and selective inhibitors into the active sites of FXa and thrombin revealed critical residues (S214, Y99, W60D) mediating selectivity through direct- and long-range electrostatic interactions. Interestingly, most of the thrombin-selective inhibitors attained S-shaped conformation in thrombin, while FXa-selective inhibitors attained L-shaped conformations in FXa. The role of residue at 99th position of FXa and thrombin toward governing protease selectivity was further substantiated using molecular dynamics simulations on the wild-type and mutated Y99L FXa bound to thrombin-selective inhibitor 2. Furthermore, predictive CoMFA (FXa q² = 0.814; thrombin q² = 0.667) and CoMSIA (FXa q² = 0.807; thrombin q² = 0.624) models were developed and validated (FXa r²(test) = 0.823; thrombin r(2)(test) = 0.816) to feature molecular determinants of ligand binding affinity using the docking-based conformational alignments (DBCA) of 141 (88(train)+53(test)) and 39 (27(train)+11(test)) nonamidine class of potent FXa (0.004 ≤ K(i) (nM) ≤ 4700) and thrombin (0.001 ≤ K(i) (nM) ≤ 940) inhibitors, respectively. Interestingly, the ligand-based insights well corroborated with the structure-based insights in terms of the role of steric, electrostatic, and hydrophobic parameters for governing the selectivity for the two proteases. The new computational insights presented in this study are expected to be valuable for understanding and designing potent and selective antithrombotic agents.
Notes:
Kuldeep K Roy, Shome S Bhunia, Anil K Saxena (2011)  CoMFA, CoMSIA, and docking studies on thiolactone-class of potent anti-malarials: identification of essential structural features modulating anti-malarial activity.   Chem Biol Drug Des 78: 3. 483-493 Sep  
Abstract: The integrated ligand- and structure-based drug design techniques have been applied on a homogeneous dataset of thiolactone-class of potent anti-malarials, to explore the essential structural features for the inhibition of Plasmodium falciparum. Developed CoMFA (q(2) = 0.716) and CoMSIA (q(2) = 0.632) models well explained structure-activity variation in both the training (CoMFA R(2) = 0.948 & CoMSIA R(2) = 0.849) and test set (CoMFA R(2) (pred) = 0.789 & CoMSIA R(2) (pred) = 0.733) compounds. The docking and scoring of the most active compound 10 into the active site of high-resolution (2.35 Ã…) structure of FabB-TLM binary complex (PDB-ID: 1FJ4) indicated that thiolactone core of this compound forms bifurcated H-bonding with two catalytic residues His298 and His333, and its saturated decyl side group is stabilized by hydrophobic interactions with the residues of a small hydrophobic groove, illustrating that the active site architecture, including two catalytic histidines and a small hydrophobic groove, is vital for protein-ligand interaction. In particular, the length and flexibility of the side group attached to the position 5 of thiolactone have been observed to play a significant role in the interaction with FabB enzyme. These results present scope for rational design of thiolactone-class of compounds that could furnish improved anti-malarial activity.
Notes:
2010
Shailendra S Chaudhaery, Kuldeep K Roy, Neeraj Shakya, Gunjan Saxena, Shreesh Raj Sammi, Aamir Nazir, Chandishwar Nath, Anil K Saxena (2010)  Novel carbamates as orally active acetylcholinesterase inhibitors found to improve scopolamine-induced cognition impairment: pharmacophore-based virtual screening, synthesis, and pharmacology.   J Med Chem 53: 17. 6490-6505 Sep  
Abstract: A systematic virtual screening (VS) experiment, consisting of the development of 3D-pharmacophore, screening of virtual library, synthesis, and pharmacology, is reported. The predictive pharmacophore model (correlation = 0.955) with one H-bond donor and three hydrophobic features was developed using HypoGen on a training set of 24 carbamates as AChE inhibitors. The model was validated on a test set of 40 carbamates (correlation = 0.844). The pharmacophore-based VS of virtual library led to the identification of novel carbamates as potent AChE inhibitors. The synthesis and pharmacological evaluation of nine carbamates against three diverse assay systems, namely (i) in vitro Ellman method, (ii) in vivo passive avoidance test, and (iii) aldicarb-sensitivity assay, led to the discovery of orally active novel AChE inhibitors which improved scopolamine-induce cognition impairment in Swiss male mice. Finally, two novel lead compounds 85 and 86 are selected as candidate molecules for further optimization.
Notes:
2009
Neeraj Shakya, Kuldeep K Roy, Anil K Saxena (2009)  Substituted 1,2,3,4-tetrahydroquinolin-6-yloxypropanes as beta3-adrenergic receptor agonists: design, synthesis, biological evaluation and pharmacophore modeling.   Bioorg Med Chem 17: 2. 830-847 Jan  
Abstract: In search of potent beta(3)-adrenergic receptor agonists, a series of novel substituted 1,2,3,4-tetrahydroquinolin-6-yloxypropanes has been synthesized and evaluated for their beta(3)-adrenergic receptor agonistic activity (ranging from -17.73% to 90.64% inhibition at 10 microM) using well established Human SK-N-MC neuroblastoma cells model. Four molecules viz. 11, 15, 22 and 23 showed beta(3)-AR agonistic IC(50) value of 0.55, 0.59, 1.18 and 1.76 microM, respectively. These four candidates have been identified as possible leads for further development of beta(3)-adrenergic receptor agonists for obesity and Type-II diabetes pharmacotherapy. The free OH and NH functions are found to be essential for beta(3)-adrenergic receptor agonistic activity. Among the synthesized beta(3)-adrenergic receptor agonists having 1,2,3,4-tetrahydroquinoline scaffold, the N-benzyl group is found to be superior over N-arylsulfonyl group. A putative pharmacophore model has been modeled considering the above four active molecules which distinguishes well between the active and inactive molecules.
Notes:
Shailendra S Chaudhaery, Kuldeep K Roy, Anil K Saxena (2009)  Consensus superiority of the pharmacophore-based alignment, over maximum common substructure (MCS): 3D-QSAR studies on carbamates as acetylcholinesterase inhibitors.   J Chem Inf Model 49: 6. 1590-1601 Jun  
Abstract: In view of the nonavailability of complete X-ray structure of carbamates cocrystallized with AChE enzyme, the 3D-QSAR model development based on cocrystallized conformer (CCBA) as well as docked conformer-based alignment (DCBA) is not feasible. Therefore, the only two alternatives viz. pharmacophore and maximum common substructure-based alignments are left for the 3D-QSAR comparative molecular field analyses (CoMFA) and comparative molecular similarity indices analyses (CoMSIA) model development. So, in the present study, the 3D-QSAR models have been developed using both alignment methods, where CoMFA and CoMSIA models based on pharmacophore-based alignment were in good agreement with each other and demonstrated significant superiority over MCS-based alignment in terms of leave-one-out (LOO) cross-validated q(2) values of 0.573 and 0.723 and the r(2) values of 0.972 and 0.950, respectively. The validation of the best CoMFA and CoMSIA models based on pharmacophore (Hip-Hop)-based alignment on a test set of 17 compounds provided significant predictive r(2) [r(2)(pred(test))] of 0.614 and 0.788, respectively. The contour map analyses revealed the relative importance of steric, electrostatic, and hydrophobicity for AChE inhibition activity. However, hydrophobic factor plays a major contribution to the AChE inhibitory activity modulation which is in strong agreement with the fact that the AChE is having a wide active site gorge (approximately 20 A) occupied by a large number of hydrophobic amino acid residues.
Notes:
2008
Kuldeep K Roy, Anshuman Dixit, Anil K Saxena (2008)  An investigation of structurally diverse carbamates for acetylcholinesterase (AChE) inhibition using 3D-QSAR analysis.   J Mol Graph Model 27: 2. 197-208 Sep  
Abstract: In order to identify the essential structural features and physicochemical properties for acetylcholinesterase (AChE) inhibitory activity in some carbamate derivatives, the systematic QSAR (Quantitative Structure Activity Relationship) studies (CoMFA, advance CoMFA and CoMSIA) have been carried out on a series of (total 78 molecules) taking 52 and 26 molecules in training and test set, respectively. Statistically significant 3D-QSAR (three-dimensional Quantitative Structure Activity Relationship) models were developed on training set molecules using CoMFA and CoMSIA and validated against test set compounds. The highly predictive models (CoMFA q(2)=0.733, r(2)=0.967, predictive r(2)=0.732, CoMSIA q(2)=0.641, r(2)=0.936, predictive r(2)=0.812) well explained the variance in binding affinities both for the training and the test set compounds. The generated models suggest that steric, electrostatic and hydrophobic interactions play an important role in describing the variation in binding affinity. In particular the carbamoyl nitrogen should be more electropositive; substitutions on this nitrogen should have high steric bulk and hydrophobicity while the amino nitrogen should be electronegative in order to have better activity. These studies may provide important insights into structural variations leading to the development of novel AChE inhibitors which may be useful in the development of novel molecules for the treatment of Alzheimer's disease.
Notes:
Powered by PublicationsList.org.