hosted by
publicationslist.org
    

Leyre Brizuela-Madrid


leyre.brizuela-madrid@ipbs.fr

Journal articles

2010
2009
Audrey Dayon, Leyre Brizuela, Claire Martin, Catherine Mazerolles, Nelly Pirot, Nicolas Doumerc, Leonor Nogueira, Muriel Golzio, Justin Teissié, Guy Serre, Pascal Rischmann, Bernard Malavaud, Olivier Cuvillier (2009)  Sphingosine kinase-1 is central to androgen-regulated prostate cancer growth and survival.   PLoS One 4: 11. e8048  
Abstract: BACKGROUND: Sphingosine kinase-1 (SphK1) is an oncogenic lipid kinase notably involved in response to anticancer therapies in prostate cancer. Androgens regulate prostate cancer cell proliferation, and androgen deprivation therapy is the standard of care in the management of patients with advanced disease. Here, we explored the role of SphK1 in the regulation of androgen-dependent prostate cancer cell growth and survival. METHODOLOGY/PRINCIPAL FINDINGS: Short-term androgen removal induced a rapid and transient SphK1 inhibition associated with a reduced cell growth in vitro and in vivo, an event that was not observed in the hormono-insensitive PC-3 cells. Supporting the critical role of SphK1 inhibition in the rapid effect of androgen depletion, its overexpression could impair the cell growth decrease. Similarly, the addition of dihydrotestosterone (DHT) to androgen-deprived LNCaP cells re-established cell proliferation, through an androgen receptor/PI3K/Akt dependent stimulation of SphK1, and inhibition of SphK1 could markedly impede the effects of DHT. Conversely, long-term removal of androgen support in LNCaP and C4-2B cells resulted in a progressive increase in SphK1 expression and activity throughout the progression to androgen-independence state, which was characterized by the acquisition of a neuroendocrine (NE)-like cell phenotype. Importantly, inhibition of the PI3K/Akt pathway--by negatively impacting SphK1 activity--could prevent NE differentiation in both cell models, an event that could be mimicked by SphK1 inhibitors. Fascinatingly, the reversability of the NE phenotype by exposure to normal medium was linked with a pronounced inhibition of SphK1 activity. CONCLUSIONS/SIGNIFICANCE: We report the first evidence that androgen deprivation induces a differential effect on SphK1 activity in hormone-sensitive prostate cancer cell models. These results also suggest that SphK1 activation upon chronic androgen deprivation may serve as a compensatory mechanism allowing prostate cancer cells to survive in androgen-depleted environment, giving support to its inhibition as a potential therapeutic strategy to delay/prevent the transition to androgen-independent prostate cancer.
Notes:
Julie Guillermet-Guibert, Lise Davenne, Dimitri Pchejetski, Nathalie Saint-Laurent, Leyre Brizuela, Céline Guilbeau-Frugier, Marie-Bernadette Delisle, Olivier Cuvillier, Christiane Susini, Corinne Bousquet (2009)  Targeting the sphingolipid metabolism to defeat pancreatic cancer cell resistance to the chemotherapeutic gemcitabine drug.   Mol Cancer Ther 8: 4. 809-820  
Abstract: Defeating pancreatic cancer resistance to the chemotherapeutic drug gemcitabine remains a challenge to treat this deadly cancer. Targeting the sphingolipid metabolism for improving tumor chemosensitivity has recently emerged as a promising strategy. The fine balance between intracellular levels of the prosurvival sphingosine-1-phosphate (S1P) and the proapoptotic ceramide sphingolipids determines cell fate. Among enzymes that control this metabolism, sphingosine kinase-1 (SphK1), a tumor-associated protein overexpressed in many cancers, favors survival through S1P production, and inhibitors of SphK1 are used in ongoing clinical trials to sensitize epithelial ovarian and prostate cancer cells to various chemotherapeutic drugs. We here report that the cellular ceramide/S1P ratio is a critical biosensor for predicting pancreatic cancer cell sensitivity to gemcitabine. A low level of the ceramide/S1P ratio, associated with a high SphK1 activity, correlates with a robust intrinsic pancreatic cancer cell chemoresistance toward gemcitabine. Strikingly, increasing the ceramide/S1P ratio, by using pharmacologic (SphK1 inhibitor or ceramide analogue) or small interfering RNA-based approaches to up-regulate intracellular ceramide levels or reduce SphK1 activity, sensitized pancreatic cancer cells to gemcitabine. Conversely, decreasing the ceramide/S1P ratio, by up-regulating SphK1 activity, promoted gemcitabine resistance in these cells. Development of novel pharmacologic strategies targeting the sphingolipid metabolism might therefore represent an interesting promising approach, when combined with gemcitabine, to defeat pancreatic cancer chemoresistance to this drug.
Notes:
2008
Isabelle Ader, Leyre Brizuela, Pierre Bouquerel, Bernard Malavaud, Olivier Cuvillier (2008)  Sphingosine kinase 1: a new modulator of hypoxia inducible factor 1alpha during hypoxia in human cancer cells.   Cancer Res 68: 20. 8635-8642  
Abstract: Here, we provide the first evidence that sphingosine kinase 1 (SphK1), an oncogenic lipid kinase balancing the intracellular level of key signaling sphingolipids, modulates the transcription factor hypoxia inducible factor 1alpha (HIF-1alpha), master regulator of hypoxia. SphK1 activity is stimulated under low oxygen conditions and regulated by reactive oxygen species. The SphK1-dependent stabilization of HIF-1alpha levels is mediated by the Akt/glycogen synthase kinase-3beta signaling pathway that prevents its von Hippel-Lindau protein-mediated degradation by the proteasome. The pharmacologic and RNA silencing inhibition of SphK1 activity prevents the accumulation of HIF-1alpha and its transcriptional activity in several human cancer cell lineages (prostate, brain, breast, kidney, and lung), suggesting a canonical pathway. Therefore, we propose that SphK1 can act as a master regulator for hypoxia, giving support to its inhibition as a valid strategy to control tumor hypoxia and its molecular consequences.
Notes:
2007
Leyre Brizuela, Miriam Rábano, Patricia Gangoiti, Natalia Narbona, José María Macarulla, Miguel Trueba, Antonio Gómez-Muñoz (2007)  Sphingosine-1-phosphate stimulates aldosterone secretion through a mechanism involving the PI3K/PKB and MEK/ERK 1/2 pathways.   J Lipid Res 48: 10. 2264-2274  
Abstract: We reported recently that sphingosine-1-phosphate (S1P) is a novel regulator of aldosterone secretion in zona glomerulosa cells of adrenal glands and that phospholipase D (PLD) is implicated in this process. We now show that S1P causes the phosphorylation of protein kinase B (PKB) and extracellularly regulated kinases 1/2 (ERK 1/2), which is an indication of their activation, in these cells. These effects are probably mediated through the interaction of S1P with the Gi protein-coupled receptors S1P1/3, as pretreatment with pertussis toxin or with the S1P1/3 antagonist VPC 23019 completely abolished the phosphorylation of these kinases. Inhibitors of phosphatidylinositol 3-kinase (PI3K) or mitogen-activated protein kinase kinase (MEK) blocked S1P-stimulated aldosterone secretion. This inhibition was only partial when the cells were incubated independently with inhibitors of each pathway. However, aldosterone output was completely blocked when the cells were pretreated with LY 294002 and PD 98059 simultaneously. These inhibitors also blocked PLD activation, which indicates that this enzyme is downstream of PI3K and MEK in this system. We propose a working model for S1P in which stimulation of the PI3K/PKB and MEK/ERK pathways leads to the stimulation of PLD and aldosterone secretion.
Notes:
Anne Gomez-Brouchet, Dimitri Pchejetski, Leyre Brizuela, Virginie Garcia, Marie-Françoise Altié, Marie-Lise Maddelein, Marie-Bernadette Delisle, Olivier Cuvillier (2007)  Critical role for sphingosine kinase-1 in regulating survival of neuroblastoma cells exposed to amyloid-beta peptide.   Mol Pharmacol 72: 2. 341-349  
Abstract: We examined the role of sphingosine kinase-1 (SphK1), a critical regulator of the ceramide/sphingosine 1-phosphate (S1P) biostat, in the regulation of death and survival of SH-SY5Y neuroblastoma cells in response to amyloid beta (Abeta) peptide (25-35). Upon incubation with Abeta, SH-SY5Y cells displayed a marked down-regulation of SphK1 activity coupled with an increase in the ceramide/S1P ratio followed by cell death. This mechanism was redox-sensitive; N-acetylcysteine totally abrogated the down-regulation of SphK1 activity and strongly inhibited Abeta-induced cell death. SphK1 overexpression impaired the cytotoxicity of Abeta, whereas SphK1 silencing by RNA interference mimicked Abeta-induced cell death, thereby establishing a critical role for SphK1. We further demonstrated that SphK1 could mediate the well established cytoprotective action of insulin-like growth factor (IGF-I) against Abeta toxicity. A dominant-negative form of SphK1 or its pharmacological inhibition not only abrogated IGF-I-triggered stimulation of SphK1 but also hampered IGF-I protective effect. Similarly to IGF-I, the neuroprotective action of TGF-beta1 was also dependent on SphK1 activity; activation of SphK1 as well as cell survival were impeded by a dominant-negative form of SphK1. Taken together, these results provide the first illustration of SphK1 role as a critical regulator of death and survival of Abeta-treated cells.
Notes:
2006
Leyre Brizuela, Miriam Rábano, Ana Peña, Patricia Gangoiti, José María Macarulla, Miguel Trueba, Antonio Gómez-Muñoz (2006)  Sphingosine 1-phosphate: a novel stimulator of aldosterone secretion.   J Lipid Res 47: 6. 1238-1249  
Abstract: Sphingosine-1-phosphate (S1P) is a bioactive sphingolipid capable of regulating critical physiological and pathological functions. Here, we report for the first time that S1P stimulates aldosterone secretion in cells of the zona glomerulosa of the adrenal gland. Regulation of aldosterone secretion is important because this hormone controls electrolyte and fluid balance and is implicated in cardiovascular homeostasis. S1P-stimulated aldosterone secretion was dependent upon the protein kinase C (PKC) isoforms alpha and delta and extracellular Ca2+, and it was inhibited by pertussis toxin (PTX). S1P activated phospholipase D (PLD) through a PTX-sensitive mechanism, also involving PKC alpha and delta and extracellular Ca2+. Primary alcohols, which attenuate the formation of phosphatidic acid (the product of PLD), and cell-permeable ceramides, which inhibit PLD activity, blocked S1P-stimulated aldosterone secretion. Furthermore, propranolol, chlorpromazine, and sphingosine, which are potent inhibitors of phosphatidate phosphohydrolase (PAP) (the enzyme that produces diacylglycerol from phosphatidate), also blocked aldosterone secretion. These data suggest that the PLD/PAP pathway plays a crucial role in the regulation of aldosterone secretion by S1P and that Gi protein-coupled receptors, extracellular Ca2+, and the PKC isoforms alpha and delta are all important components in the cascade of events controlling this process.
Notes:
2004
Miriam Rábano, Ana Peña, Leyre Brizuela, José María Macarulla, Antonio Gómez-Muñoz, Miguel Trueba (2004)  Angiotensin II-stimulated cortisol secretion is mediated by phospholipase D.   Mol Cell Endocrinol 222: 1-2. 9-20  
Abstract: Angiotensin II (Ang-II) regulates a variety of cellular functions including cortisol secretion. In the present report, we demonstrate that Ang-II activates phospholipase D (PLD) in zona fasciculata (ZF) cells of bovine adrenal glands, and that this effect is associated to the stimulation of cortisol secretion by this hormone. PLD activation was dependent upon extracellular Ca2+, and was blocked by inhibition of protein kinase C (PKC). Using the reverse transcription-polymerase chain reaction technique, we demonstrated that ZF cells express both PLD-1 and PLD-2 isozymes. Primary alcohols, which attenuate the formation of phosphatidate (the product of PLD), and cell-permeable ceramides, which inhibit PLD potently, blocked Ang-II-stimulated cortisol secretion. Furthermore, propranolol or chlorpromazine, which are potent inhibitors of phosphatidate phosphohydrolase (PAP) (the enzyme that produces diacylglycerol from phosphatidate), also blocked cortisol secretion. These data suggest that the PLD/PAP pathway plays an important role in the regulation of cortisol secretion by Ang-II in ZF cells.
Notes:
2003
Miriam Rábano, Ana Peña, Leyre Brizuela, Aida Marino, José María Macarulla, Miguel Trueba, Antonio Gómez-Muñoz (2003)  Sphingosine-1-phosphate stimulates cortisol secretion.   FEBS Lett 535: 1-3. 101-105  
Abstract: We show here for the first time that sphingosine-1-phosphate (Sph-1-P) stimulates cortisol secretion in zona fasciculata cells of bovine adrenal glands. This effect was dependent upon protein kinase C (PKC) and extracellular Ca2+, and was inhibited by pertussis toxin. Sph-1-P activated phospholipase D (PLD) through a pertussis toxin-sensitive mechanism, also involving extracellular Ca2+ and PKC. Primary alcohols, which attenuate formation of phosphatidic acid (the product of PLD), and cell-permeable ceramides, which inhibit PLD, blocked Sph-1-P-induced cortisol secretion. In conclusion, Sph-1-P stimulates cortisol secretion through a mechanism involving Gi/o protein-coupled receptors, extracellular Ca2+, PKC and PLD.
Notes:

Book chapters

2012
Powered by PublicationsList.org.