hosted by
publicationslist.org
    
Malin C Celander

malin.celander@zool.gu.se

Journal articles

2008
 
DOI   
PMID 
Linda Hasselberg, Susan Westerberg, Britt Wassmur, Malin C Celander (2008)  Ketoconazole, an antifungal imidazole, increases the sensitivity of rainbow trout to 17alpha-ethynylestradiol exposure.   Aquat Toxicol 86: 2. 256-264 Jan  
Abstract: This study focuses on effects of two classes of xenobiotics, azole fungicides and xenoestrogens, both of which have been detected in the aquatic environment. We hypothesize that azoles and estrogenic compounds are metabolized by cytochrome P450 (CYP) enzymes, and in particular CYP1A and CYP3A, to more readily excreted metabolites. We exposed rainbow trout (Oncorhynchus mykiss) to two different pharmaceutical representatives of theses two classes, such as the imidazole ketoconazole and the synthetic estrogen analogue, 17alpha-ethynylestradiol (EE(2)). Juvenile rainbow trout were i.p. injected with a single low dose of EE(2) (2.5mug/kg), alone or in combination with ketoconazole (100mg/kg). Hepatic microsomal CYP1A and CYP3A protein expressions were analyzed in Western blots using polyclonal antibodies (PAb) and enhanced cheminoluminescence. CYP1A activities were analyzed using the ethoxyresorufin-O-deethylase (EROD) assay and CYP3A activities were analyzed using the benzyloxy-4-[trifluoromethyl]-coumarin-O-debenzyloxylase (BFCOD) assay. Plasma vitellogenin (vtg) and sex steroid hormones (i.e. 17beta-estradiol, testosterone and 11-keto-testosterone) were analyzed using commercially available ELISA-kits. The vtg mRNA expression was analyzed using quantitative (Q)-PCR. The dose of EE(2) selected had little or no effect on the estrogen receptor (ER) mediated vtg induction. However, in combination with ketoconazole this threshold-dose of EE(2) resulted in significantly elevated plasma vtg levels, 6 days post injection. Exposure to ketoconazole resulted in up to nine-fold induction of CYP1A after 3 days. However, this nine-fold induction was not reflected on the CYP1A catalytic activity, where exposure to ketoconazole resulted only in a two-fold increase in activity. Ketoconazole increased CYP3A protein levels 1.5-fold and decreased BFCOD activities by 80% at days 3 and 6. Treatment with ketoconazole and EE(2) alone and in combination had no significant effect on sex steroid hormones, compared to vehicle-treated fish. This study demonstrates that exposure to ketoconazole compromises the function of key enzymes involved in metabolic clearance of xenobiotics and steroids, and increases the sensitivity to EE(2) exposure in juvenile rainbow trout.
Notes:
 
DOI   
PMID 
Anna Lennquist, Malin C Celander, Lars Förlin (2008)  Effects of medetomidine on hepatic EROD activity in three species of fish.   Ecotoxicol Environ Saf 69: 1. 74-79 Jan  
Abstract: Medetomidine, an antifouling candidate, was investigated for its effects on cytochrome P4501A (CYP1A) activity in fish. Rainbow trout (Oncorhynchus mykiss), turbot (Psetta maxima), and Atlantic cod (Gadus morhua) were exposed to medetomidine either via i.p. injection (<5 micromol (1mg)/kg) or via water (<50 nM). Enzyme activity was measured as ethoxyresorufin-O-deethylase (EROD) activity in liver microsomes. There was a small (2-7-fold) increase in EROD activity in rainbow trout. In turbot, EROD activity increased (4-fold) after injection, while a non-significant (50%) decrease was observed after water exposure. No effects on EROD activities were observed in Atlantic cod. In vitro inhibition studies of EROD activities in liver microsomes from all three species showed that medetomidine was a very potent CYP1A inhibitor. Thus, median inhibition values (IC(50)) were 35+/-10nM for rainbow trout, 47+/-17 nM for turbot, and 111+/-70 nM for Atlantic cod. These observed effects suggest that medetomidine interferes with CYP1A-dependent metabolism of xenobiotics in these fish species.
Notes:
2005
 
DOI   
PMID 
Hasselberg, Grøsvik, Goksøyr, Celander (2005)  Interactions between xenoestrogens and ketoconazole on hepatic CYP1A and CYP3A, in juvenile Atlantic cod (Gadus morhua).   Comp Hepatol 4: 1. Feb  
Abstract: BACKGROUND: Xenoestrogens and antifungal azoles probably share a common route of metabolism, through hepatic cytochrome P450 (CYP) enzymes. Chemical interactions with metabolic pathways may affect clearance of both xenobiotics and endobiotics. This study was carried out to identify possible chemical interactions by those substances on CYP1A and CYP3A, in Atlantic cod liver. We investigated effects of two xenoestrogens (nonylphenol and ethynylestradiol) and of the model imidazole ketoconazole, alone and in combination. RESULTS: Treatment with ketoconazole resulted in 60% increase in CYP1A-mediated ethoxyresorufin-O-deethylase (EROD) activity. Treatment with nonylphenol resulted in 40% reduction of CYP1A activity. Combined exposure to ketoconazole and nonylphenol resulted in 70% induction of CYP1A activities and 93% increase in CYP1A protein levels. Ketoconazole and nonylphenol alone or in combination had no effect on CYP3A expression, as analyzed by western blots. However, 2-dimensional (2D) gel electrophoresis revealed the presence of two CYP3A-immunoreactive proteins, with a more basic isoform induced by ketoconazole. Treatment with ketoconazole and nonylphenol alone resulted in 54% and 35% reduction of the CYP3A-mediated benzyloxy-4-[trifluoromethyl]-coumarin-O-debenzyloxylase (BFCOD) activity. Combined exposure of ketoconazole and nonylphenol resulted in 98% decrease in CYP3A activity. This decrease was greater than the additive effect of each compound alone. In vitro studies revealed that ketoconazole was a potent non-competitive inhibitor of both CYP1A and CYP3A activities and that nonylphenol selectively non-competitively inhibited CYP1A activity. Treatment with ethynylestradiol resulted in 46% decrease in CYP3A activity and 22% decrease in protein expression in vivo. In vitro inhibition studies in liver microsomes showed that ethynylestradiol acted as a non-competitive inhibitor of CYP1A activity and as an uncompetitive inhibitor of CYP3A activity. CONCLUSIONS: Ketoconazole, nonylphenol and ethynylestradiol all interacted with CYP1A and CYP3A activities and protein expression in Atlantic cod. However, mechanisms of interactions on CYP1A and CYP3A differ between theses substances and combined exposure had different effects than exposure to single compounds. Thus, CYP1A and CYP3A mediated clearance may be impaired in situations of mixed exposure to those types of compounds.
Notes:
 
DOI   
PMID 
Margaret O James, Zhen Lou, Laura Rowland-Faux, Malin C Celander (2005)  Properties and regional expression of a CYP3A-like protein in channel catfish intestine.   Aquat Toxicol 72: 4. 361-371 May  
Abstract: Biotransformation in the intestine may influence the bioavailability and toxicity of ingested xenobiotics. The objective of this study was to examine the expression and catalytic properties of a constitutive cytochrome P450 (CYP) 3A-like protein along the intestine of channel catfish, Ictalurus punctatus. Fish were maintained on commercial chow or nutritionally complete semi-purified diets. Polyclonal antibodies generated against rainbow trout CYP3A proteins reacted strongly with catfish washed intestinal microsomes on Western blots showing a major protein band with MW of 59 kDa. In catfish maintained on a standard chow diet, the expression of this protein was higher in the proximal segment (0.101 +/- 0.031 units/mg protein, mean +/- S.D., n = 4) than in the distal part (0.032 +/- 0.023 units/mg protein). Microsomal testosterone 6beta-hydroxylation activity was monitored as the catalytic indicator of CYP3A, and was higher in proximal than distal catfish intestine (263 +/- 80.3 and 88.6 +/- 15.6 pmol/min/mg protein for proximal and distal, respectively, mean +/- S.D., n = 4). CYP3A protein levels and testosterone 6beta-hydroxylation activities were lower in microsomes from the proximal segment of intestine from catfish maintained on a semi-purified diet, compared with commercial chow, but again the proximal intestine had higher CYP3A and 6beta-hydroxylase activities than distal intestine. Testosterone 6beta-hydroxylase activities in all samples correlated with the CYP3A protein levels, r2 = 0.8. Testosterone 6beta-hydroxylation was inhibited by specific CYP3A inhibitors, ketoconazole (IC50 = 0.02 microM) and erythromycin (IC50 = 41 microM), as well as general CYP inhibitors, metyrapone (IC50 = 2.8 microM) and SKF-525A (IC50 = 25 microM). There was evidence for the involvement of CYP3A in the mono-oxygenation of benzo(a)pyrene and of (-)-benzo(a)pyrene-7,8-dihydrodiol in intestinal microsomes from catfish maintained on the semi-purified diet. Mono-oxygenation of both substrates was increased in a concentration-dependent manner by in vitro addition of alpha-naphthoflavone. Benzo(a)pyrene hydroxylase activities were higher in proximal than in distal intestine; 3.72 +/- 0.77 pmol/min/mg protein, mean +/- S.D., n = 5 and 1.45 +/- 0.42 in these respective segments. The results of this study strongly suggest that CYP3A is important in the first pass metabolism of dietary xenobiotics in untreated fish.
Notes:
2004
 
DOI   
PMID 
Linda Hasselberg, Sonnich Meier, Asbjørn Svardal, Tove Hegelund, Malin C Celander (2004)  Effects of alkylphenols on CYP1A and CYP3A expression in first spawning Atlantic cod (Gadus morhua).   Aquat Toxicol 67: 4. 303-313 May  
Abstract: Alkylphenols are continuously released into the ocean as a result of offshore oil production. Alkylphenols, including 4-tert-butylphenol (C4), 4n-pentylphenol (C5), 4n-hexylphenol (C6), and 4n-heptylphenol (C7), up to 237 ppb concentrations, have been detected in produced water from oil platforms. Previous studies have shown that alkylphenols induce vitellogenesis in fish. Atlantic cod (Gadus morhua) of both sexes were force-fed with various doses ranging between 0.02 and 80 ppm of a mixture of alkylphenols (C4:C5:C6:C7 ratio 1:1:1:1) or 5 ppm 17 beta-estradiol. We investigated effects on hepatic CYP1A and CYP3A protein expression in protein blots, using antibodies against scup (Stenotomus chrysops) CYP1A1 and rainbow trout (Oncorhynchus mykiss) CYP3A. There was a sexually dimorphic expression of CYP1A and CYP3A protein levels, with females expressing higher levels than males. Treatment of male Atlantic cod with 17 beta-estradiol resulted in increased CYP1A and CYP3A protein levels. Exposure to alkylphenols resulted in a dose-dependent increase of CYP1A and CYP3A protein expression in males, but not in females. However, this increase of CYP1A protein levels was not reflected on the CYP1A-mediated ethoxyresorufin-O-deethylase (EROD) activity, implying that alkylphenols inhibited the CYP1A enzyme activity in vivo. In vitro inhibition studies with pooled liver microsomes from Atlantic cod confirmed that the alkylphenols mixture efficiently inhibited the CYP1A activity (IC50=10 microM), although the inhibitory effect of each individual alkylphenol varied. The IC50 values for each individual alkylphenol on the CYP1A activity were, in a descending order of magnitude: [C7>C6>C5>>C4], ranging from 12 to 300 microM with decreased length of the 4-alkyl chain. The effect of alkylphenols on the CYP3A activity in vitro in liver microsomes also was investigated, using the fluorescent 7-benzyloxy-4-[trifluoromethyl]-coumarin (BFC) as a diagnostic CYP3A substrate. The alkylphenol mixture inhibited CYP3A activity with IC50 value at 100 microM. The IC50 values for each individual alkylphenol on CYP3A activity were, in a descending order of magnitude: [C5>C6>C7>C4], ranging between 60 and 250 microM. Taken together, our results show that the alkylphenol mixture and 17 beta-estradiol resulted in elevated hepatic CYP1A and CYP3A expression in male Atlantic cod. The alkylphenol mixture strongly inhibited CYP1A activities, whereas it weakly inhibited CYP3A activity in Atlantic cod liver microsomes in vitro. In addition, 17 beta-estradiol was a weak inhibitor of CYP3A activity (IC50=75 microM) and did not notably inhibit the CYP1A activity in vitro.
Notes:
 
PMID 
Tove Hegelund, Karin Ottosson, Madeleine Rådinger, Peter Tomberg, Malin C Celander (2004)  Effects of the antifungal imidazole ketoconazole on CYP1A and CYP3A in rainbow trout and killifish.   Environ Toxicol Chem 23: 5. 1326-1334 May  
Abstract: The use of N-substituted imidazoles is widespread, and imidazole and triazole fungicides have been detected in the aquatic environment and shown to bioaccumulate in fish. We have investigated effects of the model imidazole, ketoconazole, on drug-metabolizing cytochrome P450 (CYP) forms. We focused on cytochrome P4501A (CYP1A) and cytochrome P4503A (CYP3A) expression and activities in juvenile rainbow trout and in adult killifish. The CYP1A expression (mRNA, protein) and activity was induced in rainbow trout, whereas in killifish no effect of ketoconazole on CYP1A protein expression was observed. A biphasic dose-response relationship was observed between ketoconazole exposure and hepatic CYP1A-mediated ethoxyresorufin O-deethylase (EROD) activity in rainbow trout in vitro and in vivo, implying that higher doses of ketoconazole inhibit CYP1A activities. Slight induction of CYP3A protein levels was observed in rainbow trout exposed in vivo to ketoconazole. However, the CYP3A-mediated benzyloxy-4-[trifluoromethyl]-coumarin (BFC) O-debenzyloxylase activity was reduced in rainbow trout and killifish treated with ketoconazole. In vitro inhibition studies confirmed that ketoconazole was a potent inhibitor of both CYP3A and CYP1A enzyme activities in these species. This study showed that ketoconazole induced CYP1A and CYP3A expression in rainbow trout. However, the most pronounced effect of ketoconazole was a 60 to 90% decrease in CYP3A catalytic activities in rainbow trout and in killifish.
Notes:
2003
 
DOI   
PMID 
Andrew G McArthur, Tove Hegelund, Rachel L Cox, John J Stegeman, Mette Liljenberg, Urban Olsson, Per Sundberg, Malin C Celander (2003)  Phylogenetic analysis of the cytochrome P450 3 (CYP3) gene family.   J Mol Evol 57: 2. 200-211 Aug  
Abstract: Cytochrome P450 genes (CYP) constitute a superfamily with members known from the Bacteria, Archaea, and Eukarya. The CYP3 gene family includes the CYP3A and CYP3B subfamilies. Members of the CYP3A subfamily represent the dominant CYP forms expressed in the digestive and respiratory tracts of vertebrates. The CYP3A enzymes metabolize a wide variety of chemically diverse lipophilic organic compounds. To understand vertebrate CYP3 diversity better, we determined the killifish (Fundulus heteroclitus) CYP3A30 and CYP3A56 and the ball python (Python regius) CYP3A42 sequences. We performed phylogenetic analyses of 45 vertebrate CYP3 amino acid sequences using a Bayesian approach. Our analyses indicate that teleost, diapsid, and mammalian CYP3A genes have undergone independent diversification and that the ancestral vertebrate genome contained a single CYP3A gene. Most CYP3A diversity is the product of recent gene duplication events. There is strong support for placement of the guinea pig CYP3A genes within the rodent CYP3A diversification. The rat, mouse, and hamster CYP3A genes are mixed among several rodent CYP3A subclades, indicative of a complex history involving speciation and gene duplication.
Notes:
 
PMID 
Tove Hegelund, Malin C Celander (2003)  Hepatic versus extrahepatic expression of CYP3A30 and CYP3A56 in adult killifish (Fundulus heteroclitus).   Aquat Toxicol 64: 3. 277-291 Aug  
Abstract: Members of the CYP3A subfamily represent the largest portion of CYP proteins in liver and intestine in vertebrates. The CYP3A enzymes are involved in metabolic clearance of numerous chemically diverse compounds including toxins, carcinogens, pesticides, therapeutic drugs, dietary products and hormones. Most studies of CYP3A have been performed in mammals, whereas relatively little is known of that in non-mammalian species. We have investigated CYP3A expression in the marine and estuarine killifish (Fundulus heteroclitus). We isolated a novel CYP3A cDNA sequence, denoted CYP3A56, from killifish intestine. The CYP3A56 sequence shared 98% nucleotide and amino acid sequence identity with CYP3A30, previously isolated from killifish liver. We hypothesize that a recent gene duplication event has occurred within the killifish CYP3A subfamily. The CYP3A30 and CYP3A56 genes were co-expressed in liver, intestine, gill, kidney, spleen, brain and ovary in several individuals. The hepatic versus extrahepatic CYP3A30/56 mRNA expression was analyzed in adult killifish of both sexes, using conventional as well as real-time semi-quantitative RT-PCR. Tissues expressing CYP3A30/56 mRNA were in a descending order of magnitude: liver>intestine>>gill>spleen>kidney>brain. Furthermore, inter-individual differences (up to 18%) in CYP3A30/56 mRNA expression were evident in killifish, in particular in extrahepatic organs. For comparison, CYP3A protein expression levels were determined using polyclonal antibodies (PAb) against rainbow trout (Oncorhynchus mykiss) CYP3A. Sexually dimorphic expression of hepatic and extrahepatic CYP3A30/56 mRNA and CYP3A proteins was observed in killifish. For example, males displayed up to 2.5-fold higher CYP3A protein expression compared with females. In agreement with CYP3A30/56 mRNA analysis, highest CYP3A protein levels were observed in liver and intestine. Low CYP3A protein levels were seen in gill, kidney and spleen. Cellular localization of CYP3A protein expression was investigated using immunohistochemistry analysis and PAb against rainbow trout CYP3A. Strong CYP3A protein staining was seen in intestinal enterocytes, in gill filaments and in renal tubular epithelial cells. Moderate CYP3A staining was seen in hepatocytes in the liver, whereas mild staining was observed in hematopoietic cells in the spleen and in follicles in the ovary. Thus, similar to mammals, CYP3A expression in fish is prominent in the digestive- and respiratory tracts and may be important for the first-pass metabolism of xenobiotics. Moreover, CYP3A expression also is evident in brain and ovary in killifish, which suggests a role for CYP3A enzymes in biotransformation of xenobiotics and fine-tuning levels of steroid hormones in situ in extrahepatic organs.
Notes:
2000
 
PMID 
Celander, Moore, Stegeman (2000)  Cellular localization of CYP3A proteins in various tissues from pilot whale (Globicephala melas).   Environ Toxicol Pharmacol 8: 4. 245-253 Jun  
Abstract: The in situ expression of cytochrome P450 3A- (CYP3A) like proteins in hepatic and extrahepatic tissues from a marine mammal, pilot whale (Globicephala melas), was investigated. Polyclonal antibodies (PAb) raised against either rat CYP3A1 or trout CYP3A27 both recognized a microsomal protein band in liver, lung, kidney and heart. The protein band observed in liver and lung had slightly lower molecular weight than that observed in kidney and heart, suggesting the existence of two CYP3A forms in pilot whale. Immunohistochemical analyses showed strong CYP3A-staining in hepatocytes, bile duct epithelial cells, bronchial epithelial cells, in primordial- and primary follicles and their surrounding zona glomerulosa. Moderate to strong CYP3A staining was seen in smooth muscle-like cells of large arteries and arterioles in all organs examined. Mild to moderate staining was evident in alveolar epithelial cells and in kidney tubular epithelial cells. Weak staining was seen in glomerular epithelial cells and in seminiferous tubular epithelial cells.
Notes:
Powered by publicationslist.org.