hosted by
publicationslist.org
    

Mikael Altun


mikael.altun@ki.se

Journal articles

2012
Joanna F McGouran, Holger B Kramer, Mukram M Mackeen, Katalin di Gleria, Mikael Altun, Benedikt M Kessler (2012)  Fluorescence-based active site probes for profiling deubiquitinating enzymes.   Org Biomol Chem 10: 17. 3379-3383 May  
Abstract: Novel ubiquitin-based active site probes including a fluorescent tag have been developed and evaluated. A new, functionalizable electrophilic trap is utilized allowing for late stage diversification of the probe. Attachment of fluorescent dyes allowed direct detection of endogenous deubiquitinating enzyme (DUB) activities in cell extracts by in-gel fluorescence imaging.
Notes:
Mikael Altun, Bin Zhao, Kelly Velasco, Haiyin Liu, Gerco Hassink, Julia Paschke, Teresa Pereira, Kristina Lindsten (2012)  Ubiquitin-specific protease 19 (USP19) regulates hypoxia-inducible factor (HIF-1α) during hypoxia.   J Biol Chem 287: 3. 1962-1969 Jan  
Abstract: A proper cellular adaptation to low oxygen levels is essential for processes such as development, growth, metabolism, and angiogenesis. The response to decrease in oxygen supply, referred to as hypoxia, is also involved in numerous human diseases including cancer, inflammatory conditions, and vascular disease. The hypoxia-inducible factor 1-α (HIF-1α), a key player in the hypoxic response, is kept under stringent regulation. At normoxia, the levels are kept low as a consequence of the efficient degradation by the ubiquitin-proteasome system, and in response to hypoxia, the degradation is blocked and the accumulating HIF-1α promotes a transcriptional response essential for proper adaptation and survival. Here we show that the ubiquitin-specific protease-19 (USP19) interacts with components of the hypoxia pathway including HIF-1α and rescues it from degradation independent of its catalytic activity. In the absence of USP19, cells fail to mount an appropriate response to hypoxia, indicating an important role for this enzyme in normal or pathological conditions.
Notes:
Holger B Kramer, Benjamin Nicholson, Benedikt M Kessler, Mikael Altun (2012)  Detection of ubiquitin-proteasome enzymatic activities in cells: Application of activity-based probes to inhibitor development.   Biochim Biophys Acta 1823: 11. 2029-2037 Nov  
Abstract: Background: Synthetic probes that mimic natural substrates can enable the detection of enzymatic activities in a cellular environment. One area where such activity-based probes have been applied is the ubiquitin-proteasome pathway, which is emerging as an important therapeutic target. A family of reagents has been developed that specifically label deubiquitylating enzymes (DUBs) and facilitate characterization of their inhibitors. Scope of review: Here we focus on the application of probes for intracellular DUBs, a group of specific proteases involved in the ubiquitin proteasome system. In particular, the functional characterization of the active subunits of this family of proteases that specifically recognize ubiquitin and ubiquitin-like proteins will be discussed. In addition we present the potential and design of activity-based probes targeting kinases and phosphatases to study phosphorylation. Major conclusions: Synthetic molecular probes have increased our understanding of the functional role of DUBs in living cells. In addition to the detection of enzymatic activities of known members, activity-based probes have contributed to a number of functional assignments of previously uncharacterized enzymes. This method enables cellular validation of the specificity of small molecule DUB inhibitors. General significance: Molecular probes combined with mass spectrometry-based proteomics and cellular assays represent a powerful approach for discovery and functional validation, a concept that can be expanded to other enzyme classes. This addresses a need for more informative cell-based assays that are required to accelerate the drug development process. This article is part of a Special Issue entitled: Ubiquitin Drug Discovery and Diagnostics.
Notes:
Dharminder Chauhan, Ze Tian, Benjamin Nicholson, K G Suresh Kumar, Bin Zhou, Ruben Carrasco, Jeffrey L McDermott, Craig A Leach, Mariaterresa Fulcinniti, Matthew P Kodrasov, Joseph Weinstock, William D Kingsbury, Teru Hideshima, Parantu K Shah, Stephane Minvielle, Mikael Altun, Benedikt M Kessler, Robert Orlowski, Paul Richardson, Nikhil Munshi, Kenneth C Anderson (2012)  A small molecule inhibitor of ubiquitin-specific protease-7 induces apoptosis in multiple myeloma cells and overcomes bortezomib resistance.   Cancer Cell 22: 3. 345-358 Sep  
Abstract: Bortezomib therapy has proven successful for the treatment of relapsed/refractory, relapsed, and newly diagnosed multiple myeloma (MM); however, dose-limiting toxicities and the development of resistance limit its long-term utility. Here, we show that P5091 is an inhibitor of deubiquitylating enzyme USP7, which induces apoptosis in MM cells resistant to conventional and bortezomib therapies. Biochemical and genetic studies show that blockade of HDM2 and p21 abrogates P5091-induced cytotoxicity. In animal tumor model studies, P5091 is well tolerated, inhibits tumor growth, and prolongs survival. Combining P5091 with lenalidomide, HDAC inhibitor SAHA, or dexamethasone triggers synergistic anti-MM activity. Our preclinical study therefore supports clinical evaluation of USP7 inhibitor, alone or in combination, as a potential MM therapy.
Notes:
2011
Dante Rotili, Mikael Altun, Refaat B Hamed, Christoph Loenarz, Armin Thalhammer, Richard J Hopkinson, Ya-Min Tian, Peter J Ratcliffe, Antonello Mai, Benedikt M Kessler, Christopher J Schofield (2011)  Photoactivable peptides for identifying enzyme-substrate and protein-protein interactions.   Chem Commun (Camb) 47: 5. 1488-1490 Feb  
Abstract: Photoactivated cross-linking of peptides to proteins is a useful strategy for identifying enzyme-substrate and protein-protein interactions in cell lysates as demonstrated by studies on the human hypoxia inducible factor system.
Notes:
Mikael Altun, Holger B Kramer, Lianne I Willems, Jeffrey L McDermott, Craig A Leach, Seth J Goldenberg, K G Suresh Kumar, Rebecca Konietzny, Roman Fischer, Edward Kogan, Mukram M Mackeen, Joanna McGouran, Svetlana V Khoronenkova, Jason L Parsons, Grigory L Dianov, Benjamin Nicholson, Benedikt M Kessler (2011)  Activity-based chemical proteomics accelerates inhibitor development for deubiquitylating enzymes.   Chem Biol 18: 11. 1401-1412 Nov  
Abstract: Converting lead compounds into drug candidates is a crucial step in drug development, requiring early assessment of potency, selectivity, and off-target effects. We have utilized activity-based chemical proteomics to determine the potency and selectivity of deubiquitylating enzyme (DUB) inhibitors in cell culture models. Importantly, we characterized the small molecule PR-619 as a broad-range DUB inhibitor, and P22077 as a USP7 inhibitor with potential for further development as a chemotherapeutic agent in cancer therapy. A striking accumulation of polyubiquitylated proteins was observed after both selective and general inhibition of cellular DUB activity without direct impairment of proteasomal proteolysis. The repertoire of ubiquitylated substrates was analyzed by tandem mass spectrometry, identifying distinct subsets for general or specific inhibition of DUBs. This enabled identification of previously unknown functional links between USP7 and enzymes involved in DNA repair.
Notes:
Dante Rotili, Mikael Altun, Akane Kawamura, Alexander Wolf, Roman Fischer, Ivanhoe K H Leung, Mukram M Mackeen, Ya-Min Tian, Peter J Ratcliffe, Antonello Mai, Benedikt M Kessler, Christopher J Schofield (2011)  A photoreactive small-molecule probe for 2-oxoglutarate oxygenases.   Chem Biol 18: 5. 642-654 May  
Abstract: 2-oxoglutarate (2-OG)-dependent oxygenases have diverse roles in human biology. The inhibition of several 2-OG oxygenases is being targeted for therapeutic intervention, including for cancer, anemia, and ischemic diseases. We report a small-molecule probe for 2-OG oxygenases that employs a hydroxyquinoline template coupled to a photoactivable crosslinking group and an affinity-purification tag. Following studies with recombinant proteins, the probe was shown to crosslink to 2-OG oxygenases in human crude cell extracts, including to proteins at endogenous levels. This approach is useful for inhibitor profiling, as demonstrated by crosslinking to the histone demethylase FBXL11 (KDM2A) in HEK293T nuclear extracts. The results also suggest that small-molecule probes may be suitable for substrate identification studies.
Notes:
Nicola Ternette, Cynthia Wright, Holger B Kramer, Mikael Altun, Benedikt M Kessler (2011)  Label-free quantitative proteomics reveals regulation of interferon-induced protein with tetratricopeptide repeats 3 (IFIT3) and 5'-3'-exoribonuclease 2 (XRN2) during respiratory syncytial virus infection.   Virol J 8: 1. 09  
Abstract: ABSTRACT: A large quantitative study was carried out to compare the proteome of respiratory syncytial virus (RSV) infected versus uninfected cells in order to determine novel pathways regulated during viral infection. RSV infected and mock-infected HEp2 cells were lysed and proteins separated by preparative isoelectric focussing using offgel fractionation. Following tryptic digestion, purified peptides were characterized using label-free quantitative expression profiling by nano-ultra performance liquid chromatography coupled to electrospray ionisation mass spectrometry with collision energy ramping for all-ion fragmentation (UPLC-MSE). A total of 1352 unique cellular proteins were identified and their abundance compared between infected and non-infected cells. Ingenuity pathway analysis revealed regulation of several central cellular metabolic and signalling pathways during infection. Selected proteins that were found regulated in RSV infected cells were screened by quantitative real-time PCR for their regulation on the transcriptional level. Synthesis of interferon-induced protein with tetratricopeptide repeats 3 (IFIT3) and 5'-3'-exoribonuclease 2 (XRN2) mRNAs were found to be highly induced upon RSV infection in a time dependent manner. Accordingly, IFIT3 protein levels accumulated during the time course of infection. In contrast, little variation was observed in XRN2 protein levels, but different forms were present in infected versus non-infected cells. This suggests a role of these proteins in viral infection, and analysis of their function will shed further light on mechanisms of RNA virus replication and the host cell defence machinery.
Notes:
2010
Mikael Altun, Henrike C Besche, Herman S Overkleeft, Rosanna Piccirillo, Mariola J Edelmann, Benedikt M Kessler, Alfred L Goldberg, Brun Ulfhake (2010)  Muscle wasting in aged, sarcopenic rats is associated with enhanced activity of the ubiquitin proteasome pathway.   J Biol Chem 285: 51. 39597-39608 Dec  
Abstract: Among the hallmarks of aged organisms are an accumulation of misfolded proteins and a reduction in skeletal muscle mass ("sarcopenia"). We have examined the effects of aging and dietary restriction (which retards many age-related changes) on components of the ubiquitin proteasome system (UPS) in muscle. The hindlimb muscles of aged (30 months old) rats showed a marked loss of muscle mass and contained 2-3-fold higher levels of 26S proteasomes than those of adult (4 months old) controls. 26S proteasomes purified from muscles of aged and adult rats showed a similar capacity to degrade peptides, proteins, and an ubiquitylated substrate, but differed in levels of proteasome-associated proteins (e.g. the ubiquitin ligase E6AP and deubiquitylating enzyme USP14). Also, the activities of many other deubiquitylating enzymes were greatly enhanced in the aged muscles. Nevertheless, their content of polyubiquitylated proteins was higher than in adult animals. The aged muscles contained higher levels of the ubiquitin ligase CHIP, involved in eliminating misfolded proteins, and MuRF1, which ubiquitylates myofibrillar proteins. These muscles differed from ones rapidly atrophying due to disease, fasting, or disuse in that Atrogin-1/MAFbx expression was low and not inducible by glucocorticoids. Thus, the muscles of aged rats showed many adaptations indicating enhanced proteolysis by the UPS, which may enhance their capacity to eliminate misfolded proteins and seems to contribute to the sarcopenia. Accordingly, dietary restriction decreased or prevented the aging-associated increases in proteasomes and other UPS components and reduced muscle wasting.
Notes:
Mariola J Edelmann, Holger B Kramer, Mikael Altun, Benedikt M Kessler (2010)  Post-translational modification of the deubiquitinating enzyme otubain 1 modulates active RhoA levels and susceptibility to Yersinia invasion.   FEBS J 277: 11. 2515-2530 Jun  
Abstract: Microbial pathogens exploit the ubiquitin system to facilitate infection and manipulate the immune responses of the host. In this study, susceptibility to Yersinia enterocolitica and Yersinia pseudotuberculosis invasion was found to be increased upon overexpression of the deubiquitinating enzyme otubain 1 (OTUB1), a member of the ovarian tumour domain-containing protein family. Conversely, OTUB1 knockdown interfered with Yersinia invasion in HEK293T cells as well as in primary monocytes. This effect was attributed to a modulation of bacterial uptake. We demonstrate that the Yersinia-encoded virulence factor YpkA (YopO) kinase interacts with a post-translationally modified form of OTUB1 that contains multiple phosphorylation sites. OTUB1, YpkA and the small GTPase ras homologue gene family member A (RhoA) were found to be part of the same protein complex, suggesting that RhoA levels are modulated by OTUB1. Our results show that OTUB1 is able to stabilize active RhoA prior to invasion, which is concomitant with an increase in bacterial uptake. This effect is modulated by post-translational modifications of OTUB1, suggesting a new entry point for manipulating Yersinia interactions with the host.
Notes:
2009
Gerco C Hassink, Bin Zhao, Ramakrishna Sompallae, Mikael Altun, Stefano Gastaldello, Nikolay V Zinin, Maria G Masucci, Kristina Lindsten (2009)  The ER-resident ubiquitin-specific protease 19 participates in the UPR and rescues ERAD substrates.   EMBO Rep 10: 7. 755-761 Jul  
Abstract: Ubiquitination regulates membrane events such as endocytosis, membrane trafficking and endoplasmic-reticulum-associated degradation (ERAD). Although the involvement of membrane-associated ubiquitin-conjugating enzymes and ligases in these processes is well documented, their regulation by ubiquitin deconjugases is less well understood. By screening a database of human deubiquitinating enzymes (DUBs), we have identified a putative transmembrane domain in ubiquitin-specific protease (USP)19. We show that USP19 is a tail-anchored ubiquitin-specific protease localized to the ER and is a target of the unfolded protein response. USP19 rescues the ERAD substrates cystic fibrosis transmembrane conductance regulator (CFTR)DeltaF508 and T-cell receptor-alpha (TCRalpha) from proteasomal degradation. A catalytically inactive USP19 was still able to partly rescue TCRalpha but not CFTRDeltaF508, suggesting that USP19 might also exert a non-catalytic function on specific ERAD substrates. Thus, USP19 is the first example of a membrane-anchored DUB involved in the turnover of ERAD substrates.
Notes:
Mariola J Edelmann, Alexander Iphöfer, Masato Akutsu, Mikael Altun, Katalin di Gleria, Holger B Kramer, Edda Fiebiger, Sirano Dhe-Paganon, Benedikt M Kessler (2009)  Structural basis and specificity of human otubain 1-mediated deubiquitination.   Biochem J 418: 2. 379-390 Mar  
Abstract: OTUB (otubain) 1 is a human deubiquitinating enzyme that is implicated in mediating lymphocyte antigen responsiveness, but whose molecular function is generally not well defined. A structural analysis of OTUB1 shows differences in accessibility to the active site and in surface properties of the substrate-binding regions when compared with its close homologue, OTUB2, suggesting variations in regulatory mechanisms and substrate specificity. Biochemical analysis reveals that OTUB1 has a preference for cleaving Lys(48)-linked polyubiquitin chains over Lys(63)-linked polyubiquitin chains, and it is capable of cleaving NEDD8 (neural-precursor-cell-expressed developmentally down-regulated 8), but not SUMO (small ubiquitin-related modifier) 1/2/3 and ISG15 (interferon-stimulated gene 15) conjugates. A functional comparison of OTUB1 and OTUB2 indicated a differential reactivity towards ubiquitin-based active-site probes carrying a vinyl methyl ester, a 2-chloroethyl or a 2-bromoethyl group at the C-terminus. Mutational analysis suggested that a narrow P1' site, as observed in OTUB1, correlates with its ability to preferentially cleave Lys(48)-linked ubiquitin chains. Analysis of cellular interaction partners of OTUB1 by co-immunoprecipitation and MS/MS (tandem mass spectrometry) experiments demonstrated that FUS [fusion involved in t(12;6) in malignant liposarcoma; also known as TLS (translocation in liposarcoma) or CHOP (CCAAT/enhancer-binding protein homologous protein)] and RACK1 [receptor for activated kinase 1; also known as GNB2L1 (guanine-nucleotide-binding protein beta polypeptide 2-like 1)] are part of OTUB1-containing complexes, pointing towards a molecular function of this deubiquitinating enzyme in RNA processing and cell adhesion/morphology.
Notes:
2007
Altun, Edström, Spooner, Flores-Moralez, Bergman, Tollet-Egnell, Norstedt, Kessler, Ulfhake (2007)  Iron load and redox stress in skeletal muscle of aged rats.   Muscle Nerve May  
Abstract: Loss of skeletal muscle mass (sarcopenia) is a major contributor to disability in old age. We used two-dimensional gel electrophoresis and mass spectrometry to screen for changes in proteins, and cDNA profiling to assess transcriptional regulations in the gastrocnemius muscle of adult (4 months) and aged (30 months) male Sprague-Dawley rats. Thirty-five proteins were differentially expressed in aged muscle. Proteins and mRNA transcripts involved in redox homeostasis and iron load were increased, representing novel components that were previously not associated with sarcopenia. Tissue iron levels were elevated in senescence, paralleling an increase in transferrin. Proteins involved in redox homeostasis showed a complex pattern of changes with increased SOD1 and decreased SOD2. These results suggest that an elevated iron load is a significant component of sarcopenia with the potential to be exploited clinically, and that mitochondria of aged striated muscle may be more vulnerable to radicals produced in cell respiration. Muscle Nerve, 2007.
Notes:
Mikael Altun, Esbjörn Bergman, Erik Edström, Hans Johnson, Brun Ulfhake (2007)  Behavioral impairments of the aging rat.   Physiol Behav 92: 5. 911-923 Dec  
Abstract: Several disturbances occurring during aging of humans and rodents alike stem from changes in sensory and motor functions. Using a battery of behavioral tests we have studied alterations in performance with advancing age in female and male rats of some frequently used strains. In parallel, we collected survival and body weight data. The median survival age was similar for female and male Sprague-Dawley rats, inbred female Lewis and outbred male Wistar rats (29-30 months). In contrast, male Fisher 344 had a significantly shorter median life span. During aging there is a gradual decline in locomotor activity and explorative behavior while disturbances of coordination and balance first became evident at more advanced age. In old age, also weight carrying capacity, limb movement and temperature threshold were impaired. While whole body weight continues to increase over the better part of a rats' life span, the behavioral changes in old age associated with a decrease in both total body weight and muscle mass. Dietary restriction increases median life span expectancy; retards the pace of behavioral aging and impedes sarcopenia. Housing in enriched environment did not improve the scoring in the behavioral tests but tended to increase median life span. Finally, there was an agreement between behavioral data collected from longitudinal age-cohorts and those obtained from multiple age-cohorts.
Notes:
Edström, Altun, Bergman, Johnson, Kullberg, Ramírez-León, Ulfhake (2007)  Factors contributing to neuromuscular impairment and sarcopenia during aging.   Physiol Behav May  
Abstract: Motor disturbances and wasting of skeletal muscles (sarcopenia) causes significant impairment of daily life activities and is a major underlying cause for hospitalization in senescence. Herein we review data and present new findings on aging-specific changes in motoneurons, skeletal muscle and the interplay between motoneurons and target muscle fibers. Although many of the changes occurring during aging may be specific to motoneurons and myofibers, respectively, evidence indicates that myofiber regeneration in sarcopenic muscle is halted at the point where reinnervation is critical for the final differentiation into mature myofibers. Combined, evidence suggests that sarcopenia to a significant extent depend on a decreased capacity among motoneurons to innervate regenerating fibers. There are also conspicuous changes in the expression of several cytokines known to play important roles in establishing and maintaining neuromuscular connectivity during development and adulthood. We also present data showing the usefulness of rodent models in studies of successful and unsuccessful patterns of aging. Finally, we show that not only dietary restriction (DR) but also activity and social environment may modulate the pattern of aging.
Notes:
2006
Erik Edström, Mikael Altun, Martin Hägglund, Brun Ulfhake (2006)  Atrogin-1/MAFbx and MuRF1 are downregulated in aging-related loss of skeletal muscle.   J Gerontol A Biol Sci Med Sci 61: 7. 663-674 Jul  
Abstract: Muscle atrophy in many conditions share a common mechanism in the upregulation of the muscle-specific ubiquitin E3-ligases atrophy gene-1/muscle atrophy F-box (Atrogin-1/MAFbx) and muscle ring-finger protein 1 (MuRF1). E3-ligases are part of the ubiquitin proteasome pathway utilized for protein degradation during muscle atrophy. In this study, we provide new data to show that this is not the case in age-related loss of muscle mass (sarcopenia). On the contrary, Atrogin-1/MAFbx and MuRF1 are downregulated in skeletal muscle of 30-month-old rats, and our results suggest that AKT (protein kinase B)-mediated inactivation of forkhead box O 4 (FOXO4) underlies this suppression. The data also suggest that activation of AKT is mediated through the insulin-like growth factor-1 (IGF-1) receptor, signaling via ShcA-Grb2-GAB. Using dietary restriction, we find that it impedes sarcopenia as well as the effects of aging on AKT phosphorylation, FOXO4 phosphorylation, and Atrogin-1/MAFbx and MuRF1 transcript regulation. We conclude that sarcopenia is mechanistically different from acute atrophies induced by disuse, disease, and denervation.
Notes:
2005
Mikael Altun, Paul J Galardy, Reshma Shringarpure, Teru Hideshima, Richard LeBlanc, Kenneth C Anderson, Hidde L Ploegh, Benedikt M Kessler (2005)  Effects of PS-341 on the activity and composition of proteasomes in multiple myeloma cells.   Cancer Res 65: 17. 7896-7901 Sep  
Abstract: Multiple myeloma is a B-cell malignancy for which no curative therapies exist to date, despite enormous research efforts. The remarkable activity of the proteasome inhibitor bortezomib (PS-341, Velcade) observed in clinical trials of patients with relapsed refractory myeloma has led to investigations of the role of the ubiquitin-proteasome pathway in the pathogenesis of myeloma. Here we report a biochemical analysis of proteasome activity and composition in myeloma cells exposed to PS-341 in the presence or absence of cytokines present in the bone marrow milieu. We observed that the myeloma cell lines MM1.S, RPMI8226, and U266 contain active immunoproteasomes, the amount of which is enhanced by IFN-gamma and tumor necrosis factor-alpha. Using a radiolabeled active site-directed probe specific for proteasome catalytic subunits, we show that PS-341 targets the beta5 and beta1 subunits in a concentration-dependent manner. Furthermore, PS-341 also targeted the corresponding catalytic subunits of the immunoproteasome, beta5i and beta1i, respectively. These data suggest that PS-341 targets both normal and immunoproteasome species to a similar extent in myeloma cells.
Notes:
2003
Xiaogang Jiang, Erik Edstrom, Mikael Altun, Brun Ulfhake (2003)  Differential regulation of Shc adaptor proteins in skeletal muscle, spinal cord and forebrain of aged rats with sensorimotor impairment.   Aging Cell 2: 1. 47-57 Feb  
Abstract: The Shc family of proteins participates in mitogenic and survival signalling through binding to receptor tyrosine kinases. We report here on the expression of Shc in forebrain, spinal cord and hind limb muscles from 30-month-old rats with different degrees of sensorimotor impairment. ShcA (mRNA and protein) is up-regulated in skeletal muscles and spinal cord of aged rats, and this change relates to biological age, i.e. degree of behavioural incapacitation, rather than to chronological age. Western blot and RT-PCR revealed that the increase in ShcA selectively affected the p46 isoform in the spinal cord, whereas in muscle tissue a robust increase of p66(ShcA) was also evident. Furthermore, in parallel with the up-regulation of ShcA, an increase of p75(NTR) mRNA in the aged animals was observed. ShcB mRNA showed a tendency for down-regulation in both spinal cord and skeletal muscles, whereas the expression of ShcC was unaltered. Our data show that the regulation of Shc mRNAs in senescence is region as well as isoform specific. The regulatory changes may reflect changes in mitogenic/survival signalling induced by age-related cell and tissue damage. The coup-regulation of p66(ShcA) and p75(NTR) is interesting since both molecules have been associated with apoptosis.
Notes:
2001
M Altun, E Bergman, B Ulfhake (2001)  Retrograde labeling of primary sensory neurons with fluorescent latex microspheres: a useful tool for long term tagging of neurons.   J Neurosci Methods 108: 1. 19-24 Jul  
Abstract: In this study we have used fluorescent microspheres to retrogradely label primary sensory neurons in dorsal root ganglia (DRGs). Following injection into peripheral nerves, the animals were allowed to survive up to 480 days. Simple profile count indicates that there is a substantial retention of the labeling still after at least 480 days, i.e. about two-thirds of a rat's life span. Moreover, the appearance of the labeling remains quite distinct. Using established markers for axon damage of DRG neurons, we could detect a slight and transient effect of the peripheral nerve injection on the gene expression pattern. It is concluded that fluorescent microspheres represents an attractive means of tagging neurons in experiments covering long time periods.
Notes:
B M Kessler, D Tortorella, M Altun, A F Kisselev, E Fiebiger, B G Hekking, H L Ploegh, H S Overkleeft (2001)  Extended peptide-based inhibitors efficiently target the proteasome and reveal overlapping specificities of the catalytic beta-subunits.   Chem Biol 8: 9. 913-929 Sep  
Abstract: BACKGROUND: The 26S proteasome is responsible for most cytosolic proteolysis, and is an important protease in major histocompatibility complex class I-mediated antigen presentation. Constitutively expressed proteasomes from mammalian sources possess three distinct catalytically active species, beta1, beta2 and beta5, which are replaced in the gamma-interferon-inducible immunoproteasome by a different set of catalytic subunits, beta1i, beta2i and beta5i, respectively. Based on preferred cleavage of short fluorogenic peptide substrates, activities of the proteasome have been assigned to individual subunits and classified as 'chymotryptic-like' (beta5), 'tryptic-like' (beta2) and 'peptidyl-glutamyl peptide hydrolyzing' (beta1). Studies with protein substrates indicate a far more complicated, less strict cleavage preference. We reasoned that inhibitors of extended size would give insight into the extent of overlapping substrate specificity of the individual activities and subunits. RESULTS: A new class of proteasome inhibitors, considerably extended in comparison with the commonly used fluorescent substrates and peptide-based inhibitors, has been prepared. Application of the safety catch resin allowed the generation of the target compounds using a solid phase protocol. Evaluation of the new compounds revealed a set of highly potent proteasome inhibitors that target all individual active subunits with comparable affinity, unlike the other inhibitors described to date. Modification of the most active compound, adamantane-acetyl-(6-aminohexanoyl)(3)-(leucinyl)(3)-vinyl-(methyl)-sulfone (AdaAhx(3)L(3)VS), itself capable of proteasome inhibition in living cells, afforded a new set of radio- and affinity labels. CONCLUSIONS: N-terminal extension of peptide vinyl sulfones has a profound influence on both their efficiency and selectivity as proteasome inhibitors. Such extensions greatly enhance inhibition and largely obliterate selectivity towards the individual catalytic activities. We conclude that for the interaction with larger substrates, there appears to be less discrimination of different substrate sequences for the catalytic activities than is normally assumed based on the use of small peptide-based substrates and inhibitors. The compounds described here are readily accessible synthetically, and are more potent inhibitors in living cells than their shorter peptide vinyl sulfone counterparts.
Notes:
Powered by PublicationsList.org.