hosted by
publicationslist.org
    

Morten Lindow


morten.lindow@gmail.com

Journal articles

2012
Maarten F Corsten, Anna Papageorgiou, Wouter Verhesen, Paolo Carai, Morten Lindow, Susanna Obad, Georg Summer, Susan L M Coort, Mark Hazebroek, Rick van Leeuwen, Marion J J Gijbels, Erwin Wijnands, Erik A L Biessen, Menno P J De Winther, Frank R M Stassen, Peter Carmeliet, Sakari Kauppinen, Blanche Schroen, Stephane Heymans (2012)  MicroRNA Profiling Identifies MicroRNA-155 as an Adverse Mediator of Cardiac Injury and Dysfunction During Acute Viral Myocarditis.   Circ Res 111: 4. 415-425 Aug  
Abstract: Rationale: Viral myocarditis results from an adverse immune response to cardiotropic viruses, which causes irreversible myocyte destruction and heart failure in previously healthy people. The involvement of microRNAs and their usefulness as therapeutic targets in this process are unknown. Objective: To identify microRNAs involved in viral myocarditis pathogenesis and susceptibility. Methods and Results: Cardiac microRNAs were profiled in both human myocarditis and in Coxsackievirus B3-injected mice, comparing myocarditis-susceptible with nonsusceptible mouse strains longitudinally. MicroRNA responses diverged depending on the susceptibility to myocarditis after viral infection in mice. MicroRNA-155, -146b, and -21 were consistently and strongly upregulated during acute myocarditis in both humans and susceptible mice. We found that microRNA-155 expression during myocarditis was localized primarily in infiltrating macrophages and T lymphocytes. Inhibition of microRNA-155 by a systemically delivered LNA-anti-miR attenuated cardiac infiltration by monocyte-macrophages, decreased T lymphocyte activation, and reduced myocardial damage during acute myocarditis in mice. These changes were accompanied by the derepression of the direct microRNA-155 target PU.1 in cardiac inflammatory cells. Beyond the acute phase, microRNA-155 inhibition reduced mortality and improved cardiac function during 7 weeks of follow-up. Conclusions: Our data show that cardiac microRNA dysregulation is a characteristic of both human and mouse viral myocarditis. The inflammatory microRNA-155 is upregulated during acute myocarditis, contributes to the adverse inflammatory response to viral infection of the heart, and is a potential therapeutic target for viral myocarditis.
Notes:
Jan Stenvang, Andreas Petri, Morten Lindow, Susanna Obad, Sakari Kauppinen (2012)  Inhibition of microRNA function by antimiR oligonucleotides.   Silence 3: 1. 01  
Abstract: ABSTRACT: MicroRNAs (miRNAs) have emerged as important post-transcriptional regulators of gene expression in many developmental and cellular processes. Moreover, there is now ample evidence that perturbations in the levels of individual or entire families of miRNAs are strongly associated with the pathogenesis of a wide range of human diseases. Indeed, disease-associated miRNAs represent a new class of targets for the development of miRNA-based therapeutic modalities, which may yield patient benefits unobtainable by other therapeutic approaches. The recent explosion in miRNA research has accelerated the development of several computational and experimental approaches for probing miRNA functions in cell culture and in vivo. In this review, we focus on the use of antisense oligonucleotides (antimiRs) in miRNA inhibition for loss-of-function studies. We provide an overview of the currently employed antisense chemistries and their utility in designing antimiR oligonucleotides. Furthermore, we describe the most commonly used in vivo delivery strategies and discuss different approaches for assessment of miRNA inhibition and potential off-target effects. Finally, we summarize recent progress in antimiR mediated pharmacological inhibition of disease-associated miRNAs, which shows great promise in the development of novel miRNA-based therapeutics.
Notes:
2011
Morten Lindow (2011)  Prediction of targets for microRNAs.   Methods Mol Biol 703: 311-317  
Abstract: MicroRNAs (miRNAs) are small 20-22 nt long RNAs which function as post-transcriptional regulators altering the expression of genes either by blocking translation or by destabilizing mRNAs (for recent reviews see, e.g., Zhang et al. (J Cell Physiol, 210:279-289) and Engels and Hutvagner (Oncogene, 25:6163-6169)). A central problem in miRNA biology is to identify the mRNAs regulated by miRNAs - the miRNA targets. A large number (>10) of bioinformatics methods have been developed to address this question, but unfortunately the scarcity of experimentally validated targets makes it hard to objectively judge the performance of the methods (for an attempt see Sethupathy et al. (Nat Methods, 3:881-886). Nevertheless, here I will give some guidelines on how to use the existing tools to find miRNA targets.
Notes:
Mirco Castoldi, Maja Vujic Spasic, Sandro Altamura, Joacim Elmén, Morten Lindow, Judit Kiss, Jens Stolte, Richard Sparla, Lorenza A D'Alessandro, Ursula Klingmüller, Robert E Fleming, Thomas Longerich, Hermann J Gröne, Vladimir Benes, Sakari Kauppinen, Matthias W Hentze, Martina U Muckenthaler (2011)  The liver-specific microRNA miR-122 controls systemic iron homeostasis in mice.   J Clin Invest 121: 4. 1386-1396 Apr  
Abstract: Systemic iron homeostasis is mainly controlled by the liver through synthesis of the peptide hormone hepcidin (encoded by Hamp), the key regulator of duodenal iron absorption and macrophage iron release. Here we show that the liver-specific microRNA miR-122 is important for regulating Hamp mRNA expression and tissue iron levels. Efficient and specific depletion of miR-122 by injection of a locked-nucleic-acid-modified (LNA-modified) anti-miR into WT mice caused systemic iron deficiency, characterized by reduced plasma and liver iron levels, mildly impaired hematopoiesis, and increased extramedullary erythropoiesis in the spleen. Moreover, miR-122 inhibition increased the amount of mRNA transcribed by genes that control systemic iron levels, such as hemochromatosis (Hfe), hemojuvelin (Hjv), bone morphogenetic protein receptor type 1A (Bmpr1a), and Hamp. Importantly, miR-122 directly targeted the 3′ untranslated region of 2 mRNAs that encode activators of hepcidin expression, Hfe and Hjv. These data help to explain the increased Hamp mRNA levels and subsequent iron deficiency in mice with reduced miR-122 levels and establish a direct mechanistic link between miR-122 and the regulation of systemic iron metabolism.
Notes:
Susanna Obad, Camila O dos Santos, Andreas Petri, Markus Heidenblad, Oliver Broom, Cristian Ruse, Cexiong Fu, Morten Lindow, Jan Stenvang, Ellen Marie Straarup, Henrik Frydenlund Hansen, Troels Koch, Darryl Pappin, Gregory J Hannon, Sakari Kauppinen (2011)  Silencing of microRNA families by seed-targeting tiny LNAs.   Nat Genet 43: 4. 371-378 Apr  
Abstract: The challenge of understanding the widespread biological roles of animal microRNAs (miRNAs) has prompted the development of genetic and functional genomics technologies for miRNA loss-of-function studies. However, tools for exploring the functions of entire miRNA families are still limited. We developed a method that enables antagonism of miRNA function using seed-targeting 8-mer locked nucleic acid (LNA) oligonucleotides, termed tiny LNAs. Transfection of tiny LNAs into cells resulted in simultaneous inhibition of miRNAs within families sharing the same seed with concomitant upregulation of direct targets. In addition, systemically delivered, unconjugated tiny LNAs showed uptake in many normal tissues and in breast tumors in mice, coinciding with long-term miRNA silencing. Transcriptional and proteomic profiling suggested that tiny LNAs have negligible off-target effects, not significantly altering the output from mRNAs with perfect tiny LNA complementary sites. Considered together, these data support the utility of tiny LNAs in elucidating the functions of miRNA families in vivo.
Notes:
Francisco Esteban Nicolas, Helio Pais, Frank Schwach, Morten Lindow, Sakari Kauppinen, Vincent Moulton, Tamas Dalmay (2011)  mRNA expression profiling reveals conserved and non-conserved miR-140 targets.   RNA Biol 8: 4. 607-615 Jul  
Abstract: microRNAs are non-coding RNAs that regulate gene expression. A significant proportion of microRNAs is perfectly conserved across the vertebrate clade, including miR-140, which is specifically expressed in cartilage. Although it has been computationally predicted that a large majority of microRNA targets are conserved, experimental evidence for this hypothesis remains scarce. In this work we use mRNA expression profiles obtained after manipulation of miR-140 activity levels in human and chicken primary chondrocytes to explore the extent of miR-140 target conservation. Our data suggest that miR-140 has a large number of targets conserved between human and chicken and we validate one of these, BMP2. However, we also found a significant number of non-conserved targets in the two species. In addition, we found that a commercially available scrambled siRNA, which is regularly used as a negative control, regulate the accumulation of many genes.
Notes:
2010
Robert E Lanford, Elisabeth S Hildebrandt-Eriksen, Andreas Petri, Robert Persson, Morten Lindow, Martin E Munk, Sakari Kauppinen, Henrik Ørum (2010)  Therapeutic silencing of microRNA-122 in primates with chronic hepatitis C virus infection.   Science 327: 5962. 198-201 Jan  
Abstract: The liver-expressed microRNA-122 (miR-122) is essential for hepatitis C virus (HCV) RNA accumulation in cultured liver cells, but its potential as a target for antiviral intervention has not been assessed. We found that treatment of chronically infected chimpanzees with a locked nucleic acid (LNA)-modified oligonucleotide (SPC3649) complementary to miR-122 leads to long-lasting suppression of HCV viremia, with no evidence of viral resistance or side effects in the treated animals. Furthermore, transcriptome and histological analyses of liver biopsies demonstrated derepression of target mRNAs with miR-122 seed sites, down-regulation of interferon-regulated genes, and improvement of HCV-induced liver pathology. The prolonged virological response to SPC3649 treatment without HCV rebound holds promise of a new antiviral therapy with a high barrier to resistance.
Notes:
Anders Jacobsen, Anders Krogh, Sakari Kauppinen, Morten Lindow (2010)  miRMaid: a unified programming interface for microRNA data resources.   BMC Bioinformatics 11: 01  
Abstract: MicroRNAs (miRNAs) are endogenous small RNAs that play a key role in post-transcriptional regulation of gene expression in animals and plants. The number of known miRNAs has increased rapidly over the years. The current release (version 14.0) of miRBase, the central online repository for miRNA annotation, comprises over 10.000 miRNA precursors from 115 different species. Furthermore, a large number of decentralized online resources are now available, each contributing with important miRNA annotation and information.
Notes:
2009
Harukazu Suzuki, Alistair R R Forrest, Erik van Nimwegen, Carsten O Daub, Piotr J Balwierz, Katharine M Irvine, Timo Lassmann, Timothy Ravasi, Yuki Hasegawa, Michiel J L de Hoon, Shintaro Katayama, Kate Schroder, Piero Carninci, Yasuhiro Tomaru, Mutsumi Kanamori-Katayama, Atsutaka Kubosaki, Altuna Akalin, Yoshinari Ando, Erik Arner, Maki Asada, Hiroshi Asahara, Timothy Bailey, Vladimir B Bajic, Denis Bauer, Anthony G Beckhouse, Nicolas Bertin, Johan Björkegren, Frank Brombacher, Erika Bulger, Alistair M Chalk, Joe Chiba, Nicole Cloonan, Adam Dawe, Josee Dostie, Pär G Engström, Magbubah Essack, Geoffrey J Faulkner, J Lynn Fink, David Fredman, Ko Fujimori, Masaaki Furuno, Takashi Gojobori, Julian Gough, Sean M Grimmond, Mika Gustafsson, Megumi Hashimoto, Takehiro Hashimoto, Mariko Hatakeyama, Susanne Heinzel, Winston Hide, Oliver Hofmann, Michael Hörnquist, Lukasz Huminiecki, Kazuho Ikeo, Naoko Imamoto, Satoshi Inoue, Yusuke Inoue, Ryoko Ishihara, Takao Iwayanagi, Anders Jacobsen, Mandeep Kaur, Hideya Kawaji, Markus C Kerr, Ryuichiro Kimura, Syuhei Kimura, Yasumasa Kimura, Hiroaki Kitano, Hisashi Koga, Toshio Kojima, Shinji Kondo, Takeshi Konno, Anders Krogh, Adele Kruger, Ajit Kumar, Boris Lenhard, Andreas Lennartsson, Morten Lindow, Marina Lizio, Cameron Macpherson, Norihiro Maeda, Christopher A Maher, Monique Maqungo, Jessica Mar, Nicholas A Matigian, Hideo Matsuda, John S Mattick, Stuart Meier, Sei Miyamoto, Etsuko Miyamoto-Sato, Kazuhiko Nakabayashi, Yutaka Nakachi, Mika Nakano, Sanne Nygaard, Toshitsugu Okayama, Yasushi Okazaki, Haruka Okuda-Yabukami, Valerio Orlando, Jun Otomo, Mikhail Pachkov, Nikolai Petrovsky, Charles Plessy, John Quackenbush, Aleksandar Radovanovic, Michael Rehli, Rintaro Saito, Albin Sandelin, Sebastian Schmeier, Christian Schönbach, Ariel S Schwartz, Colin A Semple, Miho Sera, Jessica Severin, Katsuhiko Shirahige, Cas Simons, George St Laurent, Masanori Suzuki, Takahiro Suzuki, Matthew J Sweet, Ryan J Taft, Shizu Takeda, Yoichi Takenaka, Kai Tan, Martin S Taylor, Rohan D Teasdale, Jesper Tegnér, Sarah Teichmann, Eivind Valen, Claes Wahlestedt, Kazunori Waki, Andrew Waterhouse, Christine A Wells, Ole Winther, Linda Wu, Kazumi Yamaguchi, Hiroshi Yanagawa, Jun Yasuda, Mihaela Zavolan, David A Hume, Takahiro Arakawa, Shiro Fukuda, Kengo Imamura, Chikatoshi Kai, Ai Kaiho, Tsugumi Kawashima, Chika Kawazu, Yayoi Kitazume, Miki Kojima, Hisashi Miura, Kayoko Murakami, Mitsuyoshi Murata, Noriko Ninomiya, Hiromi Nishiyori, Shohei Noma, Chihiro Ogawa, Takuma Sano, Christophe Simon, Michihira Tagami, Yukari Takahashi, Jun Kawai, Yoshihide Hayashizaki (2009)  The transcriptional network that controls growth arrest and differentiation in a human myeloid leukemia cell line.   Nat Genet 41: 5. 553-562 May  
Abstract: Using deep sequencing (deepCAGE), the FANTOM4 study measured the genome-wide dynamics of transcription-start-site usage in the human monocytic cell line THP-1 throughout a time course of growth arrest and differentiation. Modeling the expression dynamics in terms of predicted cis-regulatory sites, we identified the key transcription regulators, their time-dependent activities and target genes. Systematic siRNA knockdown of 52 transcription factors confirmed the roles of individual factors in the regulatory network. Our results indicate that cellular states are constrained by complex networks involving both positive and negative regulatory interactions among substantial numbers of transcription factors and that no single transcription factor is both necessary and sufficient to drive the differentiation process.
Notes:
Sanne Nygaard, Anders Jacobsen, Morten Lindow, Jens Eriksen, Eva Balslev, Henrik Flyger, Niels Tolstrup, Søren Møller, Anders Krogh, Thomas Litman (2009)  Identification and analysis of miRNAs in human breast cancer and teratoma samples using deep sequencing.   BMC Med Genomics 2: 06  
Abstract: MiRNAs play important roles in cellular control and in various disease states such as cancers, where they may serve as markers or possibly even therapeutics. Identifying the whole repertoire of miRNAs and understanding their expression patterns is therefore an important goal.
Notes:
Powered by PublicationsList.org.