hosted by
publicationslist.org
    
nathalie spassky

nathalie.spassky@upmc.fr

Journal articles

2008
 
DOI   
PMID 
N Spassky, Y - G Han, A Aguilar, L Strehl, L Besse, C Laclef, M Romaguera Ros, J M Garcia-Verdugo, A Alvarez-Buylla (2008)  Primary cilia are required for cerebellar development and Shh-dependent expansion of progenitor pool.   Dev Biol 317: 1. 246-259 May  
Abstract: Cerebellar granule cell precursors (GCPs), which give rise to the most abundant neuronal type in the mammalian brain, arise from a restricted pool of primary progenitors in the rhombic lip (RL). Sonic hedgehog (Shh) secreted by developing Purkinje cells is essential for the expansion of GCPs and for cerebellar morphogenesis. Recent studies have shown that the primary cilium concentrates components of Shh signaling and that this structure is required for Shh signaling. GCPs have a primary cilium on their surface [Del Cerro, M.P., Snider, R.S. (1972). Studies on the developing cerebellum. II. The ultrastructure of the external granular layer. J Comp Neurol 144, 131-64.]. Here, we show that 1) this cilium can be conditionally ablated by crossing Kif3a(fl/-) mice with hGFAP-Cre mice, 2) removal of Kif3a from GCPs disrupts cerebellar development, and 3) these defects are due to a drastic reduction in Shh-dependent expansion of GCPs. A similar phenotype is observed when Smoothened (Smo), an essential transducer of Shh signaling, is removed from the same population of GCPs. Interestingly, Kif3a-Smo double conditional mutants show that Kif3a is epistatic to Smo. This work shows that Kif3a is essential for Shh-dependent expansion of cerebellar progenitors. Dysfunctional cilia are associated with diverse human disorders including Bardet-Biedl and Joubert syndromes. Cerebellar abnormalities observed in these patients could be explained by defects in Shh-induced GCP expansion.
Notes:
 
DOI   
PMID 
Young-Goo Han, Nathalie Spassky, Miriam Romaguera-Ros, Jose-Manuel Garcia-Verdugo, Andrea Aguilar, Sylvie Schneider-Maunoury, Arturo Alvarez-Buylla (2008)  Hedgehog signaling and primary cilia are required for the formation of adult neural stem cells.   Nat Neurosci 11: 3. 277-284 Mar  
Abstract: Neural stem cells that continue to produce neurons are retained in the adult hippocampal dentate gyrus. The mechanisms by which embryonic neural progenitors expand and transform into postnatal neural stem cells, an essential process for the continual production of neurons throughout life, remain unknown. We found that radial astrocytes, the postnatal progenitors in the dentate gyrus, failed to develop after embryonic ablation of ciliary genes or Smoothened (Smo), an essential component for Sonic hedgehog (Shh) signaling. Postnatal dentate neurogenesis failed in these mutant mice, and the dentate gyrus became severely hypotrophic. In contrast, expression of a constitutively active Smo (SmoM2-YFP) resulted in a marked expansion of the dentate gyrus. Double-mutant analyses suggested that both wild-type Smo and SmoM2-YFP function through the primary cilia. We conclude that Shh signaling, acting through the primary cilia, has a critical role in the expansion and establishment of postnatal hippocampal progenitors.
Notes:
 
DOI   
PMID 
Delphine Delaunay, Katharina Heydon, Ana Cumano, Markus H Schwab, Jean-Léon Thomas, Ueli Suter, Klaus-Armin Nave, Bernard Zalc, Nathalie Spassky (2008)  Early neuronal and glial fate restriction of embryonic neural stem cells.   J Neurosci 28: 10. 2551-2562 Mar  
Abstract: The question of how neurons and glial cells are generated during the development of the CNS has over time led to two alternative models: either neuroepithelial cells are capable of giving rise to neurons first and to glial cells at a later stage (switching model), or they are intrinsically committed to generate one or the other (segregating model). Using the developing diencephalon as a model and by selecting a subpopulation of ventricular cells, we analyzed both in vitro, using clonal analysis, and in vivo, using inducible Cre/loxP fate mapping, the fate of neuroepithelial and radial glial cells generated at different time points during embryonic development. We found that, during neurogenic periods [embryonic day 9.5 (E9.5) to 12.5], proteolipid protein (plp)-expressing cells were lineage-restricted neuronal precursors, but later in embryogenesis, during gliogenic periods (E13.5 to early postnatal), plp-expressing cells were lineage-restricted glial precursors. In addition, we show that glial cells forming at E13.5 arise from a new pool of neuroepithelial progenitors distinct from neuronal progenitors cells, which lends support to the segregating model.
Notes:
2006
 
DOI   
PMID 
Kazunobu Sawamoto, Hynek Wichterle, Oscar Gonzalez-Perez, Jeremy A Cholfin, Masayuki Yamada, Nathalie Spassky, Noel S Murcia, Jose Manuel Garcia-Verdugo, Oscar Marin, John L R Rubenstein, Marc Tessier-Lavigne, Hideyuki Okano, Arturo Alvarez-Buylla (2006)  New neurons follow the flow of cerebrospinal fluid in the adult brain.   Science 311: 5761. 629-632 Feb  
Abstract: In the adult brain, neuroblasts born in the subventricular zone migrate from the walls of the lateral ventricles to the olfactory bulb. How do these cells orient over such a long distance and through complex territories? Here we show that neuroblast migration parallels cerebrospinal fluid (CSF) flow. Beating of ependymal cilia is required for normal CSF flow, concentration gradient formation of CSF guidance molecules, and directional migration of neuroblasts. Results suggest that polarized epithelial cells contribute important vectorial information for guidance of young, migrating neurons.
Notes:
2005
 
DOI   
PMID 
Nathalie Spassky, Florian T Merkle, Nuria Flames, Anthony D Tramontin, José Manuel García-Verdugo, Arturo Alvarez-Buylla (2005)  Adult ependymal cells are postmitotic and are derived from radial glial cells during embryogenesis.   J Neurosci 25: 1. 10-18 Jan  
Abstract: Ependymal cells on the walls of brain ventricles play essential roles in the transport of CSF and in brain homeostasis. It has been suggested that ependymal cells also function as stem cells. However, the proliferative capacity of mature ependymal cells remains controversial, and the developmental origin of these cells is not known. Using confocal or electron microscopy (EM) of adult mice that received bromodeoxyuridine (BrdU) or [3H]thymidine for several weeks, we found no evidence that ependymal cells proliferate. In contrast, ependymal cells were labeled by BrdU administration during embryonic development. The majority of them are born between embryonic day 14 (E14) and E16. Interestingly, we found that the maturation of ependymal cells and the formation of cilia occur significantly later, during the first postnatal week. We analyzed the early postnatal ventricular zone at the EM and found a subpopulation of radial glia in various stages of transformation into ependymal cells. These cells often had deuterosomes. To directly test whether radial glia give rise to ependymal cells, we used a Cre-lox recombination strategy to genetically tag radial glia in the neonatal brain and follow their progeny. We found that some radial glia in the lateral ventricular wall transform to give rise to mature ependymal cells. This work identifies the time of birth and early stages in the maturation of ependymal cells and demonstrates that these cells are derived from radial glia. Our results indicate that ependymal cells are born in the embryonic and early postnatal brain and that they do not divide after differentiation. The postmitotic nature of ependymal cells strongly suggests that these cells do not function as neural stem cells in the adult.
Notes:
 
DOI   
PMID 
Barbara Le Bras, Elli Chatzopoulou, Katharina Heydon, Salvador Martínez, Katzuhiko Ikenaka, Laetitia Prestoz, Nathalie Spassky, Bernard Zalc, Jean-Léon Thomas (2005)  Oligodendrocyte development in the embryonic brain: the contribution of the plp lineage.   Int J Dev Biol 49: 2-3. 209-220  
Abstract: Oligodendrocytes are the myelin forming cells of the central nervous system. Over the last decade, their development in the embryonic brain and spinal cord has been documented following the discovery of early oligodendroglial markers. This review highlights the fundamental results obtained on the specification and migration of oligodendroglial cells and illustrates our advances in the knowledge of the cell lineage expressing plp (proteolipid protein), one of the early oligodendroglial genes.
Notes:
2003
 
DOI   
PMID 
Anna Ivanova, Eiko Nakahira, Tetsushi Kagawa, Akio Oba, Tamaki Wada, Hirohide Takebayashi, Nathalie Spassky, Joel Levine, Bernard Zalc, Kazuhiro Ikenaka (2003)  Evidence for a second wave of oligodendrogenesis in the postnatal cerebral cortex of the mouse.   J Neurosci Res 73: 5. 581-592 Sep  
Abstract: The existing view is that cortical oligodendrocytes (OLs) in rodents are born from the cortical subventricular zone (SVZ) after birth, but recent data suggest that many forebrain oligodendrocyte progenitor cells (OPCs) are specified much earlier (between E9.5 and E13.5 in the mouse) in the ventricular zone of the ventral forebrain under the control of sonic hedgehog (Shh) and migrate into the cortex afterward. We examined expression of specific early OL markers (PDGFRalpha, PLP/DM20, Olig2, and NG2) in the developing forebrain to clarify this issue. We propose that OPCs colonize the developing cortex in two temporally distinct waves. The gray matter is at least partially populated by a first wave of OPCs that arises in the medial ganglionic eminence and the entopeduncular area and spreads into the cortex via the developing cortical plate. The cerebral cortex benefits from the second wave of OPCs coming from residential SVZ. In the second wave, there might be two different types of precursor cells: PLP/DM20(+) cells populating only inner layers and PDGFRalpha(+) cells, which might eventually myelinate the outer regions as well.
Notes:
2002
 
DOI   
PMID 
Nathalie Spassky, Fernando de Castro, Barbara Le Bras, Katharina Heydon, Françoise Quéraud-LeSaux, Evelyne Bloch-Gallego, Alain Chédotal, Bernard Zalc, Jean-Léon Thomas (2002)  Directional guidance of oligodendroglial migration by class 3 semaphorins and netrin-1.   J Neurosci 22: 14. 5992-6004 Jul  
Abstract: Oligodendrocytes, the myelin-forming cells of the CNS, are generated from multiple foci distributed along the developing neural tube. Little is known about the endogenous guidance cues controlling the migration of oligodendrocyte precursor cells (OPCs) from their site of emergence toward their final destination, mainly the future white matter tracts. During embryonic development, the optic nerve is populated by OPCs originating in the diencephalon that migrate from the chiasm toward the retina. Here we show that OPCs migrating into the embryonic optic nerve express the semaphorin receptors neuropilin-1 and -2, as well as deleted in colorectal cancer (DCC) and, to a lesser extend unc5H1, two of the netrin-1 receptors. Using a functional migration assay, we provide evidence that Sema 3A and netrin-1 exert opposite chemotactic effects, repulsive or attractive, respectively, on embryonic OPCs. In addition, we show that Sema 3F has a dual effect, chemoattractive and mitogenic on embryonic OPCs. The localization of cells expressing Sema 3A, Sema 3F, and netrin-1 is consistent with a role for these ligands in the migration of OPCs in the embryonic optic nerve. Altogether, our results suggest that the migration of OPCs in the embryonic optic nerve is modulated by a balance of effects mediated by members of the semaphorin and netrin families.
Notes:
2001
 
PMID 
A S Lebre, L Jamot, J Takahashi, N Spassky, C Leprince, N Ravisé, C Zander, H Fujigasaki, P Kussel-Andermann, C Duyckaerts, J H Camonis, A Brice (2001)  Ataxin-7 interacts with a Cbl-associated protein that it recruits into neuronal intranuclear inclusions.   Hum Mol Genet 10: 11. 1201-1213 May  
Abstract: Spinocerebellar ataxia 7 (SCA7) is a neurodegenerative disease caused by expansion of a CAG repeat in the coding region of the SCA7 gene. The disease primarily affects the cerebellum and the retina, but also many other central nervous system (CNS) structures as the disease progresses. Ataxin-7, encoded by the SCA7 gene, is a protein of unknown function expressed in many tissues including the CNS. In normal brain, ataxin-7 is found in the cytoplasm and/or nucleus of neurons, but in SCA7 brain ataxin-7 accumulates in intranuclear inclusions. Ataxin-7 is expressed ubiquitously, but mutation leads to neuronal death in only certain areas of the brain. This selective pattern of degeneration might be explained by interaction with a partner that is specifically expressed in vulnerable cells. We used a two-hybrid approach to screen a human retina cDNA library for ataxin-7-binding proteins, and isolated R85, a splice variant of Cbl-associated protein (CAP). R85 and CAP are generated by alternative splicing of the gene SH3P12 which we localized on chromosome 10q23-q24. The interaction between ataxin-7 and the SH3P12 gene products (SH3P12GPs) was confirmed by pull-down and co-immunoprecipitation. SH3P12GPs are expressed in Purkinje cells in the cerebellum. Ataxin-7 colocalizes with full-length R85 (R85FL) in co-transfected Cos-7 cells and with one of the SH3P12GPs in neuronal intranuclear inclusions in brain from a SCA7 patient. We propose that this interaction is part of a physiological pathway related to the function or turnover of ataxin-7. Its role in the pathophysiological process of SCA7 disease is discussed.
Notes:
 
PMID 
C Olivier, I Cobos, E M Perez Villegas, N Spassky, B Zalc, S Martinez, J L Thomas (2001)  Monofocal origin of telencephalic oligodendrocytes in the anterior entopeduncular area of the chick embryo.   Development 128: 10. 1757-1769 May  
Abstract: Oligodendrocytes are the myelin-forming cells in the central nervous system. In the brain, oligodendrocyte precursors arise in multiple restricted foci, distributed along the caudorostral axis of the ventricular neuroepithelium. In chick embryonic hind-, mid- and caudal forebrain, oligodendrocytes have a basoventral origin, while in the rostral fore-brain oligodendrocytes emerge from alar territories (Perez Villegas, E. M., Olivier, C., Spassky, N., Poncet, C., Cochard, P., Zalc, B., Thomas, J. L. and Martinez, S. (1999) Dev. Biol. 216, 98-113). To investigate the respective territories colonized by oligodendrocyte progenitor cells that originate from either the basoventral or alar foci, we have created a series of quail-chick chimeras. Homotopic chimeras demonstrate clearly that, during embryonic development, oligodendrocyte progenitors that emerge from the alar anterior entopeduncular area migrate tangentially to invade the entire telencephalon, whereas those from the basal rhombomeric foci show a restricted rostrocaudal distribution and colonize only their rhombomere of origin. Heterotopic chimeras indicate that differences in the migratory properties of oligodendroglial cells do not depend on their basoventral or alar ventricular origin. Irrespective of their origin (basal or alar), oligodendrocytes migrate only short distances in the hindbrain and long distances in the prosencephalon. Furthermore, we provide evidence that, in the developing chick brain, all telencephalic oligodendrocytes originate from the anterior entopeduncular area and that the prominent role of anterior entopeduncular area in telencephalic oligodendrogenesis is conserved between birds and mammals.
Notes:
 
PMID 
N Spassky, K Heydon, A Mangatal, A Jankovski, C Olivier, F Queraud-Lesaux, C Goujet-Zalc, J L Thomas, B Zalc (2001)  Sonic hedgehog-dependent emergence of oligodendrocytes in the telencephalon: evidence for a source of oligodendrocytes in the olfactory bulb that is independent of PDGFRalpha signaling.   Development 128: 24. 4993-5004 Dec  
Abstract: Most studies on the origin of oligodendrocyte lineage have been performed in the spinal cord. By contrast, molecular mechanisms that regulate the appearance of the oligodendroglial lineage in the brain have not yet attracted much attention. We provide evidence for three distinct sources of oligodendrocytes in the mouse telencephalon. In addition to two subpallial ventricular foci, the anterior entopeduncular area and the medial ganglionic eminence, the rostral telencephalon also gives rise to oligodendrocytes. We show that oligodendrocytes in the olfactory bulb are generated within the rostral pallium from ventricular progenitors characterized by the expression of PLP: We provide evidence that these Plp oligodendrocyte progenitors do not depend on signal transduction mediated by platelet-derived growth factor receptors (PDGFRs), and therefore propose that they belong to a different lineage than the PDGFRalpha-expressing progenitors. Moreover, induction of oligodendrocytes in the telencephalon is dependent on sonic hedgehog signaling, as in the spinal cord. In all these telencephalic ventricular territories, oligodendrocyte progenitors were detected at about the same developmental stage as in the spinal cord. However, both in vivo and in vitro, the differentiation into O4-positive pre-oligodendrocytes was postponed by 4-5 days in the telencephalon in comparison with the spinal cord. This delay between determination and differentiation appears to be intrinsic to telencephalic oligodendrocytes, as it was not shortened by diffusible or cell-cell contact factors present in the spinal cord.
Notes:
 
PMID 
L Buzanska, N Spassky, M F Belin, A Giangrande, F Guillemot, C Klämbt, M Labouesse, J L Thomas, K Domanska-Janik, B Zalc (2001)  Human medulloblastoma cell line DEV is a potent tool to screen for factors influencing differentiation of neural stem cells.   J Neurosci Res 65: 1. 17-23 Jul  
Abstract: The aim of our study was to investigate whether a human neural cell line could be used as a reliable screening tool to examine the functional conservation, in humans, of transcription factors involved in neuronal or glial specification in other species. Gain-of-function experiments were performed on DEV cells, a cell line derived from a human medulloblastoma. Genes encoding nine different transcription factors were tested for their influence on the process of specification of human DEV cells towards a neuronal or glial fate. In a first series of experiments, DEV cells were transfected with murine genes encoding transcription factors known to be involved in the neuronal differentiation cascade. Neurogenins-1, -2, and -3; Mash-1; and NeuroD increased the differentiation of DEV cells towards a neuronal phenotype by a factor of 2-3.5. In a second series of experiments, we tested transcription factors involved in invertebrate glial specification. In the embryonic Drosophila CNS, the development of most glial cells depends on the master regulatory gene glial cell missing (gcm). Expression of gcm in DEV cells induced a twofold increase of astrocytic and a sixfold increase of oligodendroglial cell types. Interestingly, expression of tramtrack69, which is required in all Drosophila glial cells, resulted in a fourfold increase of only the oligodendrocyte phenotype. Expression of the related tramtrack88 protein, which is not expressed in the fly glia, or the C. elegans lin26 protein showed no effect. These results show that the Drosophila transcription factor genes tested can conserve their function upon transfection into the human DEV cells, qualifying this cell line as a screening tool to analyze the mechanisms of neuronal and glial specification.
Notes:
 
PMID 
N Spassky, C Olivier, I Cobos, B LeBras, C Goujet-Zalc, S Martínez, B Zalc, J L Thomas (2001)  The early steps of oligodendrogenesis: insights from the study of the plp lineage in the brain of chicks and rodents.   Dev Neurosci 23: 4-5. 318-326  
Abstract: Oligodendrocytes are the myelin-forming cells of the central nervous system. Over the last decade, their development in the embryonic brain and spinal cord has been documented following the discovery of early oligodendroglial markers. These early expressed oligodendroglial genes nevertheless show differences in their spatiotemporal pattern of expression and it is not yet clear if their expression is linked in a linear way. This review highlights the common themes underlying the spatiotemporal aspects of oligodendrogenesis in chick and rodent brain and discusses some recent advances in the knowledge of the cell lineage expressing plp, one of the early oligodendroglial genes. We suggest a model of oligodendroglial commitment whereby definitive oligodendroglial progenitor formation is preceded by a primitive neuroglial progenitor stage and whereby different oligodendrocyte lineages might segregate from either plp-positive or plp-negative primitive progenitor cells.
Notes:
2000
 
PMID 
J L Thomas, N Spassky, E M Perez Villegas, C Olivier, I Cobos, C Goujet-Zalc, S Martínez, B Zalc (2000)  Spatiotemporal development of oligodendrocytes in the embryonic brain.   J Neurosci Res 59: 4. 471-476 Feb  
Abstract: In the central nervous system (CNS), oligodendrocytes have long been considered to be the last cell type to be generated during development. In rodents, the progenitor cells that give rise to oligodendrocytes have been reported to originate in the subventricular zone. Here, we review recent data demonstrating the existence of oligodendrocyte precursor cells in the ventricular layer of the neural tube that emerge prior to the progenitor stage. Oligodendrocyte precursors arise in restricted foci that are distributed along the rostrocaudal axis of the neural tube, for the most part ventrally. The generation of oligodendrocyte precursor cells occurs either simultaneously with, or follows closely upon the emergence of the first neurons. Experiments with quail-chick chimeras provide evidence that oligodendrocyte progenitors derived from ventricular precursors migrate either tangentially or radially to colonize extensive or segmentally restricted territories of the brain. The choice depends on their site of origin. Finally, we discuss the possibility that oligodendrocytes could be a mosaic population that originates from at least two types of precursor cells.
Notes:
 
PMID 
N Spassky, C Olivier, E Perez-Villegas, C Goujet-Zalc, S Martinez, J l Thomas, B Zalc (2000)  Single or multiple oligodendroglial lineages: a controversy.   Glia 29: 2. 143-148 Jan  
Abstract: The text books all say oligodendrocytes are the last cell to arise during development. The analysis of the spatio-temporal pattern of expression of plp/dm-20 during embryonic development in both the chick and the mouse provides evidence that the induction of oligodendrocyte occurs much earlier than we thought. In fact, it seems as though these cells must arise nearly simultaneously with neurons and it is just that they do not mature until later. Furthermore, we review the experimental arguments in favor of the existence of at least two, if not more, oligodendrocyte precursor cells: one is defined by the expression of PDGFRalpha, another characterized by expression of plp/dm-20 is independent from PDGF-AA for its proliferation and survival. We then postulate the existence of a third family of yet unknown origin.
Notes:
 
PMID 
S Traver, C Bidot, N Spassky, T Baltauss, M F De Tand, J L Thomas, B Zalc, I Janoueix-Lerosey, J D Gunzburg (2000)  RGS14 is a novel Rap effector that preferentially regulates the GTPase activity of galphao.   Biochem J 350 Pt 1: 19-29 Aug  
Abstract: In an attempt to elucidate the physiological function(s) of the Ras-related Rap proteins, we used the yeast two-hybrid system and isolated a cDNA encoding a protein that interacts with both Rap1 and Rap2, but not with Ras; the use of Rap2 mutants showed that this interaction is characteristic of a potential Rap effector. This protein was identified as RGS14, a member of the recently discovered family of RGS ('regulators of G-protein signalling') proteins that stimulate the GTPase activity of the GTP-binding alpha subunit of heterotrimeric G-proteins (Galpha). Deletion analysis, as well as in vitro binding experiments, revealed that RGS14 binds Rap proteins through a domain distinct from that carrying the RGS identity, and that this domain shares sequence identity with the Ras/Rap binding domain of B-Raf and Raf-1 kinases. RGS14 is distinguished from other RGS proteins by its marked preference for Galpha(o) over other Galpha subunits: RGS14 binds preferentially to Galpha(o) in isolated brain membranes, and also interacts preferentially with Galpha(o) (as compared with Galpha(i1)) to stimulate its GTPase activity. In adult mice, RGS14 expression is restricted to spleen and brain. In situ hybridization studies showed that it is highly expressed only in certain areas of mouse brain (such as the CA1 and CA2 regions of the hippocampus), and that this pattern closely resembles that of Rap2, but not Rap1, expression. Double in situ hybridization experiments revealed that certain cells in the hippocampus express both RGS14 and Galpha(o), as well as both RGS14 and Rap2, showing that the interaction of RGS14 with Galpha(o) and Rap2 is physiologically possible. Taken together, these results suggest that RGS14 could constitute a bridging molecule that allows cross-regulation of signalling pathways downstream from G-protein-coupled receptors involving heterotrimeric proteins of the G(i/o) family and those involving the Ras-related GTPase Rap2.
Notes:
 
DOI   
PMID 
D Ricard, B Stankoff, D Bagnard, M Aguera, V Rogemond, J C Antoine, N Spassky, B Zalc, C Lubetzki, M F Belin, J Honnorat (2000)  Differential expression of collapsin response mediator proteins (CRMP/ULIP) in subsets of oligodendrocytes in the postnatal rodent brain.   Mol Cell Neurosci 16: 4. 324-337 Oct  
Abstract: The family of collapsin response mediator protein/Unc-33-like protein (CRMP/Ulip), composed of four homologous members, is specifically and highly expressed in the nervous system during embryonic neuronal development and dramatically down-regulated in the adult. Members of this family have been proposed to be part of the semaphorins signal transduction pathway involved in axonal outgrowth. Here, we show by in situ hybridization and immunohistochemistry that CRMP2/Ulip2, and to a lesser extent CRMP3/Ulip4, are expressed in immature and mature oligodendrocytes, but not in astrocytes. Transcripts encoding the other CRMP/Ulip members are also detectable by RT-PCR in highly purified mature oligodendrocytes. Interestingly, in the adult, the protein CRMP2/Ulip2 is mainly detectable in subsets of oligodendrocytes distributed according to an increasing rostrocaudal gradient, with the largest number of positive cells being present in the brain stem and spinal cord. In cultures of highly purified oligodendrocytes, however, CRMP2/Ulip2 was detectable in all the cells. Addition of Sema3A in the culture medium completely inhibited the emergence of oligodendrocyte processes suggesting that, as in neurons, a Sema3A signaling pathway mediated via CRMP2/Ulip2 may be involved in the regulation of oligodendroglial process outgrowth.
Notes:
1999
 
DOI   
PMID 
E M Perez Villegas, C Olivier, N Spassky, C Poncet, P Cochard, B Zalc, J L Thomas, S Martínez (1999)  Early specification of oligodendrocytes in the chick embryonic brain.   Dev Biol 216: 1. 98-113 Dec  
Abstract: Oligodendrocytes are the myelin-forming cells in the central nervous system of vertebrates. In the rodent embryo, these cells have been shown to emerge from restricted territories of the neuroepithelium. However, a comprehensive view of the development of oligodendroglial populations from their ventricular sources remains to be established. As a first step toward this aim, we have examined in vivo the spatiotemporal emergence of oligodendrocytes in the chick embryonic brain. We have detailed the patterns of expression of three early markers of the oligodendroglial lineage: the plp/dm-20 and PDGFRalpha transcripts and the O4-reactive antigen. During embryonic development, these molecules showed a similar segmental pattern of expression. However, plp/dm-20(+) cells were already observed, in the ventricular layer, at E2.5, i.e., 2 days before the appearance of O4(+) and PDGFRalpha(+) cells, suggesting that oligodendrocyte precursors arise nearly simultaneously with neurons. In the chick embryonic brain, the onset of expression of plp/dm-20 appears therefore to be the earliest event indicative of oligodendroglial specification and we propose, based on the expression of plp/dm-20 transcript, a ventricular map of the foci at which oligodendrocytes originate. In addition, we document the precocious segregation, from E5, of plp/dm-20(+) and PDGFRalpha(+) oligodendroglial cells in the subventricular and mantle layers of the brain.
Notes:
1998
 
PMID 
N Spassky, C Goujet-Zalc, E Parmantier, C Olivier, S Martinez, A Ivanova, K Ikenaka, W Macklin, I Cerruti, B Zalc, J L Thomas (1998)  Multiple restricted origin of oligodendrocytes.   J Neurosci 18: 20. 8331-8343 Oct  
Abstract: The plp gene encodes the proteolipid protein and its alternatively spliced product DM-20, major proteins of CNS myelin. In the mouse, plp/dm-20 transcripts are expressed beginning at embryonic day 9.5 (E9.5) by restricted foci of germinative neuroepithelial cells. To determine the identity of the neural precursors expressing plp/dm- 20, a zeomycin resistance gene fused to the lacZ reporter was expressed in transgenic mice under the control of the plp regulatory sequences. In the three different lines generated, the pattern of beta-galactosidase expression was similar and superimposable on the expression pattern of endogenous plp/dm-20. Both in vivo and in vitro, the transgene was expressed by O4(+) pre-oligodendrocytes, and later by RIP+ differentiated oligodendrocytes, but not by neuronal cells, astrocytes, or radial glial cells. After zeomycin selection, a dramatic enrichment in O4(+) pre-oligodendrocytes was observed in cultures derived from E12.5 transgenic embryos. This enrichment indicates the oligodendroglial specification of neural precursors that continuously express plp/dm-20. Early plp/dm-20-expressing precursors, however, appear to be a separate population from previously described PDGFRalpha oligodendrocyte precursors, as shown by the striking differences in their (1) patterns of distribution and (2) responsiveness to PDGF. These data suggest that oligodendrocytes have a plural origin and that early plp/dm-20 defines one of the neural lineages generating oligodendrocytes.
Notes:
Powered by publicationslist.org.