hosted by
publicationslist.org
    

olivier claisse


olivier.claisse@u-bordeaux2.fr

Journal articles

2010
K Zott, O Claisse, P Lucas, J Coulon, A Lonvaud-Funel, I Masneuf-Pomarede (2010)  Characterization of the yeast ecosystem in grape must and wine using real-time PCR.   Food Microbiol 27: 5. 559-567 Aug  
Abstract: The complex microbial ecosystem of grape must and wine harbours a wide diversity of yeast species. Specific oligonucleotide primers for real-time quantitative PCR(QPCR) were designed to analyse several important non-Saccharomyces yeasts (Issatchenkia orientalis, Metschnikowia pulcherrima, Torulaspora delbrueckii, Candida zemplinina and Hanseniaspora spp.) and Saccharomyces spp. in fresh wine must, during fermentation and in the finished wine. The specificity of all primer couples for their target yeast species were validated and the QPCR methods developed were compared with a classic approach of colony identification by RFLP-ITS-PCR on cultured samples. Once the methods had been developed and validated, they were used to study these non-Saccharomyces yeasts in wine samples and to monitor their dynamics throughout the fermentation process. This study confirms the usefulness and the relevance of QPCR for studying non-Saccharomyces yeasts in the complex yeast ecosystem of grape must and wine.
Notes:
Benoît Foligné, Joëlle Dewulf, Jérôme Breton, Olivier Claisse, Aline Lonvaud-Funel, Bruno Pot (2010)  Probiotic properties of non-conventional lactic acid bacteria: Immunomodulation by Oenococcus oeni.   Int J Food Microbiol 140: 2-3. 136-145 Jun  
Abstract: The widely used probiotic bacteria belong to the genera Lactobacillus and Bifidobacterium and have in most cases been isolated from the human gastrointestinal tract. However, other "less conventional" bacteria, from allochthonous or extremophilic origin, sharing similar structural or functional features, may also confer specific health benefits to a host. Firstly, we explored the in vitro immuno-modulatory or immune-stimulatory activities of 25 wine lactic acid bacteria belonging to Oenococcus oeni and Pediococcus parvulus. While cytokines released by peripheral blood mononuclear cells (PBMCs) stimulated by P. parvulus strains, showed little variation, O. oeni strains induced strain-specific cytokine patterns. Some O. oeni strains were then further analyzed under various conditions for growth, dose and culture medium. In a second phase, we evaluated the oral tolerance and safety of two strains of O. oeni in mice fed a high dose of bacteria for a week. Finally, evidence was gathered on the in vivo anti-inflammatory potential of a selected O. oeni strain using an experimental 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced colitis mouse model. Although results did not match the anti-inflammatory levels obtained with certain conventional probiotics, strain IOEB 9115 significantly lowered colonic injury and alleviated colitis symptoms. The 'natural' tolerance towards acid, ethanol, and phenolic compounds of O. oeni strains combined with a measureable immunomodulatory potential, suggest a possible use of selected strains isolated from wine as live probiotics.
Notes:
2009
Eric Bilhère, Patrick M Lucas, Olivier Claisse, Aline Lonvaud-Funel (2009)  Multilocus sequence typing of Oenococcus oeni: detection of two subpopulations shaped by intergenic recombination.   Appl Environ Microbiol 75: 5. 1291-1300 Mar  
Abstract: Oenococcus oeni is the acidophilic lactic acid bacterial species most frequently associated with malolactic fermentation of wine. Since the description of the species (formerly Leuconostoc oenos), characterization of indigenous strains and industrially produced cultures by diverse typing methods has led to divergent conclusions concerning the genetic diversity of strains. In the present study, a multilocus sequence typing (MLST) scheme based on the analysis of eight housekeeping genes was developed and tested on a collection of 43 strains of diverse origins. The eight targeted loci were successfully amplified and sequenced for all isolates. Only three to 11 different alleles were detected for these genes. The average nucleotide diversity also was rather limited (0.0011 to 0.0370). Despite this limited allelic diversity, the combination of alleles of each strain disclosed 34 different sequence types, which denoted a significant genotypic diversity. A phylogenetic analysis of the concatenated sequences showed that all strains form two well distinct groups of 28 and 15 strains. Interestingly, the same groups were defined by pulsed-field gel electrophoresis, although this method targets different genetic variations. A minimum spanning tree analysis disclosed very few and small clonal complexes. In agreement, statistical analyses of MLST data suggest that recombination events were important during O. oeni evolution and contributed to the wide dissemination of alleles among strains. Taken together, our results showed that MLST is more efficient than pulsed-field gel electrophoresis for typing O. oeni strains, and they provided a picture of the O. oeni population that explains some conflicting results previously obtained.
Notes:
Séverine Gagné, Soizic Lacampagne, Olivier Claisse, Laurence Gény (2009)  Leucoanthocyanidin reductase and anthocyanidin reductase gene expression and activity in flowers, young berries and skins of Vitis vinifera L. cv. Cabernet-Sauvignon during development.   Plant Physiol Biochem 47: 4. 282-290 Apr  
Abstract: Proanthocyanidins, or condensed tannins, are crucial polyphenolic compounds for grape and wine quality. Recently, significant advances were achieved in understanding the biosynthesis of their main subunits: (+)-catechin and (-)-epicatechin, produced by catalysis of leucoanthocyanidin reductase (LAR) and anthocyanidin reductase (ANR), respectively. Expression studies had been published but no data were available on enzyme activity. In our work, we devised assays to measure LAR and ANR activity and determine their development throughout the growth of flowers, young berries, and skins of Vitis vinifera L. cv. Cabernet-Sauvignon. We also investigated the accumulation of compounds in these tissues and focused on the expression of both the structural genes and the transcription factors involved in regulating them: VvMYB5a and VvMYBPA1. Biosynthetic genes were expressed early and LAR and ANR were already active during flowering and at the beginning of berry growth, as well as during colour-change in skins. The profiles we determined correlated with total tannin, catechin, and epicatechin concentrations. The involvement of VvMYB5a and VvMYBPA1 was confirmed and specific expression patterns were also established for VvLAR transcripts.
Notes:
Vincent Renouf, Lou Cadet Vayssieres, Olivier Claisse, Aline Lonvaud-Funel (2009)  Genetic and phenotypic evidence for two groups of Oenococcus oeni strains and their prevalence during winemaking.   Appl Microbiol Biotechnol 83: 1. 85-97 May  
Abstract: Polymerase chain reaction (PCR)-denaturing gradient gel electrophoresis was the most relevant method to follow the diversity of lactic acid bacteria during winemaking. By targeting the rpoB gene, two types of Oenococcus oeni strains were distinguished resulting from a single mutation in the rpoB region targeted in PCR and generating two different electrophoresis profiles. The first one prevailed during fermentation and the second during ageing. Some strains of each type were isolated during winemaking and were studied using several genetic methods (real-time PCR, PCR-random amplified polymorphic DNA, multiple locus sequence typing and the presence of gene markers). Physiological characters related to environmental conditions were examined. The results confirmed the relevance of the rpoB mutation for characterising the two O. oeni subgroups. The relationship between the physiological response to stress and the rpoB genetic groups raised the question of O. oeni intraspecies grouping. A possible division within this species, of great technological interest to the wine industry, was also raised.
Notes:
2008
G Garai-Ibabe, I Ibarburu, I Berregi, O Claisse, A Lonvaud-Funel, A Irastorza, M T Dueñas (2008)  Glycerol metabolism and bitterness producing lactic acid bacteria in cidermaking.   Int J Food Microbiol 121: 3. 253-261 Feb  
Abstract: Several lactic acid bacteria were isolated from bitter tasting ciders in which glycerol was partially removed. The degradation of glycerol via glycerol dehydratase pathway was found in 22 out of 67 isolates. The confirmation of glycerol degradation by this pathway was twofold: showing their glycerol dehydratase activity and detecting the presence of the corresponding gene by a PCR method. 1,3-propanediol (1,3-PDL) and 3-hydroxypropionic acid (3-HP) were the metabolic end-products of glycerol utilization, and the accumulation of the acrolein precursor 3-hydroxypropionaldehyde (3-HPA) was also detected in most of them. The strain identification by PCR-DGGE rpoB showed that Lactobacillus collinoides was the predominant species and only 2 belonged to Lactobacillus diolivorans. Environmental conditions conducting to 3-HPA accumulation in cidermaking were studied by varying the fructose concentration, pH and incubation temperature in L. collinoides 17. This strain failed to grow with glycerol as sole carbon source and the addition of fructose enhanced both growth and glycerol degradation. Regarding end-products of glycerol metabolism, 1,3-PDL was always the main end-product in all environmental conditions assayed, the only exception being the culture with 5.55 mM fructose, where equimolar amounts of 1,3-PDL and 3-HP were found. The 3-HPA was transitorily accumulated in the culture medium under almost all culture conditions, the degradation rate being notably slower at 15 degrees C. However, no disappearance of 3-HPA was found at pH 3.6, a usual value in cider making. After sugar exhaustion, L. collinoides 17 oxidated lactic acid and/or mannitol to obtain energy and these oxidations were accompanied by the removal of the toxic 3-HPA increasing the 1,3-PDL, 3-HP and acetic acid contents.
Notes:
Vincent Renouf, Arnaud Delaherche, Olivier Claisse, Aline Lonvaud-Funel (2008)  Correlation between indigenous Oenococcus oeni strain resistance and the presence of genetic markers.   J Ind Microbiol Biotechnol 35: 1. 27-33 Jan  
Abstract: This study reports on monitoring Oenococcus oeni intraspecific diversity evolution during winemaking. Three different wines were monitored. The proportion of O. oeni species was determined by species-specific PCR and O. oeni strains were distinguished by multiplex PCR-RAPD. Each strain was tested by PCR for 16 significant markers revealed by a previous genetic comparison between a strong oenological potential strain and one with poor oenological potential. Population levels and diversity changed according to winemaking stages, oenological practices and the chemical properties of the wine. In all situations, O. oeni was the best-adapted species. Within the O. oeni group, intraspecific strain diversity decreased and the malolactic fermentation was the result of the most resistant strains with the highest number of markers.
Notes:
Patrick M Lucas, Olivier Claisse, Aline Lonvaud-Funel (2008)  High frequency of histamine-producing bacteria in the enological environment and instability of the histidine decarboxylase production phenotype.   Appl Environ Microbiol 74: 3. 811-817 Feb  
Abstract: Lactic acid bacteria contribute to wine transformation during malolactic fermentation. They generally improve the sensorial properties of wine, but some strains produce histamine, a toxic substance that causes health issues. Histamine-producing strains belong to species of the genera Oenococcus, Lactobacillus, and Pediococcus. All carry an hdcA gene coding for a histidine decarboxylase that converts histidine into histamine. For this study, a method based on quantitative PCR and targeting hdcA was developed to enumerate these bacteria in wine. This method was efficient for determining populations of 1 to 10(7) CFU per ml. An analysis of 264 samples collected from 116 wineries of the same region during malolactic fermentation revealed that these bacteria were present in almost all wines and at important levels, exceeding 10(3) CFU per ml in 70% of the samples. Histamine occurred at an often important level in wines containing populations of the above-mentioned bacteria. Fifty-four colonies of histamine producers isolated from four wines were characterized at the genetic level. All were strains of Oenococcus oeni that grouped into eight strain types by randomly amplified polymorphic DNA analysis. Some strains were isolated from wines collected in distant wineries. Moreover, hdcA was detected on a large and possibly unstable plasmid in these strains of O. oeni. Taken together, the results suggest that the risk of histamine production exists in almost all wines and is important when the population of histamine-producing bacteria exceeds 10(3) per ml. Strains of O. oeni producing histamine are frequent in wine during malolactic fermentation, but they may lose this capacity during subcultures in the laboratory.
Notes:
F Nannelli, O Claisse, E Gindreau, G de Revel, A Lonvaud-Funel, P M Lucas (2008)  Determination of lactic acid bacteria producing biogenic amines in wine by quantitative PCR methods.   Lett Appl Microbiol 47: 6. 594-599 Dec  
Abstract: AIMS: To develop rapid methods allowing enumeration of lactic acid bacteria producing biogenic amines in wines and to analyse wine samples by the methods. METHODS AND RESULTS: Methods based on quantitative PCR targeting bacterial genes involved in histamine, tyramine and putrescine production were developed and applied to detect and quantify the bacteria producing these biogenic amines in wine. Analysis of 102 samples revealed low populations of the targeted bacteria in grape must samples, an increased bacteria biomass in wine samples after alcoholic fermentation, reaching the highest population levels (above 10(6) cells ml(-1)) during spontaneous malolactic fermentation. A minimum of 10(3) ml(-1) producing cells was required for production of more than 1 mg l(-1) of biogenic amines. Accumulation of putrescine in wine was correlated with the presence of bacteria carrying an ornithine decarboxylation pathway. Trials of winemaking showed that the use of selected bacteria for inducing malolactic fermentation was efficient to limit the proliferation of undesirable bacteria and the production of biogenic amines. CONCLUSION: Methods using quantitative PCR are efficient to enumerate biogenic amines-producing cells in wine. SIGNIFICANCE AND IMPACT OF THE STUDY: The methods can help to better control and to improve winemaking conditions in order to avoid biogenic amine production.
Notes:
Katharina Zott, Cecile Miot-Sertier, Olivier Claisse, Aline Lonvaud-Funel, Isabelle Masneuf-Pomarede (2008)  Dynamics and diversity of non-Saccharomyces yeasts during the early stages in winemaking.   Int J Food Microbiol 125: 2. 197-203 Jul  
Abstract: This detailed study observed the yeasts present in the ecological niche of "wine must". The dynamics and identity of non-Saccharomyces yeasts during the cold maceration and alcoholic fermentation of grape must were investigated under real production conditions in the Bordeaux region. Furthermore, we studied the impact of two oenological parameters on the development and diversity of non-Saccharomyces yeasts during cold maceration: temperature management and the timing of dried yeast addition. The non-Saccharomyces community underwent constant changes throughout cold maceration and alcoholic fermentation. The highly diverse non-Saccharomyces microflora was present at 10(4)-10(5) CFU/mL during cold maceration. The population increased to a maximum of 10(6)-10(7) CFU/mL at the beginning of alcoholic fermentation, then declined again at the end. The population at this point, evaluated at around 10(3)-10(4) CFU/mL, was shown to be dependent on the timing of yeast inoculation. The choice of temperature was the key factor for controlling the total yeast population growth, as well as the species present at the end of cold maceration. Hanseniaspora uvarum was a major species present in 2005 and 2006, while Candida zemplinina was very abundant in 2006. A total of 19 species were isolated.
Notes:
Cécile Thibon, Philippe Marullo, Olivier Claisse, Christophe Cullin, Denis Dubourdieu, Takatoshi Tominaga (2008)  Nitrogen catabolic repression controls the release of volatile thiols by Saccharomyces cerevisiae during wine fermentation.   FEMS Yeast Res 8: 7. 1076-1086 Nov  
Abstract: Volatile thiols such as 4-methyl-4-sulfanylpentan-2-one (4MSP) and 3-sulfanylhexan-1-ol (3SH) are aromatic molecules having an important organoleptic impact on white wines. These components are produced from inodorous nonvolatile cysteinylated precursors by Saccharomyces cerevisiae metabolic activity during alcoholic fermentation. Here we provide a new insight into the genetic determinism of the production of volatile thiols by yeast. Using a gene deletion approach, we investigated the role of three yeast beta-lyases and demonstrate that Irc7p, a putative cystathionine beta-lyase, is one of the main proteins catalyzing the 4MSP and 3SH release under enological conditions. Moreover, we demonstrate that Ure2p/Gln3p proteins mainly control the bioconversion of volatile thiols by the transcriptional regulation of the IRC7 gene through the general mechanism of nitrogen catabolic repression. Finally, our findings suggest that the enantiomer balance of 3SH may be modulated by activating specifically stereoselective enzymes such as Irc7p.
Notes:
2007
G Spano, A Lonvaud-Funel, O Claisse, S Massa (2007)  In Vivo PCR-DGGE analysis of Lactobacillus plantarum and Oenococcus oeni populations in red wine.   Curr Microbiol 54: 1. 9-13 Jan  
Abstract: In order to monitor Lactobacillus plantarum and Oenococcus oeni in red wine produced with Italian grape (variety "Primitivo di Puglia"), a polymerase chain reaction- denaturing gradient gel electrophoresis (PCR-DGGE) approach using the rpoB as gene target was established. Wine was treated or not with potassium metabisulphite and supplemented with a commercial bacterial starter of O. oeni to encourage malolactic fermentation. Samples were taken from the vinification tanks at 4, 10, 16, 22, and 28 days after the start of alcoholic fermentation. Genomic DNA was directly isolated from wine and identification of lactic acid bacteria was performed using primers rpoB1, rpoB1O, and rpoB2 able to amplify a region of 336 bp corresponding to the rpoB gene. Amplified fragments were separated in a 30-60% DGGE gradient, and the ability of the PCR-DGGE analysis to distinguish L. plantarum and O. oeni was assessed. The results reported suggest that the PCR-DGGE method, based on the rpoB gene as molecular marker, is a reproducible and suitable tool and may be of great value for wine makers in order to monitor spoilage microorganisms during wine fermentation.
Notes:
Vincent Renouf, Olivier Claisse, Aline Lonvaud-Funel (2007)  Inventory and monitoring of wine microbial consortia.   Appl Microbiol Biotechnol 75: 1. 149-164 May  
Abstract: The evolution of the wine microbial ecosystem is generally restricted to Saccharomyces cerevisiae and Oenococcus oeni, which are the two main agents in the transformation of grape must into wine by acting during alcoholic and malolactic fermentation, respectively. But others species like the yeast Brettanomyces bruxellensis and certain ropy strains of Pediococcus parvulus can spoil the wine. The aim of this study was to address the composition of the system more precisely, identifying other components. The advantages of the polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) approach to wine microbial ecology studies are illustrated by bacteria and yeast species identification and their monitoring at each stage of wine production. After direct DNA extraction, PCR-DGGE was used to make the most exhaustive possible inventory of bacteria and yeast species found in a wine environment. Phylogenetic neighbor-joining trees were built to illustrate microbial diversity. PCR-DGGE was also combined with population enumeration in selective media to monitor microbial changes at all stages of production. Moreover, enrichment media helped to detect the appearance of spoilage species. The genetic diversity of the wine microbial community and its dynamics during winemaking were also described. Most importantly, our study provides a better understanding of the complexity and diversity of the wine microbial consortium at all stages of the winemaking process: on grape berries, in must during fermentation, and in wine during aging. On grapes, 52 different yeast species and 40 bacteria could be identified. The diversity was dramatically reduced during winemaking then during aging. Yeast and lactic acid bacteria were also isolated from very old vintages. B. bruxellensis and O. oeni were the most frequent.
Notes:
Patrick M Lucas, Victor S Blancato, Olivier Claisse, Christian Magni, Juke S Lolkema, Aline Lonvaud-Funel (2007)  Agmatine deiminase pathway genes in Lactobacillus brevis are linked to the tyrosine decarboxylation operon in a putative acid resistance locus.   Microbiology 153: Pt 7. 2221-2230 Jul  
Abstract: In lactic acid bacteria (LAB), amino acids and their derivatives may be converted into amine-containing compounds designated biogenic amines, in pathways providing metabolic energy and/or acid resistance to the bacteria. In a previous study, a pathway converting tyrosine to tyramine was detected in Lactobacillus brevis and a fragment of a gene possibly involved in the production of another biogenic amine, putrescine, from agmatine, was detected in the same locus. The present study was carried out to determine if Lb. brevis actually harbours two biogenic amine-producing pathways in the same locus and to investigate the occurrence of the two gene clusters in other bacteria. Sequencing of the DNA locus in Lb. brevis revealed a cluster of six genes that are related to previously reported genes of agmatine deiminase pathways but with marked differences such as two genes encoding putative agmatine deiminases rather than one. Heterologous expression of encoded enzymes confirmed the presence of at least one active agmatine deiminase and one amino acid transporter that efficiently exchanged agmatine and putrescine. It was concluded that the Lb. brevis gene cluster encodes a functional and highly specific agmatine deiminase pathway. Screening of a collection of 197 LAB disclosed the same genes in 36 strains from six different species, and almost all the positive bacteria also contained the tyrosine catabolic pathway genes in the same locus. These results support the hypothesis that the agmatine deiminase and tyrosine catabolic pathways belong to a genomic region that provides acid resistance and that is exchanged horizontally as a whole between LAB.
Notes:
Olivier Claisse, Vincent Renouf, Aline Lonvaud-Funel (2007)  Differentiation of wine lactic acid bacteria species based on RFLP analysis of a partial sequence of rpoB gene.   J Microbiol Methods 69: 2. 387-390 May  
Abstract: PCR-RFLP analysis of rpoB sequences were used to identify lactic acid bacteria (LAB) species commonly isolated from wine. Strains of seven cocci and 12 lactobacilli species could be identified after single digestion with AciI for the cocci and two or three digestions (AciI, HinfI and MseI) for the rods and preceded by colonies isolation on solid selective medium and microscope observation to distinguish cocci and rods cells.
Notes:
2006
Vincent Renouf, Olivier Claisse, Aline Lonvaud-Funel (2006)  rpoB gene: a target for identification of LAB cocci by PCR-DGGE and melting curves analyses in real time PCR.   J Microbiol Methods 67: 1. 162-170 Oct  
Abstract: Lactic acid bacteria (LAB) are essential in the quality of many fermented beverages like beer, cider and wine. In the two later cases, they convert malic acid into lactic acid during the malolactic fermentation. After fermentation, microbial stabilization is needed to prevent the development of spoilage bacteria species. Among them, cocci lead to different alterations: Pediococcus sp., and some strains of Leuconostoc mesenteroides and Oenococcus oeni can produce exopolysaccharides which modify wine viscosity and lead to ropiness. They also can produce acetic acid, biogenic amine, ethyl carbamate and volatile phenols. Therefore detection and identification are crucial. Results of phenotypic tests and DNA-DNA probes are not accurate enough. 16S RNA gene which is currently used for bacterial species identification presents intraspecies heterogeneity. The rpoB gene is an alternative to this limitation. However previous PCR targeting partial sequence of rpoB gene could not delimit cocci species. Therefore we compared the rpoB gene sequence of the six main cocci species found in fermented beverages: P. damnosus, P. dextrinicus, P. parvulus, P. pentosaceus, L. mesenteroides and O. oeni. The most discriminating partial sequence of the rpoB gene was chosen for designing primers. By PCR-DGGE the reliability of these primers was verified. It was controlled in a mixture of several cocci and other lactic acid bacteria (Lactobacillus sp.). Then we adapted the primers and the PCR conditions in order to achieve the identification of cocci species by real time PCR program including the fluorescent dye SYBR Green I, which gives faster results. PCR melt curves were established and a specific T(m) was attributed to each species.
Notes:
Vincent Renouf, Olivier Claisse, Cécile Miot-Sertier, Aline Lonvaud-Funel (2006)  Lactic acid bacteria evolution during winemaking: use of rpoB gene as a target for PCR-DGGE analysis.   Food Microbiol 23: 2. 136-145 Apr  
Abstract: Evolution of the microbial population during winemaking is crucial. Winemakers are more and more attentive to microbial aspects during fermentation. During aging, microbial stabilization is preponderant to avoid development of spoilage yeast and bacteria. Therefore, it is necessary to improve methods to study the evolution of micro-organisms and for early detection of undesirable strain. The aim of this study was to develop a culture-independent method for identifying lactic acid bacteria (LAB) and to monitoring predominant species. The benefits of PCR-DGGE for the analysis of microbial changes during winemaking were clearly demonstrated. Targeting rpoB gene allowed a reliable discrimination of each species. The primers were able to avoid the interspecies heterogeneity problem caused by the use of the 16S rRNA gene. This method was applied to study the influence of different oenological practices on LAB population and their evolution during winemaking.
Notes:
2005
Patrick M Lucas, Wout A M Wolken, Olivier Claisse, Juke S Lolkema, Aline Lonvaud-Funel (2005)  Histamine-producing pathway encoded on an unstable plasmid in Lactobacillus hilgardii 0006.   Appl Environ Microbiol 71: 3. 1417-1424 Mar  
Abstract: Histamine production from histidine in fermented food products by lactic acid bacteria results in food spoilage and is harmful to consumers. We have isolated a histamine-producing lactic acid bacterium, Lactobacillus hilgardii strain IOEB 0006, which could retain or lose the ability to produce histamine depending on culture conditions. The hdcA gene, coding for the histidine decarboxylase of L. hilgardii IOEB 0006, was located on an 80-kb plasmid that proved to be unstable. Sequencing of the hdcA locus disclosed a four-gene cluster encoding the histidine decarboxylase, a protein of unknown function, a histidyl-tRNA synthetase, and a protein, which we named HdcP, showing similarities to integral membrane transporters driving substrate/product exchange. The gene coding for HdcP was cloned downstream of a sequence specifying a histidine tag and expressed in Lactococcus lactis. The recombinant HdcP could drive the uptake of histidine into the cell and the exchange of histidine and histamine. The combination of HdcP and the histidine decarboxylase forms a typical bacterial decarboxylation pathway that may generate metabolic energy or be involved in the acid stress response. Analyses of sequences present in databases suggest that the other two proteins have dispensable functions. These results describe for the first time the genes encoding a histamine-producing pathway and provide clues to the parsimonious distribution and the instability of histamine-producing lactic acid bacteria.
Notes:
2004
A Delaherche, O Claisse, A Lonvaud-Funel (2004)  Detection and quantification of Brettanomyces bruxellensis and 'ropy' Pediococcus damnosus strains in wine by real-time polymerase chain reaction.   J Appl Microbiol 97: 5. 910-915  
Abstract: AIMS: Brettanomyces bruxellensis is a well-known wine spoilage yeast that causes undesirable off-flavours. Likewise, glucan-producing strains of ropy Pediococcus damnosus are considered as spoilage micro-organisms because the synthesis of glucan leads to an unacceptable viscosity of wine. METHODS AND RESULTS: We developed a real-time PCR method to detect and quantify these two spoilage micro-organisms in wine. It is based on specific primer pairs for amplification of target DNA, and includes a melting-curve analysis of PCR products as a confirmatory test. CONCLUSIONS: The detection limit in wine was 10(4) CFU ml(-1) for B. bruxellensis and 40 CFU ml(-1) for ropy Pediococcus damnosus. The real-time PCR proved to be reliable for the early, sensitive detection and quantification of B. bruxellensis and ropy P. damnosus in wine. SIGNIFICANCE AND IMPACT OF THE STUDY: The real-time PCR-based method described in this study provides a new tool for monitoring spoilage micro-organisms in wine. Time-consuming culture and colony isolation steps are no longer needed, so winemakers can intervene before spoilage occurs.
Notes:
2001
O Claisse, A Lonvaud-Funel (2001)  Primers and a specific DNA probe for detecting lactic acid bacteria producing 3-hydroxypropionaldehyde from glycerol in spoiled ciders.   J Food Prot 64: 6. 833-837 Jun  
Abstract: Of the 40 strains isolated from several spoiled ciders where glycerol was degraded, 36 were identified as Lactobacillus collinoides, three were Lactobacillus hilgardii, and one was Lactobacillus mali. However, only 30 L. collinoides and two L. hilgardii could degrade glycerol. The glycerol dehydratase activity was shown. The main product of the transformation was 1.3 propanediol. Two DNA primers GD1 and GD2 were chosen in the region encoding one of the subunits of glycerol dehydratase of Citrobacter freundii, Klebsiella pneumoniae, Klebsiella oxytoca, Salmonella Typhimurium, and Clostridium pasteurianum. A 279-bp amplicon in polymerase chain reaction amplification was obtained with the genomic L. collinoides IOEB 9527 DNA as template. The amino acid sequence deduced from the amplicon DNA sequence showed a very high similarity and identity with the gene of gram-negative and C. pasteurianum species. After labeling, the amplicon was used as DNA probe in dot-blot hybridization with the genomic DNA of all the tested strains. Only strains that could degrade glycerol hybridized. Moreover, polymerase chain reactions using GDI and GD2 revealed only glycerol dehydratase genes of positive L. collinoides and L. hilgardii strains. The primers and the amplicon proved to be suitable and reliable tools to detect the lactic acid bacteria involved in the deterioration of cider.
Notes:
Powered by PublicationsList.org.