My recent goal is to develop novel safe and target-specific theragnostic nanomedicines. Specifically, we plan to synthesize and genetically engineer novel nanoscale delivery systems for siRNA which on the one hand have a strong affinity to the cells to be treated. On the other hand, and due to their high affinity to the target cells, these delivery systems shall be investigated for their ability to serve as diagnostic tool after radiolabeling by detecting circulating or distant target cells, e.g. circulating tumor cells or metastases.
I have a PhD and MS in pharmaceutics with specific training and expertise in non-viral siRNA delivery, bioconjugation and non-invasive imaging. As a graduate research assistant at Philipps-Universität Marburg, Germany, I have established a technique to radiolabel and especially purify siRNA from non-conjugated chelator and radiometal. Additionally, I have synthesized highly efficient and specific patented bioconjugates for integrin receptor-mediated gene delivery.
Between 2007 and 2010, I visited 5 labs in Germany, Belgium, Israel, the US, and the Netherlands to conduct collaborative projects and to learn new specialist techniques.
I investigated the safety of nanomedicines in terms of off-target effects and complement activation and successfully collaborated with academic and industrial groups in Europe, Israel and the US, and produced several peer-reviewed publications from each project.
I am a member of AAPS, APV, ESMI, ISAM, CRS, and DPhG, an Editorial Board Member of DLL, and a reviewer for IJP, ACS Nano, Mol Pharmaceutics, EJPB, Acta Biomat, JCR, PATS, and Pharm Res. Besides a number of poster prizes and travel grants, I have received the Young Pharmaceutical Investigator Award (EUFEPS), the research award for excellent scientific accomplishments (Board of Industry and Trade Kassel), the Carl Wilhelm Scheele award, the Promotion to Young Researchers (German Lung Foundation), and the ISAM student research award.
Abstract: Pulmonary siRNA delivery has attracted strong interest and has been reported to successfully mediate target gene knockdown in a number of disease models. However, the nature of the epithelial cells that eventually take up siRNA and the question if other lung cell types may also be transfected have so far been neglected. Therefore, we describe here a flow cytometry-based method using transgenic enhanced green fluorescence protein-expressing mice (EGFP mice) for the differentiation of transfected lung cell populations based on their antigen expression.
Abstract: RNA interference (RNAi) is an important part of the cell's defenses against viruses and other foreign genes. Moreover, the biotechnological exploitation of RNAi offers therapeutic potential for a range of diseases for which drugs are currently unavailable. Unfortunately, the small interfering RNAs (siRNAs) that are central to RNAi in the cytoplasm are readily degradable by ubiquitous nucleases, are inefficiently targeted to desired organs and cell types, and are excreted quickly upon systemic injection. As a result, local administration techniques have been favored over the past few years, resulting in great success in the treatment of viral infections and other respiratory disorders. Because there are several advantages of pulmonary delivery over systemic administration, two of the four siRNA drugs currently in phase II clinical trials are delivered intranasally or by inhalation. The air-blood barrier, however, has only limited permeability toward large, hydrophilic biopharmaceuticals such as nucleic acids; in addition, the lung imposes intrinsic hurdles to efficient siRNA delivery. Thus, appropriate formulations and delivery devices are very much needed. Although many different formulations have been optimized for in vitro siRNA delivery to lung cells, only a few have been reported successful in vivo. In this Account, we discuss both obstacles to pulmonary siRNA delivery and the success stories that have been achieved thus far. The optimal pulmonary delivery vehicle should be neither cytotoxic nor immunogenic, should protect the payload from degradation by nucleases during the delivery process, and should mediate the intracellular uptake of siRNA. Further requirements include the improvement of the pharmacokinetics and lung distribution profiles of siRNA, the extension of lung retention times (through reduced recognition by macrophages), and the incorporation of reversible or stimuli-responsive binding of siRNA to allow for efficient release of the siRNAs at the target site. In addition, the ideal carrier would be biodegradable (to address difficulties with repeated administration for the treatment of chronic diseases) and would contain targeting moieties to enhance uptake by specific cell types. None of the currently available polymer- and lipid-based formulations meet every one of these requirements, but we introduce here several promising new approaches, including a biodegradable, nonimmunogenic polyester. We also discuss imaging techniques for following the biodistribution according to the administration route. This tracking is crucial for better understanding the translocation and clearance of nanoformulated siRNA subsequent to pulmonary delivery. In the literature, the success of pulmonary siRNA delivery is evaluated solely by relief from or prophylaxis against a disease; side effects are not studied in detail. It also remains unclear which cell types in the lung eventually take up siRNA. These are critical issues for the translational use of pulmonary siRNA formulations; accordingly, we present a flow cytometry technique that can be utilized to differentiate transfected cell populations in a mouse model that expresses transgenic enhanced green fluorescence protein (EGFP). This technique, in which different cell types are identified on the basis of their surface antigen expression, may eventually help in the development of safer carriers with minimized side effects in nontargeted tissues.
Abstract: RNA interference is increasingly being utilized for the specific targeting and down-regulation of disease-causing genes, including targeting viral infections such as HIV. T lymphocytes, the primary target for HIV, are very difficult to treat with gene therapy applications such as RNA interference because of issues with drug delivery. To circumvent these problems, we investigated poly(ethylene imine) (PEI) as a method of improving transfection efficiency of siRNA to T lymphocytes. Additionally, polyethylene glycol (PEG) moieties were engrafted to the PEI polymers with the goals of improving stability and reducing cytotoxicity. Initial studies on PEG-PEI/siRNA polyplex formation, size and their interaction with cell membranes demonstrated their feasibility as drug delivery agents. Assays with lymphocytes revealed low cytotoxicity profiles of the polyplexes at pharmacologically relevant concentrations with PEGylated copolymers obtaining the best results. Successful transfection of a T cell line or primary T cells with siRNA was observed via flow cytometry and confocal microscopy. Finally, the biological effect of copolymer-delivered siRNA was measured. Of particular significance, siRNA targeted to the HIV gene nef and delivered by one of the PEG-PEI copolymers in repetitive treatments every 2-3 days was observed to inhibit HIV replication to the same extent as azidothymidine over the course of 15 days.
Abstract: Pulmonary drug and gene delivery to the lung represents a non-invasive avenue for local and systemic therapies. However, the respiratory tract provides substantial barriers that need to be overcome for successful pulmonary application. In this regard, micro- and nano-sized particles offer novel concepts for the development of optimized therapeutic tools in pulmonary research. Polymeric nano-carriers are generally preferred as controlled pulmonary delivery systems due to prolonged retention in the lung. Specific manipulation of nano-carrier characteristics enables the design of "intelligent" carriers specific for modulation of the duration and intensity of pharmacological effects. New formulations should be tested for pulmonary absorption and distribution using more advanced ex vivo and in vivo models. The delivery of nano-carriers to the air-space enables a detailed characterization of the interaction between the carrier vehicle and the natural pulmonary environment. In summary, polymeric nanoparticles seem to be especially promising as controlled delivery systems and represent a solid basis for future advancement for pulmonary delivery applications.
Abstract: Pulmonary delivery provides an easy and well tolerated means of access for the administration of biomacromolecules to the pulmonary epithelium and could therefore be an attractive approach for local and systemic therapies. A growing number of reports, which are summarized in this review, mirror the viability of pulmonary gene delivery. Special attention has been paid to the biological barriers in the lung that must be overcome for successful delivery, and which can be divided into anatomic, physical, immunologic, and metabolic barriers. In light of these barriers, successful nonviral polymer-based formulations of therapeutic genes are presented depending on the chemical nature of the polymer. In addition to polyethyleneimine-based nonviral vectors, which have been most intensively studied for pulmonary gene delivery in the past, other polymeric, dendritic, and targeted materials are also described here, including novel and biodegradable polymers. As new materials need in vitro or ex vivo testing before in vivo application, sophisticated models for all three approaches have been illustrated. Although pulmonary siRNA delivery enjoys popularity in clinical trials, pulmonary gene delivery has so far not been translated into clinical applications. With this review, potential hurdles are demonstrated, but novel approaches that may lead to optimized systems are described as well.
Abstract: The aim of this study is to investigate the feasibility and efficacy of PEC nanoparticles as delivery system for cancer chemotherapy. Assembly of paclitaxel-loaded nanoparticles with high loading efficiency and narrow-size distribution is successful. For non-invasive in vivo tracing, nanoparticle blends of chelator bearing poly(lactide) with PEC and PLGA are successfully prepared. Pharmacokinetic studies in mice reveal a twofold higher circulation time of PEC as compared to PLGA. A tumor model shows an accumulation of PEC NPs in cancerous tissue and a higher anti-tumor efficiency compared to the standard Taxol�, which is reflected in a significantly slower tumor growth compared to the NaCl control group.
Abstract: Polycationic nanocarriers attract increasing attention to the field of siRNA delivery. We investigated the self-assembly of siRNA vs pDNA with polycations, which are broadly used for nonviral gene and siRNA delivery. Although polyethyleneimine (PEI) was routinely adopted as siRNA carrier based on its efficacy in delivering pDNA, it has not been investigated yet why PEI efficiently delivers pDNA to cells but is controversially discussed in terms of efficacy for siRNA delivery. We are the first to investigate the self-assembly of PEI/siRNA vs PEI/pDNA and the steps of complexation and aggregation through different levels of hierarchy on the atomic and molecular scale with the novel synergistic use of molecular modeling, molecular dynamics simulation, isothermal titration calorimetry, and other characterization techniques. We are also the fist to elucidate atomic interactions, size, shape, stoichiometry, and association dynamics for polyplexes containing siRNA vs pDNA. Our investigation highlights differences in the hierarchical mechanism of formation of related polycation-siRNA and polycation-pDNA complexes. The results of fluorescence quenching assays indicated a biphasic behavior of siRNA binding with polycations where molecular reorganization of the siRNA within the polycations occurred at lower N/P ratios (nitrogen/phosphorus). Our results, for the first time, emphasize a biphasic behavior in siRNA complexation and the importance of low N/P ratios, which allow for excellent siRNA delivery efficiency. Our investigation highlights the formulation of siRNA complexes from a thermodynamic point of view and opens new perspectives to advance the rational design of new siRNA delivery systems.
Abstract: The purpose of this study was to enhance the in vivo blood circulation time and siRNA delivery efficiency of biodegradable copolymers polyethylenimine-graft-polycaprolactone-block-poly(ethylene glycol) (hy-PEI-g-PCL-b-PEG) by introducing high graft densities of PCL-PEG chains. SYBR(®) Gold and heparin assays indicated improved stability of siRNA/copolymer-complexes with a graft density of 5. At N/P 1, only 40% siRNA condensation was achieved with non-grafted polymer, but 95% siRNA was condensed with copolymer PEI25k-(PCL570-PEG5k)(5). Intracellular uptake studies with confocal laser scanning microscopy and flow cytometry showed that the cellular uptake was increased with graft density, and copolymer PEI25k-(PCL570-PEG5k)(5) was able to deliver siRNA much more efficiently into the cytosol than into the nucleus. The in vitro knockdown effect of siRNA/hyPEI-g-PCL-b-PEG was also significantly improved with increasing graft density, and the most potent copolymer PEI25k-(PCL570-PEG5k)(5) knocked down 84.43% of the GAPDH expression. Complexes of both the copolymers with graft density 3 and 5 circulated much longer than unmodified PEI25 kDa and free siRNA, leading to a longer elimination half-life, a slower clearance and a three- or fourfold increase of the AUC compared to free siRNA, respectively. We demonstrated that the graft density of the amphiphilic chains can enhance the siRNA delivery efficiency and blood circulation, which highlights the development of safe and efficient non-viral polymeric siRNA nanocarriers that are especially stable and provide longer circulation in vivo.
Abstract: Complement activation by polymeric gene and drug delivery systems has been overlooked in the past. As more reports appear in the literature concerning immunogenicity of polymers and their impact on gene expression patterns, it is important to address possible immune side effects of polymers, namely complement activation. Therefore, in this study the activity of low and high molecular weight poly(ethylene imine) and two PEGylated derivatives to induce complement activation were investigated in human serum. These in vitro results revealed that PEI 25 kDa caused significant and concentration dependent complement activation, whereas none of the other polymers induced such effects at their IC(50) concentrations determined by MTT-assays. To verify these in vitro results, additionally, studies were carried out in a swine model after intravenous administration, showing complement activation-related pseudoallergy (CARPA), reflected in symptoms of transient cardiopulmonary distress. Injections of PEI 25 kDa or PEI(25k)-PEG(2k)(10) at a dose of 0.05 and 0.1 mg/kg caused strong reactivity, while PEI 5 kDa and with PEI(25k)-PEG(20k)(1) were also reactogenic at 0.1 mg/kg. It was found that PEI 25 kDa caused both self- and cross-tolerance, whereas the PEG-PEIs were neither self- nor cross-reactively tachyphylactic. As a result of this study, it was shown that PEGylation of polycations with PEG of 20 kDa or higher molecular weight may be favorable. However, potential safety concerns in the development of PEI-based polymeric carriers for drugs and nucleic acids and their translation from bench to bedside need to be taken into consideration for human application.
Abstract: The goal of this study was to investigate the suitability of poly(ethylene carbonate) (PEC) nanoparticles as a novel drug delivery system, fulfilling the requirements for a long circulation time. Particles were obtained with a narrow size distribution and nearly neutral zeta potential. Adsorption studies with human plasma proteins revealed that PEC nanoparticles bind much less proteins in comparison to polystyrene (PS) nanoparticles. Cell experiments with fluorescently labeled PEC showed no uptake of the nanoparticles by macrophages. These novel PEC nanospheres with their unique surface properties are a promising candidate for long circulating drug delivery systems in vivo.
Abstract: The aim of this study was to investigate non-viral pDNA carriers based on diblock-copolymers consisting of poly(2-(dimethyl amino)ethyl methacrylate) (pDMAEMA) and poly(2-hydroxyethyl methacrylate) (pHEMA). Specifically the block-lengths and molecular weights were varied to determine the minimal requirements for transfection. Such vectors should allow better transfection at acceptable toxicity levels and the entire diblock-copolymer should be suitable for renal clearance. For this purpose, a library of linear poly(2-(dimethyl amino)ethyl methacrylate-block-poly(2-hydroxyl methacrylate) (pDMAEMA-block-pHEMA) copolymers was synthesized via RAFT (reversible addition-fragmentation chain transfer) polymerization in a molecular weight (Mw) range of 17�35.7 kDa and analyzed using 1H and 13C NMR (nuclear magnetic resonance), ATR (attenuated total reflectance), GPC (gel permeation chromatography) and DSC (differential scanning calorimetry). Copolymers possessing short pDMAEMA-polycation chains were 1.4�9.7 times less toxic in vitro than polyethylenimine (PEI) 25 kDa, and complexed DNA into polyplexes of 100�170 nm, favorable for cellular uptake. The DNA-binding affinity and polyplex stability against competing polyanions was comparable with PEI 25 kDa. The zeta-potential of polyplexes of pDMAEMA-grafted copolymers remained
positive (+15�30 mV). In comparison with earlier reported low molecular weight homo
pDMAEMA vectors, these diblock-copolymers showed enhanced transfection efficacy
under in vitro conditions due to their lower cytotoxicity, efficient cellular uptake and DNA
packaging. The homo pDMAEMA115 (18.3 kDa) self-assembled with DNA into small
positively charged polyplexes, but was not able to transfect cells. The grafting of 6
and 57 repeating units of pHEMA (0.8 and 7.4 kDa) to pDMAEMA115 increased the
transfection efficacy significantly, implying a crucial impact of pHEMA on vector-cell
interactions. The intracellular trafficking, in vivo transfection efficacy and kinetics of low
molecular weight pDMAEMA-block-pHEMA are subject of ongoing studies.
Abstract: Novel biodegradable amphiphilic copolymers hy-PEI-g-PCL-b-PEG were prepared by grafting PCL-b-PEG chains onto hyper-branched poly(ethylene imine) as non-viral gene delivery vectors. Our investigations focused on the influence of graft densities of PCL-b-PEG chains on physico-chemical properties, DNA complexation and transfection efficiency. We found that the transfection efficiencies of these polymers increased at first towards an optimal graft density (n=3) and then decreased. The buffer-capacity-test showed almost exactly the same tendency as transfection efficiency. Cytotoxicity (MTT-assay) depended on the cooperation of PEG molecular weight and graft density of PCL-b-PEG chains. With increasing the graft density, cytotoxicity, zeta-potential, affinity with DNA, stability of the polyplexes and CMC-values were reduced strongly and regularly. Increasing the excess of polymer over DNA was shown to result in a decrease of the observed particle size to 100-200nm.
Abstract: This study aimed to identify suitable siRNA delivery systems based on flexible generation 2-4 triazine dendrimers by correlating physico-chemical and biological in vitro and in vivo properties of the complexes with thermodynamic parameters calculated using molecular modeling. The siRNA binding properties of the dendrimers and PEI 25 kDa were simulated, binding and stability were measured in SYBR Gold assays, and hydrodynamic diameters, zeta potentials, and cytotoxicity were quantified. These parameters were compared with cellular uptake of the complexes and their ability to mediate RNAi. Radiolabeled complexes were administered intravenously, and pharmacokinetic profiles and biodistribution of these polyplexes were assessed both invasively and non-invasively. All flexible triazine dendrimers formed thermodynamically more stable complexes than PEI. While PEI and the generation 4 dendrimer interacted more superficially with siRNA, generation 2 and 3 virtually coalesced with siRNA, forming a tightly intertwined structure. These dendriplexes were therefore more efficiently charge-neutralized than PEI complexes, reducing agglomeration. This behavior was confirmed by results of hydrodynamic diameters (72.0 nm-153.5 nm) and zeta potentials (4.9 mV-21.8 mV in 10 mM HEPES) of the dendriplexes in comparison to PEI complexes (312.8 nm-480.0 nm and 13.7 mV-17.4 mV in 10 mM HEPES). All dendrimers, even generation 3 and 4, were less toxic than PEI. All dendriplexes were efficiently endocytosed and showed significant and specific luciferase knockdown in HeLa/Luc cells. Scintillation counting confirmed that the generation 2 triazine complexes showed more than twofold prolonged circulation times as a result of their good thermodynamic stability. Conversely, generation 3 complexes dissociated in vivo, and generation 4 complexes were captured by the reticulo-endothelial system due to their increased surface charge. Molecular modeling proves very valuable for rationalizing experimental parameters based on the dendrimers' structural properties. Non-invasive molecular imaging predicted the in vivo fate of the complexes. Therefore, both techniques effectively promote the rapid development of safe and efficient siRNA formulations that are stable in vivo.
Abstract: A library of mono-methoxyl-poly(ethylene glycol)-block-poly(ε-caprolactone) (mPEG-PCL) modified hyperbranched PEI copolymers (hy-PEI-PCL-mPEG) was synthesized to establish structure function relationships for siRNA delivery. These amphiphilic block-copolymers were thought to provide improved colloidal stability and endosomal escape of polyplexes containing siRNA. The influence of the mPEG chain length, PCL segment length, hy-PEI molecular weight and the graft density on their biophysical properties was investigated. In particular, buffer capacity, complex formation constants, gene condensation, polyplex stability, polyplex size and zeta-potential were measured. It was found that longer mPEG chains, longer PCL segments and higher graft density beneficially affected the stability and formation of polyplexes and reduced the zeta-potential of siRNA polyplexes. Significant siRNA mediated knockdown was observed for hy-PEI25k-(PCL900-mPEG2k)(1) at N/P 20 and 30, implying that the PCL hydrophobic segment played a very important role in siRNA transfection. These gene delivery systems merit further investigation under in vivo conditions.
Abstract: Pulmonary siRNA delivery offers a new way to treat various lung diseases. Poly(ethylene imines) (PEIs) are promising cationic nanocarriers and various modifications are still under investigations to improve their cytotoxicity and efficacy for siRNA delivery. In this study, we analyzed two different types of PEI-based nanocomplexes in mice after intratracheal administration regarding their toxicity and efficacy in the lungs. Ubiquitously enhanced green fluorescent protein (EGFP) expressing transgenic and BALB/c mice were intratracheally instilled with 35μg siRNA complexed with the different types of PEI nanocarriers. Lung toxicity and inflammation were investigated after 24h, 3d and 7d treatment and knockdown of EGFP expression was analyzed by flow cytometry and fluorescence microscopy five days post instillation. Three different polyplexes caused more than 60% knockdown of EGFP expression, but only the fatty acid modified low molecular weight PEI 8.3kDa (C16-C18-EO25)1.4 specifically reduced EGFP expression in CD45+ leucocytes (25±12%) and CD11b-/CD11c+ lung macrophages (36±14%). Hydrophobic and hydrophilic PEG modifications on PEI caused severe inflammatory response and elevated levels of IgM in broncho-alveolar fluid (BALF). Thus, the PEG modification reduced cytotoxicity, but elevated the immune response and proinflammatory effects. Further investigations of the proinflammatory and immunomodulatory effects of the PEI-modified carriers are necessary to clarify the highly unspecific knockdown effects in the lung in more detail. Nevertheless, the more hydrophobic modification of PEI based non-viral vector system appeared to be a promising approach for improved siRNA therapeutics offering successful pulmonary siRNA delivery.
Abstract: Since off-target effects in non-viral siRNA delivery are quite common but not well understood, in this study various polymer-related effects observed in transfection studies were described and their mechanisms of toxicity were investigated. A variety of stably luciferase-expressing cell lines was compared concerning polymer-mediated effects after transfection with polyplexes of siRNA and poly(ethylene imine) (PEI) or poly(ethylene glycol)-grafted PEI (PEG-PEI). Cell viability, LDH release, gene expression profiles of apoptosis-related genes and promoter activation were investigated. Interestingly, PEG-PEI, which is generally better tolerated than PEI, was found to activate apoptosis in a cell line- and concentration-dependent manner. While both polymers showed sigmoidal dose-response of cell viability in L929 cells (IC(50)(PEI) = 6 μg/ml, IC(50)(PEG-PEI) = 11 μg/ml), H1299/Luc cells exhibited biphasic dose-response for PEG-PEI and stronger apoptosis at 2 μg/ml than at 20 μg/ml PEG-PEI, as shown in TUNEL assays. Gene expression profiling confirmed that H1299/Luc cells underwent apoptosis via thousand-fold activation of TNF receptor-associated factors. Additionally, it was demonstrated that NFkB-mediated CMV promoter activation in stably transfected cells can lead to increased target gene levels after transfection instead of siRNA-mediated knockdown. With these results, polymeric vectors were shown not to be inert substances. Therefore, alterations in gene expression caused by the delivery agent must be known to correctly interpret gene-silencing experiments, to understand the mechanisms of off-target effects, and most of all to further develop vectors with reduced side effects. Taking these observations into account, one established cell line was eventually identified to be suitable for RNAi experiments. As shown by these experiments, materials that have been used for many years can elicit unexpected off-target effects. Therefore, non-viral vectors must be screened for several levels of toxicity to make them promising candidates.
Abstract: Poly(ethylene imine) (PEI) has widely been used as non-viral gene carrier due to its capability to form stable complexes by electrostatic interactions with nucleic acids. To reduce cytotoxicity of PEI, several studies have addressed modified PEIs such as block or graft copolymers containing cationic and hydrophilic non-ionic components. Copolymers of PEI and hydrophilic poly(ethylene glycol) (PEG) with various molecular weights and graft densities were shown to exhibit decreased cytotoxicity and potential for DNA and siRNA delivery. In this study, we evaluated the cytotoxicity and cell-compatibility of different PEGylated PEI polymers in two murine lung cell lines. We found that the degree of PEGylation correlated with both cytotoxicity and oxidative stress, but not with proinflammatory effects. AB type copolymers with long PEG blocks caused high membrane damage and significantly decreased the metabolic activity of lung cells. In addition, they significantly increased the release of two lipid mediators such as 8-isoprostanes (8-IP) and prostaglandin E(2) (PGE(2)) in a dose-dependent manner. In contrast, the cytokine profiles which indicated high levels of acute-phase cytokines such as TNF-alpha, IL-6, and G-CSF did not follow any clear structure-function relationship. In conclusion, we found that modification of PEI 25 kDa with high degree of PEGylation and low PEG chain length reduced cytotoxic and oxidative stress response in lung cells, while the proinflammatory potential remained unaffected. A degree of substitution in the range of 10 to 30 and PEG-chain lengths up to 2000 Da seem to be beneficial and merit further investigations.
Abstract: A family of triazine dendrimers, differing in their core flexibility, generation number, and surface functionality, was prepared and evaluated for its ability to accomplish RNAi. The dendriplexes were analyzed with respect to their physicochemical and biological properties, including condensation of siRNA, complex size, surface charge, cellular uptake and subcellular distribution, their potential for reporter gene knockdown in HeLa/Luc cells, and ultimately their stability, biodistribution, pharmacokinetics and intracellular uptake in mice after intravenous (iv) administration. The structure of the backbone was found to significantly influence siRNA transfection efficiency, with rigid, second generation dendrimers displaying higher gene knockdown than the flexible analogues while maintaining less off-target effects than Lipofectamine. Additionally, among the rigid, second generation dendrimers, those with either arginine-like exteriors or peripheries containing hydrophobic functionalities mediated the most effective gene knockdown, thus showing that dendrimer surface groups also affect transfection efficiency. Moreover, these two most effective dendriplexes were stable in circulation upon intravenous administration and showed passive targeting to the lung. Both dendriplex formulations were taken up into the alveolar epithelium, making them promising candidates for RNAi in the lung. The ability to correlate the effects of triazine dendrimer core scaffolds, generation number, and surface functionality with siRNA transfection efficiency yields valuable information for further modifying this nonviral delivery system and stresses the importance of only loosely correlating effective gene delivery vectors with siRNA transfection agents.
Abstract: In this study, simulation challenges intuitive models of "flexible" and "rigid" generation two triazine dendrimers as it pertains to solution conformation and conformation on binding DNA or siRNA sequences. These results derive from structural and energetic analyses of the binding events. Simulations of the rigid structure reinforce the role of the constrained piperazine linker in positioning the peripheral groups at significant distance from each other and the core of the dendrimer. In contrast, the flexible dendrimer, characterized by triethyleneglycol-like linkers, collapses in solution. On binding DNA and siRNA, these conformations are largely retained. The rigid dendrimer undergoes reorganization of peripheral groups to generate a large number of contacts to the nucleic acid. In contrast, the flexible dendrimer, originally conceived to create multivalent interactions with nucleic acids, generates only a few contacts and collapses further. This paper provides unique insight in the role played by molecular flexibility in the binding phenomenon.
Abstract: This study describes the physicobiological characterization of PEI- and PEG-PEI polyplexes containing partially 2'-OMe modified 25/27mer dicer substrate siRNAs (DsiRNAs) and their in vivo behavior regarding biodistribution and systemic bioavailability after pulmonary application as well as their ability to knock down gene expression in the lung. Biophysical characterization included circular dichroism of siRNA in polyplexes, condensation efficiency of polymers and in vitro stability. After in vivo application, biodistribution and kinetics of radiolabeled polyplexes were quantified and recorded over time in three-dimensional SPECT images and by end point scintillation counting. The influence on lung tissue and on the humoral and cellular immunosystem was investigated, and finally knockdown of endogenous gene expression in the lung was determined qualitatively. While all of the polymers used in our study were proven to effectively condense siRNA, stability of the complexes depended on the PEG grafting degree. Interestingly, PEI 25 kDa, which showed the least interaction with mucin or surfactant in vitro, performed poorly in vivo. Our nuclear imaging approach enabled us to follow biodistribution of the instilled nanocarriers over time and indicated that PEGylated nanocarriers are more suitable for lung application. While moderate proinflammatory effects were attributed to PEI25k-PEG(2k)(10) nanocarriers, none of the treatments caused histological abnormalities. Our preliminary in vivo knockdown experiment suggests that PEG-PEI/siRNA complexes are promising nanomedicines for pulmonary siRNA delivery. These results encouraged us to further investigate possible adverse effects and to quantify in vivo gene silencing in the lung after intratracheal instillation of PEG-PEI/siRNA complexes.
Abstract: A panel of eight, second generation triazine dendrimers differing in the number of amines, guanidines, hydroxyls and aliphatic groups on the periphery was synthesized and assayed for gene transfer in an attempt to correlate the effects of surface functionality on transfection efficiency. The physicochemical and biological properties of the dendrimers and dendriplexes, such as condensation of DNA, size, surface charge and morphology of dendriplexes, toxicity and ultimately transfection efficiency in MeWo cells, were analyzed. The results from an ethidium bromide exclusion assay showed that the complexation efficiency of the dendrimers with DNA is moderately affected by surface groups. Increasing the number of surface amines, reducing the number of surface hydroxyl groups, or replacing the amine moiety with guanidines all help strengthen the complex formed. Results from dynamic light scattering and zeta potential analyses indicate that the smallest particles correlate with complexes that exhibit the highest zeta potentials. Cytotoxicity was low for all compounds, particularly for the G2-5 dendrimer containing alkyl groups on the periphery, indicating the benefit of incorporating such neutral functionality onto the surface of the triazine dendrimers. Within this panel, the highest transfection efficiency was observed for the dendrimers that formed the smallest complexes, suggesting that this physicochemical property is an accurate predictor for determining which dendrimers will show high transfection efficiency.
Abstract: This study describes the synthesis and characterization of five conjugates of poly(ethylene glycol) modified polyethylenimine (PEG-PEIs) coupled in two different synthesis routes to a nonpeptidic pentacyclic RDG-mimetic for integrin receptor-targeted gene delivery. Synthesis of this panel of different conjugates allowed for systematic analysis of structure-activity relationships. Conjugates were therefore characterized regarding molecular composition, DNA condensation, size, and zeta potential of self-assembled polyplexes. In vitro characterization included investigation of blood compatibility, binding affinity to receptor-positive and receptor-negative cells measured by flow cytometry, cellular uptake quantified by scintillation counting, and efficiency and specificity of transfection assayed by reporter gene expression. In a first synthetic approach, low molecular weight PEI (LMW-PEI) was PEGylated using a heterobifunctional PEG linker and coupling of the RGD-mimetic was achieved at the distal end of PEG chains. In a second synthesis route, the RGD-mimetic was directly coupled to AB-block-copolymers of PEI (25 kDa) and PEG (30 kDa). Interactions of RGD-PEG-LMW-PEI conjugates with DNA were strongly impaired, whereas PEG-PEI-RGD conjugates were more promising candidates due to their physicochemical properties and higher receptor specificity. The binding, uptake, and transfection efficiency in receptor-positive cells was strongly increased upon conjugation of the RGD-mimetic to AB-block-copolymers of PEG-PEI and depended on the degree of peptide substitution. The conjugates of PEG-PEI AB-block-copolymers with low ligand density of the RGD-mimetic appear to be promising candidates for in vivo cancer gene therapy.
Abstract: A family of generation 1, 2, and 3 triazine dendrimers differing in their core flexibility was prepared and evaluated for their ability to accomplish gene transfection. Dendrimers and dendriplexes were analyzed by their physicochemical and biological properties such as condensation of DNA, size, surface charge, morphology of dendriplexes, toxic and hemolytic effects, and ultimately transfection efficiency in L929 and MeWo cells. Flexibility of the backbone was found to play an important role with generation 2 dendrimer displaying higher transfection efficiencies than 25 kDa poly(ethylene imine) or SuperFect at a lower cytotoxicity level. This result is surprising, as PAMAM dendrimers require generations 4 or 5 to become effective transfection reagents. The ability to delineate effects of molecular structure and generation of triazine dendrimers with biological properties provides valuable clues for further modifying this promising class of nonviral delivery system.
Abstract: Single photon emission computed tomography (SPECT) imaging provides a three-dimensional method for exactly locating gamma emitters in a noninvasive procedure under in vivo conditions. For characterization of siRNA delivery systems, molecular imaging techniques are extremely helpful to follow biodistribution under in experimental animal studies. Quantification of biodistribution of siRNA and nonviral delivery systems using this technique requires efficient methods to stably label siRNA with a gamma emitter (e.g., 111In or 99mTc) and to purify labeled material from excesses of radiolabel or linkers. In the following study, we have optimized labeling and purification of siRNA, which was then applied as free siRNA or after complexation with polyethylenimine (PEI) 25 kDa for in vivo real-time gamma camera and SPECT imaging. Quantification of scintillation counts in regions of interest(ROIs) was compared to conventional scintillation counting of dissected organs, and the data acquired by imaging was shown to corroborate that of scintillation counting. This optimization and proof of principle study demonstrates that biodistribution and pharmacokinetics of siRNA and the corresponding polyplexes can be determined using SPECT, leading to comparable results as conventional methodology.
Abstract: In search of optimizing siRNA delivery systems for systemic application, one critical parameter remains their stability in blood circulation. In this study, we have traced pharmacokinetics and biodistribution of each component of siRNA polyplexes formed with polyethylenimine 25 kDa (PEI) or PEGylated PEIs by in vivo real-time gamma camera recording, SPECT imaging, and scintillation counting of blood samples and dissected organs. In vivo behavior of siRNA and polymers were compared and interpreted in the context of in vivo stability of the polyplexes which had been measured by fluorescence fluctuation spectroscopy (FFS). Both pharmacokinetics and biodistribution of polymer-complexed siRNA were dominated by the polymer. PEGylated polymers and their siRNA polyplexes showed significantly less uptake into liver (13.6-19.7% ID of PEGylated polymer and 9.5-10.2% ID of siRNA) and spleen compared to PEI 25 kDa (liver deposition: 36.2% ID of polymer and 14.6% ID of siRNA). With non-invasive imaging methods we were able to predict both kinetics and deposition in living animals allowing the investigation of organ distribution in real time and at different time points. FFS measurements proved stability of the applied polyplexes under in vivo conditions which explained the different behavior of complexed from free siRNA. Despite their stability in circulation, we observed that polyplexes dissociated upon liver passage. Therefore, siRNA/(PEG-)PEI delivery systems are not suitable for systemic administration, but instead may be useful when the first-pass effect is circumvented, which is the case in local application.
Abstract: Hyper-branched polyethylenimine grafted polycaprolactone block mono-methoxyl poly (ethylene glycol) copolymer (hy-PEI-g-PCL-b-mPEG) was obtained through the conjugation of mPEG�PCL with hyper-branched PEI (hy-PEI) based on the Michael addition. mPEG�PCL was synthesized by ring-opening polymerization of caprolactone using mPEG as the initiator. Compared earlier syntheses, this method offered a reduced number of reaction steps, milder reaction conditions, and a more efficient purification process. FTIR, 1H NMR and 13C NMR spectra proved the structure of the copolymers and controllability of this new synthesis method. Using 1H NMR spectroscopy the degradation of these copolymers was evaluated. Cytotoxicity of copolymers and gene transfection efficiency of polyplexes displayed prominent composition dependence. Increasing the graft density of mPEG�PCL on hy-PEI and longer lengths of both PCL and mPEG within the copolymers investigated here reduced transfection and cytotoxicity on A549 cells. The hy-PEI-g-PCL-b-mPEG copolymers with very short PCL segments (342 Da and 570 Da) demonstrated 6-fold higher transfection efficiency than hy-PEI25k on A549 cells. The polyplexes of the most promising candidate, hy-PEI25k-g-(PCL570-b-mPEG2k)1, exhibited lower hemolysis compared to those of hy-PEI25k.
Abstract: BACKGROUND: RNA interference (RNAi) represents a novel therapeutic strategy allowing the knockdown of any pathologically relevant target gene. Since it relies on the action of small interfering RNAs (siRNAs), the in vivo delivery of siRNAs is instrumental. Polyethylenimines (PEIs) and PEGylated PEIs have been shown previously to complex siRNAs, thus mediating siRNA protection against nucleolytic degradation, cellular uptake and intracellular release. PURPOSE: The present study determines in vivo pharmacokinetics, tissue distribution/efficacy of siRNA delivery and adverse effects of a broad panel of PEI(-PEG)-based siRNA complexes. The aim is to systematically evaluate the effects of different degrees and patterns of PEGylation in PEI-PEG copolymers on the in vivo behavior of PEI(-PEG)/siRNA complexes in mice. RESULTS: Upon i.v. injection of radioactively labeled, PEI(-PEG) complexed siRNAs, marked differences in the pharmacokinetics and biodistribution of the complexes are observed, with the fate of the PEI(-PEG)/siRNA complexes being mainly dependent on the degree of uptake in liver, spleen, lung and kidney. Thus, the role of these tissues is investigated in greater detail using representative PEI(-PEG)/siRNA complexes. The induction of erythrocyte aggregation and hemorrhage is dependent on the degree and pattern of PEGylation as well as on the PEI/siRNA (N/P) ratio, and represents one important effect in the lung. Furthermore, siRNA uptake in liver and spleen, but not in lung or kidney, is mediated by macrophage and is dependent on macrophage activity. In the kidney PEI(-PEG)/siRNA uptake is mostly passive and reflects the total stability of the complexes. CONCLUSION: Liver, lung, spleen and kidney are the major players determining the in vivo biodistribution of PEI(-PEG)/siRNA complexes. Beyond their physicochemical and in vitro bioactivity characteristics, PEI(-PEG)/siRNA complexes show marked differences in vivo which can be explained by distinct effects in different tissues. Based on these data, our study also identifies which PEGylated PEIs are promising tools for in vivo siRNA delivery in future therapeutic studies and which major determinants require further investigation.
Abstract: A potential siRNA carrier for pulmonary gene delivery was assessed by encapsulating siRNA into biodegradable polyester nanoparticles consisting of tertiary-amine-modified polyvinyl alcohol (PVA) backbones grafted to poly(d,l-lactide-co-glycolide) (PLGA). The resulting siRNA nanoparticles were prepared using a solvent displacement method that offers the advantage of forming small nanoparticles without using shear forces. The nanoparticles were characterized with regard to particle size, zeta-potential, and degradation at pH 7.4 using dynamic and static light scattering. SiRNA release studies were performed and correlated to the nanoparticle degradation. In vitro knockdown of firefly luciferase reporter gene was used to assess the potential of the nanoparticles as siRNA carriers in a human lung epithelial cell line, H1299 luc. The amine-modified-PVA-PLGA/siRNA nanoparticles form 150-200 nm particles with zeta-potentials of +15-+20 mV in phosphate buffered saline (PBS). Break down of the nanoparticles was seen within 4 h in PBS with sustained release of siRNA. These nanoparticles have achieved 80-90% knockdown of a luciferase reporter gene with only 5 pmol anti-luc siRNA, even after nebulization. Hence we conclude that amine-modified-PVA-PLGA/siRNA nanoparticles could be a promising siRNA carrier for pulmonary gene delivery due to their fast degradation and potent gene knockdown profile.
Abstract: Polyplexes between siRNA and poly(ethylene imine) (PEI) derivatives are promising nonviral carriers for siRNA. The polyplex stability is of critical importance for efficient siRNA delivery to the cytoplasm. Here, we investigate the effect of PEGylation at a constant ratio ( approximately 50%) on the biophysical properties of the polyplexes. Particle size, zeta potential, and stability against heparin as well as RNase digestion and reporter gene knockdown under in vitro conditions of different siRNA polyplexes were characterized. Stability and size of siRNA polyplexes were clearly influenced by PEI-PEG structure, and high degrees of substitution such as PEI(25k)-g-PEG(550)(30) resulted in large (300-400 nm), diffuse complexes (AFM) which showed condensation behavior only at high N/P ratios. All other polyplexes and the PEI control showed similar sizes (150 nm) and compact structures in AFM, with complete condensation reached at N/P ratio of 3. Stability of siRNA polyplexes against heparin displacement and RNase digestion could be modified by PEGylation. Protection against RNase digestion was highest for PEI(25k)-g-PEG(5k)(4) and PEI(25k)-g-PEG(20k)(1), while siRNA/PEI provided insufficient protection. In knockdown experiments using NIH/3T3 fibroblasts stably expressing beta-galactosidase, it was shown that PEG chain length had a significant influence on biological activity of siRNA. Polyplexes with siRNA containing PEI(25k)-g-PEG(5k)(4) and PEI(25k)-g-PEG(20k)(1) yielded similar efficiencies of ca. 70% knockdown as lipofectamine controls. Confocal microscopy demonstrated enhanced cellular uptake of siRNA into cytosol by polyplexes formation with PEI copolymers. In conclusion, both the chain length and graft density of PEG were found to strongly influence siRNA condensation and stability and hence affect the knockdown efficiency of PEI-PEG/siRNA polyplexes.