hosted by
publicationslist.org
    

Orlene Guerra-Peraza


orleneg@gmail.com

Journal articles

2009
Ha Thuy Nguyen, Jörg Leipner, Peter Stamp, Orlene Guerra-Peraza (2009)  Low temperature stress in maize (Zea mays L.) induces genes involved in photosynthesis and signal transduction as studied by suppression subtractive hybridization.   Plant Physiol Biochem 47: 2. 116-122 Feb  
Abstract: Unfavourable environmental conditions such as cold induce the transcription of a range of genes in plants in order to acclimate to these growth conditions. To better understand the cold acclimation of maize (Zea mays L.) it is important to identify components of the cold stress response. For this purpose, cold-induced genes were analysed using the PCR-select cDNA subtraction method. We identified several novel genes isolated from maize seedling exposed for 48h to 6 degrees C. Of 18 Zea mays cold-induced genes (ZmCOI genes) characterized, the majority share similarities with proteins with known function in signal transduction and photosynthesis regulation. RT-PCR was conducted for a selected group of genes, namely ZmCOI6.1, ZmACA1, ZmDREB2A and ZmERF3, confirming the induction by low temperature. In addition, it was found that their expression was strongly induced by other abiotic stresses such as drought and high salt concentration, by stress signalling molecules such as jasmonic acid, salicylic acid and abscisic acid, and by membrane rigidification. These results suggest that this group of genes is involved in a general response to abiotic stresses.
Notes:
2005
O Guerra-Peraza, D Kirk, V Seltzer, K Veluthambi, A C Schmit, T Hohn, E Herzog (2005)  Coat proteins of Rice tungro bacilliform virus and Mungbean yellow mosaic virus contain multiple nuclear-localization signals and interact with importin alpha.   J Gen Virol 86: Pt 6. 1815-1826 Jun  
Abstract: Transport of the viral genome into the nucleus is an obligatory step in the replication cycle of plant pararetro- and geminiviruses. In both these virus types, the multifunctional coat protein (CP) is thought to be involved in this process. Here, a green fluorescent protein tagging approach was used to demonstrate nuclear import of the CPs of Rice tungro bacilliform virus (RTBV) and Mungbean yellow mosaic virus--Vigna (MYMV) in Nicotiana plumbaginifolia protoplasts. In both cases, at least two nuclear localization signals (NLSs) were identified and characterized. The NLSs of RTBV CP are located within both N- and C-terminal regions (residues 479KRPK/497KRK and 744KRK/758RRK), and those of MYMV CP within the N-terminal part (residues 3KR and 41KRRR). The MYMV and RTBV CP NLSs resemble classic mono- and bipartite NLSs, respectively. However, the N-terminal MYMV CP NLS and both RTBV CP NLSs show peculiarities in the number and position of basic residues. In vitro pull-down assays revealed interaction of RTBV and MYMV CPs with the nuclear import factor importin alpha, suggesting that both CPs are imported into the nucleus via an importin alpha-dependent pathway. The possibility that this pathway could serve for docking of virions to the nucleus is discussed.
Notes:
2001
D Leclerc, L Stavolone, E Meier, O Guerra-Peraza, E Herzog, T Hohn (2001)  The product of ORF III in cauliflower mosaic virus interacts with the viral coat protein through its C-terminal proline rich domain.   Virus Genes 22: 2. 159-165 Mar  
Abstract: Using the yeast two-hybrid system, we show that the ORF III product of cauliflower mosaic virus (pIII) interacts through its C-terminus with the viral coat protein. The last five amino acids of pIII were essential for the interaction and virus infectivity. Deletion of the last three amino acids or the mutation F129A decreased the strength of the interaction by 90%. We further show that pIII is closely associated with virus particles found in the inclusion bodies of infected plants but not in viral particles released from the inclusion bodies by urea treatment.
Notes:
2000
O Guerra-Peraza, M de Tapia, T Hohn, M Hemmings-Mieszczak (2000)  Interaction of the cauliflower mosaic virus coat protein with the pregenomic RNA leader.   J Virol 74: 5. 2067-2072 Mar  
Abstract: Using the yeast three-hybrid system, the interaction of the Cauliflower mosaic virus (CaMV) pregenomic 35S RNA (pgRNA) leader with the viral coat protein, its precursor, and a series of derivatives was studied. The purine-rich domain in the center of the pgRNA leader was found to specifically interact with the coat protein. The zinc finger motif of the coat protein and the preceding basic domain were essential for this interaction. Removal of the N-terminal portion of the basic domain led to loss of specificity but did not affect the strength of the interaction. Mutations of the zinc finger motif abolished not only the interaction with the RNA but also viral infectivity. In the presence of the very acidic C-terminal domain, which is part of the preprotein but is not present in the mature CP, the interaction with the RNA was undetectable.
Notes:
E Herzog, O Guerra-Peraza, T Hohn (2000)  The rice tungro bacilliform virus gene II product interacts with the coat protein domain of the viral gene III polyprotein.   J Virol 74: 5. 2073-2083 Mar  
Abstract: Rice tungro bacilliform virus (RTBV) is a plant pararetrovirus whose DNA genome contains four genes encoding three proteins and a large polyprotein. The function of most of the viral proteins is still unknown. To investigate the role of the gene II product (P2), we searched for interactions between this protein and other RTBV proteins. P2 was shown to interact with the coat protein (CP) domain of the viral gene III polyprotein (P3) both in the yeast two-hybrid system and in vitro. Domains involved in the P2-CP association have been identified and mapped on both proteins. To determine the importance of this interaction for viral multiplication, the infectivity of RTBV gene II mutants was investigated by agroinoculation of rice plants. The results showed that virus viability correlates with the ability of P2 to interact with the CP domain of P3. This study suggests that P2 could participate in RTBV capsid assembly.
Notes:
Powered by PublicationsList.org.