hosted by
publicationslist.org
    

Paola Ballario


paola.ballario@uniroma1.it

Journal articles

2009
Franco Chimenti, Bruna Bizzarri, Elias Maccioni, Daniela Secci, Adriana Bolasco, Paola Chimenti, Rossella Fioravanti, Arianna Granese, Simone Carradori, Federica Tosi, Paola Ballario, Stefano Vernarecci, Patrizia Filetici (2009)  A novel histone acetyltransferase inhibitor modulating Gcn5 network: cyclopentylidene-[4-(4'-chlorophenyl)thiazol-2-yl)hydrazone.   J Med Chem 52: 2. 530-536 Jan  
Abstract: Acetylation is a key modulator of genome accessibility through decondensation of the chromatin structure. The balance between acetylation and opposite deacetylation is, in fact, a prerequisite for several cell functions and differentiation. To find modulators of the histone acetyltransferase Gcn5p, we performed a phenotypic screening on a set of newly synthesized molecules derived from thiazole in budding yeast Saccharomyces cerevisiae. We selected compounds that induce growth inhibition in yeast strains deleted in genes encoding known histone acetyltransferases. A novel molecule CPTH2, cyclopentylidene-[4-(4'-chlorophenyl)thiazol-2-yl)hydrazone, was selected based on its inhibitory effect on the growth of a gcn5Delta strain. We demonstrated a specific chemical-genetic interaction between CPTH2 and HAT Gcn5p, indicating that CPTH2 inhibits the Gcn5p dependent functional network. CPTH2 inhibited an in vitro HAT reaction, which is reverted by increasing concentration of histone H3. In vivo, it decreased acetylation of bulk histone H3 at the specific H3-AcK14 site. On the whole, our results demonstrate that CPTH2 is a novel HAT inhibitor modulating Gcn5p network in vitro and in vivo.
Notes:
2008
Stefano Vernarecci, Prisca Ornaghi, Anacristina Bâgu, Enrico Cundari, Paola Ballario, Patrizia Filetici (2008)  Gcn5p plays an important role in centromere kinetochore function in budding yeast.   Mol Cell Biol 28: 3. 988-996 Feb  
Abstract: We report that the histone acetyltransferase Gcn5p is involved in cell cycle progression, whereas its absence induces several mitotic defects, including inefficient nuclear division, chromosome loss, delayed G(2) progression, and spindle elongation. The fidelity of chromosome segregation is finely regulated by the close interplay between the centromere and the kinetochore, a protein complex hierarchically assembled in the centromeric DNA region, while disruption of GCN5 in mutants of inner components results in sick phenotype. These synthetic interactions involving the ADA complex lay the genetic basis for the critical role of Gcn5p in kinetochore assembly and function. We found that Gcn5p is, in fact, physically linked to the centromere, where it affects the structure of the variant centromeric nucleosome. Our findings offer a key insight into a Gcn5p-dependent epigenetic regulation at centromere/kinetochore in mitosis.
Notes:
2006
Francesco Pizzitutti, Andrea Giansanti, Paola Ballario, Prisca Ornaghi, Paola Torreri, Giovanni Ciccotti, Patrizia Filetici (2006)  The role of loop ZA and Pro371 in the function of yeast Gcn5p bromodomain revealed through molecular dynamics and experiment.   J Mol Recognit 19: 1. 1-9 Jan/Feb  
Abstract: Biological experiments were combined with molecular dynamics simulations to understand the importance of amino acidic residues present in the bromodomain of the yeast histone acetyltransferase Gcn5p. It was found that residue Pro371 plays an important role in the molecular recognition of the acetylated histone H4 tail by Gcn5p bromodomain. Crystallographic analysis of the complex showed that this residue does not directly interact with the histone substrate. It has been demonstrated that a double mutation Pro371Thr and Met372Ala in the Gcn5p bromodomain impairs chromatin remodeling activity. It is demonstrated here that, in this double mutant and in the fully deleted bromodomain strain, there is lower growth under amino acid deprivation conditions. By in vitro surface plasmon resonance (Biacore) experiments it is shown that the binding affinity of the double mutation to acetyl lysine 16 histone H4 peptide decreases. Molecular dynamics simulations were used to explain this loss in acetyl lysine-Gcn5p bromodomain affinity, in the double mutant. By comparing nanosecond molecular dynamics trajectories of the native as well as the single and doubly mutated bromodomain, it is concluded that the presence of Pro371 is important to the functionality of the Gcn5p bromodomain. In the simulation a point mutation involving this highly conserved residue induced an increase in the flexibility of the ZA loop, which in turn modulated the exposure of the binding pocket to the acetyl lysine. The combined double mutations (Pro371Thr-Met372Ala) not only markedly perturb the motion of the ZA loop but also destabilize the entire structure of the bromodomain.
Notes:
Benedetto Grimaldi, Pierluca Coiro, Patrizia Filetici, Emanuela Berge, Joseph R Dobosy, Michael Freitag, Eric U Selker, Paola Ballario (2006)  The Neurospora crassa White Collar-1 dependent blue light response requires acetylation of histone H3 lysine 14 by NGF-1.   Mol Biol Cell 17: 10. 4576-4583 Oct  
Abstract: Blue light-induced transcription in Neurospora crassa is regulated by the White Collar-1 (WC-1) photoreceptor. We report that residue K14 of histone H3 associated with the light-inducible albino-3 (al-3) promoter becomes transiently acetylated after photoinduction. This acetylation depends on WC-1. The relevance of this chromatin modification was directly evaluated in vivo by construction of a Neurospora strain with a mutated histone H3 gene (hH3(K14Q)). This strain phenocopies a wc-1 blind mutant and shows a strong reduction of light-induced transcriptional activation of both al-3 and vivid (vvd), another light-inducible gene. We mutated Neurospora GCN Five (ngf-1), which encodes a homologue of the yeast HAT Gcn5p, to generate a strain impaired in H3 K14 acetylation and found that it was defective in photoinduction. Together, our findings reveal a direct link between histone modification and light signaling in Neurospora and contribute to the developing understanding of the molecular mechanisms operating in light-inducible gene activation.
Notes:
2005
Benedetto Grimaldi, Michiel A de Raaf, Patrizia Filetici, Simone Ottonello, Paola Ballario (2005)  Agrobacterium-mediated gene transfer and enhanced green fluorescent protein visualization in the mycorrhizal ascomycete Tuber borchii: a first step towards truffle genetics.   Curr Genet 48: 1. 69-74 Jul  
Abstract: Mycorrhizal ascomycetes are ecologically and commercially important fungi that have proved impervious to genetic transformation so far. We report here on the successful transient transformation of Tuber borchii, an ectomycorrhizal ascomycete that colonizes a variety of trees and produces highly prized hypogeous fruitbodies known as "truffles". A hypervirulent Agrobacterium tumefaciens strain bearing the binary plasmid pBGgHg was used for transformation. The genes for hygromycin resistance and the enhanced green fluorescent protein (EGFP), both under the control of vector-borne promoters, were employed as selection markers. Patches of dark and fluorescent hyphae were observed upon fluorescence microscopic examination of hygromycin-resistant mycelia. The presence of EGFP was confirmed by both confocal microscopy and PCR analysis. The lack in the transformed mycelia of the DNA coding for kanamicin resistance (a trait encoded by a vector-borne gene located outside of the T-DNA region) indicates that Agrobacterium-mediated gene transfer correctly occurred in T. borchii.
Notes:
2004
R Ambra, B Grimaldi, S Zamboni, P Filetici, G Macino, P Ballario (2004)  Photomorphogenesis in the hypogeous fungus Tuber borchii: isolation and characterization of Tbwc-1, the homologue of the blue-light photoreceptor of Neurospora crassa.   Fungal Genet Biol 41: 7. 688-697 Jul  
Abstract: Truffles form a group of plant-symbiotic Ascomycetes whose hypogeous life cycle is poorly understood. Here we present initial evidence for the influence of light on Tuber borchii mycelial growth and the identification and cloning of a gene, Tbwc-1, homologous to a blue-light photoreceptor of Neurospora crassa. Blue-light irradiation of T. borchii colonies inhibits their apical growth. It also alters apical growth in N. crassa. In Neurospora, the response is controlled by a nuclear photoreceptor, NcWC-1 (White Collar-1), which consists of a sensor domain (LOV) and a transcriptional factor moiety. We isolated a gene (Tbwc-1) whose deduced amino acid sequence shows a high similarity and colinearity of domains with NcWC-1, except for the polyglutamine regions. As previously found in Neurospora, Tbwc-1 mRNA is under light control and its steady state level increases upon irradiation. In silico analysis of the TbWC-1 sensor domain (LOV) supports the hypothesis that TbWC-1 is a photoreceptor, while the absence of the two polyglutamine regions involved in transcriptional activation in Neurospora suggests that this function in Tuber could be lost.
Notes:
Silke Krol, Alberto Diaspro, Raffaella Magrassi, Paola Ballario, Benedetto Grimaldi, Patrizia Filetici, Prisca Ornaghi, Paola Ramoino, Alessandra Gliozzi (2004)  Nanocapsules: coating for living cells.   IEEE Trans Nanobioscience 3: 1. 32-38 Mar  
Abstract: One of the most promising tools for future applications in science and medicine is the use of nanotechnologies. Especially self-assembly systems, e.g., polyelectrolyte (PE) capsules prepared by means of the layer-by-layer technique with tailored properties, fulfill the requirements for nano-organized systems in a satisfactory manner. The nano-organized shells are suitable as coating for living cells or artificial tissue to prevent immune response. With these shells, material can be delivered to predefined organs. In this paper, some preliminary results are presented, giving a broad overview over the possibilities to use nano-organized capsules. Based on the observations that the cells while duplicating break the capsule a mutant yeast strain (Saccharomyces cerevisiae), which express GFP-tubulin under galactose promotion, was investigated by means of confocal laser scanning microscopy. The measurements reveal an increased surface charge in the region of buds developed prior encapsulation. In order to test the used PE pair for cytotoxicity, germinating conidia of the fungi Neurospora crassa were coated. The investigation with fluorescence microscopy shows a variation in the surface charge for the growing region and the conidium poles. The capsules exhibit interesting properties as valuable tool in science and a promising candidate for application in the field of medicine.
Notes:
2001
O P P Filetici, P Ballario (2001)  The bromodomain: a chromatin browser?   Front Biosci 6: D866-D876 Aug  
Abstract: Reversible modification of histone tails is a regulatory step in chromatin remodeling. The N-terminal tails of histones are signaling platforms that carry amino acid residues for post-translational modification and contribute to chromosomal higher order structure. These modifications are performed by a number of chromatin modulators such as histone (h) acetyltransferase, h-deacetylase, h-methyltransferase and h-kinase. Large numbers of these enzymes as well as other chromatin-associated proteins share the bromodomain, a signature protein motif. Structural studies reveal not only wide structural conservation of bromodomains but also envision a possible role of this domain in the recognition of specific modified residues in the histone tails. The widespread presence of bromodomains in leukemogenic and cancer genes has provided a fundamental tool for studies of the role of epigenetic and chromatin remodeling in malignant diseases.
Notes:
2000
N Handa, Y Noguchi, Y Sakuraba, P Ballario, G Macino, N Fujimoto, C Ishii, H Inoue (2000)  Characterization of the Neurospora crassa mus-25 mutant: the gene encodes a protein which is homologous to the Saccharomyces cerevisiae Rad54 protein.   Mol Gen Genet 264: 1-2. 154-163 Sep  
Abstract: Characterization of the Neurospora crassa mus-25 mutant suggests that it is defective in recombination repair and belongs to the uvs-6 epistasis group. It shows a high sensitivity to the alkylating agents methyl methanesulfonate (MMS) and N-methyl-N'-nitro-N-nitrosoguanidine (MNNG), but not to UV radiation. It is barren (i.e. does not produce ascospores) in homozygous crosses. The frequency of MMS-induced mutations at the ad-3 loci is approximately three times higher than in the wild type. The ratio of homologous to nonhomologous integration of the pMTR::HYG plasmid is much lower than in wild type. The mus-25 mutant is epistatic to the mei-3 mutant for MMS sensitivity. mei-3, which is a homololog of the Saccharomyces cerevisiae gene RAD51, is a member of the uvs-6 epistasis group which contains several genes that are homologous to recombination repair genes in other organisms. The mus-25 gene was cloned by identifying a genomic DNA fragment which complements the MMS sensitivity of the mutant. The amino acid sequence deduced from the cloned DNA showed a high degree of homology to the Rad54 protein, which is involved in recombinational repair in S. cerevisiae. Comparison of the nucleotide sequences of the genomic and cDNAs of the mus-25 gene revealed an ORF of 2505 bp with a single 118-bp intron beginning immediately after the second nucleotide of the AUG start codon. The molecular weight of the deduced gene product was 93.5 kDa. The transcript level was raised within 60 min after UV irradiation or MMS treatment, as also observed for the expression of the other N. crassa recombinational repair genes, suggesting the existence of a common mechanism which induces expression of the recombinational repair genes in response to DNA damage.
Notes:
D J Owen, P Ornaghi, J C Yang, N Lowe, P R Evans, P Ballario, D Neuhaus, P Filetici, A A Travers (2000)  The structural basis for the recognition of acetylated histone H4 by the bromodomain of histone acetyltransferase gcn5p.   EMBO J 19: 22. 6141-6149 Nov  
Abstract: The bromodomain is an approximately 110 amino acid module found in histone acetyltransferases and the ATPase component of certain nucleosome remodelling complexes. We report the crystal structure at 1.9 A resolution of the Saccharomyces cerevisiae Gcn5p bromodomain complexed with a peptide corresponding to residues 15-29 of histone H4 acetylated at the zeta-N of lysine 16. We show that this bromodomain preferentially binds to peptides containing an N:-acetyl lysine residue. Only residues 16-19 of the acetylated peptide interact with the bromodomain. The primary interaction is the N:-acetyl lysine binding in a cleft with the specificity provided by the interaction of the amide nitrogen of a conserved asparagine with the oxygen of the acetyl carbonyl group. A network of water-mediated H-bonds with protein main chain carbonyl groups at the base of the cleft contributes to the binding. Additional side chain binding occurs on a shallow depression that is hydrophobic at one end and can accommodate charge interactions at the other. These findings suggest that the Gcn5p bromodomain may discriminate between different acetylated lysine residues depending on the context in which they are displayed.
Notes:
1999
P Ornaghi, P Ballario, A M Lena, A González, P Filetici (1999)  The bromodomain of Gcn5p interacts in vitro with specific residues in the N terminus of histone H4.   J Mol Biol 287: 1. 1-7 Mar  
Abstract: Whereas the histone acetyltransferase activity of yeast Gcn5p has been widely studied, its structural interactions with the histones and the role of the carboxy-terminal bromodomain are still unclear. Using a glutathione S-transferase pull down assay we show that Gcn5p binds the amino-terminal tails of histones H3 and H4, but not H2A and H2B. The deletion of bromodomain abolishes this interaction and bromodomain alone is able to interact with the H3 and H4 N termini. The amino acid residues of the H4 N terminus involved in the binding with Gcn5p have been studied by site-directed mutagenesis. The substitution of amino acid residues R19 or R23 of the H4 N terminus with a glutamine (Q) abolishes the interaction with Gcn5p and the bromodomain. These residues differ from those known to be acetylated or to be involved in binding the SIR proteins. This evidence and the known dispensability of the bromodomain for Gcn5p acetyltransferase activity suggest a new structural role for the highly evolutionary conserved bromodomain.
Notes:
C Talora, L Franchi, H Linden, P Ballario, G Macino (1999)  Role of a white collar-1-white collar-2 complex in blue-light signal transduction.   EMBO J 18: 18. 4961-4968 Sep  
Abstract: Mutations in either white collar-1 (wc-1) or white collar-2 (wc-2) lead to a loss of most blue-light-induced phenomena in Neurospora crassa. Sequence analysis and in vitro experiments show that WC-1 and WC-2 are transcription factors regulating the expression of light-induced genes. The WC proteins form homo- and heterodimers in vitro; this interaction could represent a fundamental step in the control of their activity. We demonstrate in vivo that the WC proteins are assembled in a white collar complex (WCC) and that WC-1 undergoes a change in mobility due to light-induced phosphorylation events. The phosphorylation level increases progressively upon light exposure, producing a hyperphosphorylated form that is degraded and apparently replaced in the complex by a newly synthesized WC-1. WC-2 is unmodified and also does not change quantitatively in the time frame examined. Light-dependent phosphorylation of WC-1 also occurs in a wc-2 mutant, suggesting that a functional WC-2 is dispensable for this light-specific event. These results suggest that light-induced phosphorylation and degradation of WC-1 could play a role in the transient expression of blue-light-regulated genes. Our findings suggest a mechanism by which WC-1 and WC-2 mediate light responses in Neurospora.
Notes:
1998
P Filetici, C Aranda, A Gonzàlez, P Ballario (1998)  GCN5, a yeast transcriptional coactivator, induces chromatin reconfiguration of HIS3 promoter in vivo.   Biochem Biophys Res Commun 242: 1. 84-87 Jan  
Abstract: Gcn5p, the nuclear histone acetyltransferase (HAT A), is a component of the multiprotein adaptor complex, ADA. Its role as a transcriptional coactivator is required for full induction of most of the genes regulated by GCN4. In this study we present experimental evidence demonstrating that, during gene activation, the nuclease sensitive region of HIS3 promoter, harbouring the poly (dA:dT) and the GCN4 binding site, is invaded by nucleosomes in a gcn5 disrupted strain. These data demonstrate, for the first time, that Gcn5p affects directly the chromatin organization of a chromosomal gene during its transcriptional activation.
Notes:
L Valenzuela, P Ballario, C Aranda, P Filetici, A González (1998)  Regulation of expression of GLT1, the gene encoding glutamate synthase in Saccharomyces cerevisiae.   J Bacteriol 180: 14. 3533-3540 Jul  
Abstract: Saccharomyces cerevisiae glutamate synthase (GOGAT) is an oligomeric enzyme composed of three 199-kDa identical subunits encoded by GLT1. In this work, we analyzed GLT1 transcriptional regulation. GLT1-lacZ fusions were prepared and GLT1 expression was determined in a GDH1 wild-type strain and in a gdh1 mutant derivative grown in the presence of various nitrogen sources. Null mutants impaired in GCN4, GLN3, GAT1/NIL1, or UGA43/DAL80 were transformed with a GLT1-lacZ fusion to determine whether the above-mentioned transcriptional factors had a role in GLT1 expression. A collection of increasingly larger 5' deletion derivatives of the GLT1 promoter was constructed to identify DNA sequences that could be involved in GLT1 transcriptional regulation. The effect of the lack of GCN4, GLN3, or GAT1/NIL1 was also tested in the pertinent 5' deletion derivatives. Our results indicate that (i) GLT1 expression is negatively modulated by glutamate-mediated repression and positively regulated by Gln3p- and Gcn4p-dependent transcriptional activation; (ii) two cis-acting elements, a CGGN15CCG palindrome and an imperfect poly(dA-dT), are present and could play a role in GLT1 transcriptional activation; and (iii) GLT1 expression is moderately regulated by GCN4 under amino acid deprivation. Our results suggest that in a wild-type strain grown on ammonium, GOGAT constitutes an ancillary pathway for glutamate biosynthesis.
Notes:
P Ballario, C Talora, D Galli, H Linden, G Macino (1998)  Roles in dimerization and blue light photoresponse of the PAS and LOV domains of Neurospora crassa white collar proteins.   Mol Microbiol 29: 3. 719-729 Aug  
Abstract: The genes coding for white collar-1 and white collar-2 (wc-1 and wc-2) have been isolated previously, and their products characterized as Zn-finger transcription factors involved in the control of blue light-induced genes. Here, we show that the PAS dimerization domains present in both proteins enable the WC-1 and WC-2 proteins to dimerize in vitro. Homodimers and heterodimers are formed between the white collar (WC) proteins. A computer analysis of WC-1 reveals a second domain, called LOV, also identified in NPH1, a putative blue light photoreceptor in plants and conserved in redox-sensitive proteins and in the phytochromes. The WC-1 LOV domain does not dimerize with canonical PAS domains, but it is able to self-dimerize. The isolation of three blind wc-1 strains, each with a single amino acid substitution only in the LOV domain, reveals that this region is essential for blue light responses in Neurospora. The demonstration that the WC-1 proteins in these LOV mutants are still able to self-dimerize suggests that this domain plays an additional role, essential in blue light signal transduction.
Notes:
1997
P Ballario, G Macino (1997)  White collar proteins: PASsing the light signal in Neurospora crassa.   Trends Microbiol 5: 11. 458-462 Nov  
Abstract: The filamentous fungus Neurospora crassa is an excellent paradigm for the study of blue light signal transduction. The isolation and characterization of the genes for two central regulators of the blue light response, white collar-1 and white collar-2, have begun to shed light on the mechanism of blue light signal transduction in fungi. These proteins are not only proposed to encode blue-light-activated transcription factors but also to be elements of the blue light signal transduction pathway.
Notes:
H Linden, P Ballario, G Macino (1997)  Blue light regulation in Neurospora crassa.   Fungal Genet Biol 22: 3. 141-150 Dec  
Abstract: The fungus Neurospora crassa has been shown to be a paradigm for photobiological, biochemical, and genetic studies of blue light perception and signal transduction. Several different developmental and morphological processes of Neurospora are regulated by blue light and can be divided into early and late blue light responses. The characterization of two central regulator proteins of blue light signal transduction in Neurospora crassa, WC1 and WC2, and the isolation of light-regulated genes, indicate transcriptional control as a central step in blue light signalling.
Notes:
1996
P Ballario, P Vittorioso, A Magrelli, C Talora, A Cabibbo, G Macino (1996)  White collar-1, a central regulator of blue light responses in Neurospora, is a zinc finger protein.   EMBO J 15: 7. 1650-1657 Apr  
Abstract: The Neurospora crassa blind mutant white collar-1 (wc-1) is pleiotropically defective in all blue light-induced phenomena, establishing a role for the wc-1 gene product in the signal transduction pathway. We report the cloning of the wc-1 gene isolated by chromosome walking and mutant complementation. The elucidation of the wc-1 gene product provides a key piece of the blue light signal transduction puzzle. The wc-1 gene encodes a 125 kDa protein whose encoded motifs include a single class four, zinc finger DNA binding domain and a glutamine-rich putative transcription activation domain. We demonstrate that the wc-1 zinc finger domain, expressed in Escherichia coli, is able to bind specifically to the promoter of a blue light-regulated gene of Neurospora using an in vitro gel retardation assay. Furthermore, we show that wc-1 gene expression is autoregulated and is transcriptionally induced by blue light irradiation.
Notes:
P Filetici, M P Martegani, L Valenzuela, A González, P Ballario (1996)  Sequence of the GLT1 gene from Saccharomyces cerevisiae reveals the domain structure of yeast glutamate synthase.   Yeast 12: 13. 1359-1366 Oct  
Abstract: Glutamate synthase (GOGAT) and glutamine synthetase play a crucial role in ammonium assimilation and glutamate biosynthesis in the yeast Saccharomyces cerevisiae. The GOGAT enzyme has been purified and the GOGAT structural gene (GLT1) has been cloned, showing that this enzyme is a homotrimeric protein with a monomeric size of 199 kDa. We report the GLT1 nucleotide sequence and the amino acid sequence of its deduced protein product. Our results show that there is a high conservation with the corresponding genes of Escherichia coli, Medicago sativa (alfalfa) and Zea mais (maize). Binding domains for glutamine, cofactors (FMN and NADH) and the cysteine clusters (which comprise the iron-sulfur centres) were tentatively identified on the basis of sequence comparison with GOGAT sequences from E. coli, alfalfa and maize.
Notes:
Powered by publicationslist.org.