hosted by
publicationslist.org
    
Pierrick Poisbeau
Department Pain & Nociception
UMR 7168 CNRS
21 rue René Descartes
67084 Strasbourg, France
poisbeau@neurochem.u-strasbg.fr

Journal articles

2008
A Charlet, F Lasbennes, P Darbon, P Poisbeau (2008)  Fast non-genomic effects of progesterone-derived neurosteroids on nociceptive thresholds and pain symptoms   Pain  
Abstract: Fast Inhibitory controls mediated by glycine (GlyRs) and GABAA receptors (GABAARs) play an important role to prevent the apparition of pathological pain symptoms of allodynia and hyperalgesia. The use of positive allosteric modulators of these receptors, specifically expressed in the spinal cord, may represent an interesting strategy to limit or block pain expression. In this study, we have used stereoisomers of progesterone metabolites, acting only via non-genomic effects, in order to evaluate the contribution of GlyRs and GABAARs for the reduction of mechanical and thermal heat hypernociception. We show that 3alpha neurosteroids were particularly efficient to elevate nociceptive thresholds in naive animal. It also reduced mechanical allodynia and thermal heat hyperalgesia in the carrageenan model of inflammatory pain. This effect is likely to be mediated by GABAA receptors since 3beta isomer was inefficient. More interestingly, 3alpha5beta neurosteroid was only efficient on mechanical allodynia while having no effect on thermal heat hyperalgesia. We characterized these paradoxical effects of 3alpha5beta neurosteroid using the strychnine and bicuculline models of allodynia. We clearly show that 3alpha5beta neurosteroid exerts an antinociceptive effect via a positive allosteric modulation of GABAARs but, at the same time, is pronociceptive by reducing GlyR function. This illustrates the importance of the inhibitory amino acid receptor channels and their allosteric modulators in spinal pain processing. Moreover, our results indicate that neurosteroids, which are synthesized in the dorsal horn of the spinal cord and have limited side effects, may be of significant interest in order to treat pathological pain symptoms.
Notes: 1872-6623 (Electronic) xD;Journal article
J D Breton, P Veinante, S Uhl-Bronner, A M Vergnano, M J Freund-Mercier, R Schlichter, P Poisbeau (2008)  Oxytocin-induced antinociception in the spinal cord is mediated by a subpopulation of glutamatergic neurons in lamina I-II which amplify GABAergic inhibition   Mol Pain 4:  
Abstract: BACKGROUND: Recent evidence suggests that oxytocin (OT), secreted in the superficial spinal cord dorsal horn by descending axons of paraventricular hypothalamic nucleus (PVN) neurons, produces antinociception and analgesia. The spinal mechanism of OT is, however, still unclear and requires further investigation. We have used patch clamp recording of lamina II neurons in spinal cord slices and immunocytochemistry in order to identify PVN-activated neurons in the superficial layers of the spinal cord and attempted to determine how this neuronal population may lead to OT-mediated antinociception. RESULTS: We show that OT released during PVN stimulation specifically activates a subpopulation of lamina II glutamatergic interneurons which are localized in the most superficial layers of the dorsal horn of the spinal cord (lamina I-II). This OT-specific stimulation of glutamatergic neurons allows the recruitment of all GABAergic interneurons in lamina II which produces a generalized elevation of local inhibition, a phenomenon which might explain the reduction of incoming Adelta and C primary afferent-mediated sensory messages. CONCLUSION: Our results obtained in lamina II of the spinal cord provide the first clear evidence of a specific local neuronal network that is activated by OT release to induce antinociception. This OT-specific pathway might represent a novel and interesting therapeutic target for the management of neuropathic and inflammatory pain.
Notes: 1744-8069 (Electronic) xD;Journal Article xD;Research Support, Non-U.S. Gov't
M Benbouzid, V Pallage, M Rajalu, E Waltisperger, S Doridot, P Poisbeau, M J Freund-Mercier, M Barrot (2008)  Sciatic nerve cuffing in mice : a model of sustained neuropathic pain   Eur J Pain 12: 5. 591-9  
Abstract: Because of its severity, chronicity, resistance to usual therapy and its consequences on quality of life, neuropathic pain represents a real clinical challenge. Fundamental research on this pathology uses metabolic, pharmacological or traumatic models in rodents that reproduce the characteristic human pain symptoms. In 1996, Mosconi and Kruger morphologically described a model of peripheral neuropathy in which a cuff of polyethylene tubing was placed around the sciatic nerve in rats. In the present study, we evaluated the behavioral consequences of this neuropathic pain model in C57Bl/6J mice which is the main genetic background used for studies in transgenic mice. A short cuff of polyethylene tubing was unilaterally placed around the main branch of the sciatic nerve. It induced an ipsilateral heat thermal hyperalgesia lasting around 3 weeks, and a sustained ipsilateral mechanical allodynia lasting at least 2 months. We showed that this neuropathic pain model is insensitive to ketoprofen, a non-steroidal anti-inflammatory drug. Morphine treatment acutely suppressed the mechanical allodynia, but tolerance to this effect rapidly developed. The analysis of video recordings revealed that most aspects of spontaneous behavior remained unaffected on the long term, excepted for a decrease in the time spent at social interaction for the neuropathic mice. Using the elevated plus-maze and the marble-burying test, we also showed that neuropathic mice develop an anxiety phenotype. Our data indicate that sciatic nerve cuffing in mice is a pertinent model for the study of nociceptive and emotional consequences of sustained neuropathic pain.
Notes: 1532-2149 (Electronic) xD;Journal Article xD;Research Support, Non-U.S. Gov't
2007
2006
O E Luis-Delgado, M Barrot, J L Rodeau, G Schott, M Benbouzid, P Poisbeau, M J Freund-Mercier, F Lasbennes (2006)  Calibrated forceps : a sensitive and reliable tool for pain and analgesia studies   J Pain 7: 1. 32-9  
Abstract: Devices designed for mechanical pain threshold studies are often difficult to implement. The purpose of this study was to investigate a simple tool based on calibrated forceps to induce quantifiable mechanical stimulation in the rat on a linear scale. The most suitable protocol was tested by determining the effects of 3 repetitive measurements on both hind paws, respectively, during long-term (9 days), mid-term (1 day), and short-term (2 hours). Only threshold increase related to weight gain over long-term was observed, suggesting that moderate rat training can be used. The capacity of the device to reveal hyperalgesia was tested in a model of carrageenan-induced inflammation in the hind paw. The hyperalgesia was maximal 6 hours after carrageenan injection and progressively decreased. Similar, although more variable, responses were observed with von Frey filaments. Morphine-induced analgesia resulted in a dose-dependent increase of paw threshold. Tolerance to morphine administrated on a once daily schedule (10 mg/kg) during 5 days was revealed by a significant decrease in analgesia by day 3. Taken together, these results demonstrated accuracy of this device for easy, fast, and reproducible measure of mechanical pain threshold on rat limbs. Moreover, it allows the performance of rat testing with minimal constraint, which reduces data variability. PERSPECTIVE: The calibrated forceps is an easy to use device well-suited to rapidly test mechanical pain threshold with accuracy. It is well-designed for preclinical behavioral screening of noxious or analgesic properties of molecules.
Notes: 1526-5900 (Print) xD;Journal Article
R Schlichter, A F Keller, M De Roo, J D Breton, P Inquimbert, P Poisbeau (2006)  Fast non-genomic effects of steroids on synaptic transmission and role of endogenous neurosteroids in spinal pain pathways   J Mol Neurosci 28: 1. 33-52  
Abstract: Steroids exert long term modulatory effects on numerous physiological functions by acting at intracellular/nuclear receptors influencing gene transcription. Steroids and neurosteroids can also rapidly modulate membrane excitability and synaptic transmission by interacting with ion channels, i.e. ionotropic neurotransmitters receptors or voltage-dependent Ca2+ or K+ channels. More recently, the cloning of a plasma membrane located G-protein coupled receptor for progestins in various species, has suggested that steroids/neurosteroids could also influence second messenger pathways by directly interacting with specific membrane receptors. Here we review the experimental evidence implicating steroids/neurosteroids in the modulation of synaptic transmission and the evidence for a role of endogenously produced neurosteroids in such modulatory effects. We present some of our recent results concerning inhibitory synaptic transmission in lamina II of the spinal cord and show that endogenous 5a reduced neurosteroids are produced locally in lamina II and modulate synaptic GABAA receptor function during development as well as during inflammatory pain. The production of 5a reduced neurosteroids is controlled by the endogenous activation of the peripheral benzodiazepine receptor (PBR) which initiates the first step of neurosteroidogenesis by stimulating the translocation of cholesterol across the inner mitochondrial membrane. Tonic neurosteroidogeneis observed in immature animals was decreased during postnatal development resulting in an acceleration of GABAA receptor-mediated mIPSC kinetics observed in the adult. Stimulation of the PBR resulted in a prolongation of GABAergic mIPSCs at all ages and was observed during inflammatory pain. Neurosteroidogenesis might play an important role in the control of nociception at least at the spinal cord level.
Notes:
2005
P Poisbeau, C Patte-Mensah, A F Keller, M Barrot, J D Breton, O E Luis-Delgado, M J Freund-Mercier, A G Mensah-Nyagan, R Schlichter (2005)  Inflammatory pain upregulates spinal inhibition via endogenous neurosteroid production   J Neurosci 25: 50. 11768-76  
Abstract: Inhibitory synaptic transmission in the dorsal horn (DH) of the spinal cord plays an important role in the modulation of nociceptive messages because pharmacological blockade of spinal GABAA receptors leads to thermal and mechanical pain symptoms. Here, we show that during the development of thermal hyperalgesia and mechanical allodynia associated with inflammatory pain, synaptic inhibition mediated by GABAA receptors in lamina II of the DH was in fact markedly increased. This phenomenon was accompanied by an upregulation of the endogenous production of 5alpha-reduced neurosteroids, which, at the spinal level, led to a prolongation of GABAA receptor-mediated synaptic currents and to the appearance of a mixed GABA/glycine cotransmission. This increased inhibition was correlated with a selective limitation of the inflammation-induced thermal hyperalgesia, whereas mechanical allodynia remained unaffected. Our results show that peripheral inflammation activates an endogenous neurosteroid-based antinociceptive control, which discriminates between thermal and mechanical hyperalgesia.
Notes: 1529-2401 (Electronic) xD;Journal Article
2004
A F Keller, J D Breton, R Schlichter, P Poisbeau (2004)  Production of 5alpha-reduced neurosteroids is developmentally regulated and shapes GABA(A) miniature IPSCs in lamina II of the spinal cord   J Neurosci 24: 4. 907-15  
Abstract: In lamina II of the spinal dorsal horn, synaptic inhibition mediated by ionotropic GABA(A) and glycine receptors contributes to the integration of peripheral nociceptive messages. Whole-cell patch-clamp recordings were performed from lamina II neurons in spinal cord slices to study the properties of miniature IPSCs (mIPSCs) mediated by activation of GABA(A) and glycine receptors in immature (<30 d) and adult rats. Blockade of neurosteroidogenesis by 1-(2-chlorophenyl)-N-methyl-N-(1-methylpropyl)-3-isoquinoline carboxamide (PK11195), an inhibitor of the peripheral benzodiazepine receptor (PBR), or finasteride, which blocks 5alpha-reductase, accelerated the decay kinetics of GABA(A) receptor-mediated mIPSCs in immature, but not in adult animals. Glycine receptor-mediated mIPSCs remained unaffected under these conditions. These results suggest the presence of a tonic production of 5alpha-reduced neurosteroids in young rats that confers slow decay kinetics to GABA(A) mIPSCs. At all of the ages, selective stimulation of PBR by diazepam in the presence of flumazenil prolonged GABA(A) mIPSCs in a PK11195- and finasteride-sensitive manner. This condition also increased the proportion of mixed GABA(A)/glycine mIPSCs in the immature animals and led to the reappearance of mixed GABA(A)/glycine mIPSCs in the adult. Our results might point to an original mechanism by which the strength of synaptic inhibition can be adjusted locally in the CNS during development and under physiological and/or pathological conditions by controlling the synthesis of endogenous 5alpha-reduced neurosteroids.
Notes: 1529-2401 xD;Journal Article
R J Harvey, U B Depner, H Wassle, S Ahmadi, C Heindl, H Reinold, T G Smart, K Harvey, B Schutz, O M Abo-Salem, A Zimmer, P Poisbeau, H Welzl, D P Wolfer, H Betz, H U Zeilhofer, U Muller (2004)  GlyR alpha3 : an essential target for spinal PGE2-mediated inflammatory pain sensitization   Science 304: 5672. 884-7  
Abstract: Prostaglandin E2 (PGE2) is a crucial mediator of inflammatory pain sensitization. Here, we demonstrate that inhibition of a specific glycine receptor subtype (GlyR alpha3) by PGE2-induced receptor phosphorylation underlies central inflammatory pain sensitization. We show that GlyR alpha3 is distinctly expressed in superficial layers of the spinal cord dorsal horn. Mice deficient in GlyR alpha3 not only lack the inhibition of glycinergic neurotransmission by PGE2 seen in wild-type mice but also show a reduction in pain sensitization induced by spinal PGE2 injection or peripheral inflammation. Thus, GlyR alpha3 may provide a previously unrecognized molecular target in pain therapy.
Notes: 1095-9203 xD;Journal Article
C Leroy, P Poisbeau, A F Keller, A Nehlig (2004)  Pharmacological plasticity of GABA(A) receptors at dentate gyrus synapses in a rat model of temporal lobe epilepsy   J Physiol 557: Pt 2. 473-87  
Abstract: In the lithium-pilocarpine model (Li-pilocarpine) of temporal lobe epilepsy, GABA(A) receptor-mediated inhibitory postsynaptic currents (GABA(A) IPSCs) were recorded in dentate gyrus granule cells (GCs) from adult rat hippocampal slices. The properties of GABA(A) IPSCs were compared before and after superfusion of modulators in control conditions (Li-saline rats) and in Li-pilocarpine rats 24-48 h and 3-5 months (epileptic rats) after status epilepticus (SE). The mean peak amplitude of GABA(A) IPSCs increased by about 40% over Li-saline values in GCs 24-48 h after SE and remained higher in epileptic rats. In Li-pilocarpine rats, studied at 24-48 h after SE, diazepam (1 microm) lost 65% of its effectiveness at increasing the half-decay time (T(50%)) of GABA(A) miniature IPSCs (mIPSCs). Diazepam had no effects on mIPSC T(50%) in epileptic rats. The benzodiazepine ligand flumazenil (1 microm), acting as an antagonist in Li-saline rats, exhibited a potent inverse agonistic effect on GABA(A) mIPSCs of GCs from Li-pilocarpine rats 24-48 h and 3-5 months after SE. The neurosteroid allopregnanolone (100 nm), which considerably prolonged GABA(A) mIPSCs in Li-saline rats, totally lost its effect in rats studied 24-48 h after SE. However, this decrease in effectiveness was transient and was totally restored in epileptic rats. In addition to the up-regulation in the number of receptors at individual GC synapses, we propose that these 'epileptic' GABA(A) receptors possess benzodiazepine binding sites with altered allosteric properties. The failure of benzodiazepine and neurosteroid to potentiate inhibition early after SE may be a critical factor in the development of epileptogenesis and occurrence of seizures.
Notes: 0022-3751 xD;Journal Article
2001
A F Keller, J A Coull, N Chery, P Poisbeau, Y De Koninck (2001)  Region-specific developmental specialization of GABA-glycine cosynapses in laminas I-II of the rat spinal dorsal horn   J Neurosci 21: 20. 7871-80  
Abstract: The spinal dorsal horn is the first level of the CNS in which nociceptive input from sensory afferents is integrated and transmitted. Although inhibitory control in this region has a crucial impact on pain transmission, the respective contribution of GABA and glycine to this inhibition remains elusive. We have previously documented co-release of GABA and glycine at the same inhibitory synapse in spinal laminas I-II of adult rats [older than postnatal day 30 (P30)]. However, despite this co-release, individual miniature inhibitory postsynaptic currents (mIPSCs) were mediated by either glycine receptors (GlyR) or GABA(A) receptors (GABA(A)R), yet never by the two together. In contrast, recent studies of ventral horn immature inhibitory synapses (</=P21) reported individual mIPSCs that were mediated by both GABA(A)Rs and GlyRs. This raises the question of whether mixed mIPSCs are present in immature lamina I-II neurons yet are lost through a maturation-dependent synaptic specialization. To test this, we recorded mIPSCs using patch-clamp techniques in lamina I-II neurons in spinal slices taken at different stages of development. We found that, in neurons younger than P23, both GlyR-only and GABA(A)R-only mIPSCs could be recorded, in addition to mixed GABA(A)R-GlyR mIPSCs. With maturation however, both lamina I-II neurons gradually discontinued exhibiting mixed mIPSCs, although with differing patterns of specialization. Yet, at all developmental stages, benzodiazepine administration could unmask mixed mIPSCs. Together, these findings indicate that, although GABA and glycine are continually co-released throughout development, junctional codetection ceases by adulthood. This indicates an age-dependent postsynaptic tuning of inhibitory synapses that occurs in a region-specific manner.
Notes: 1529-2401 xD;Journal Article
2000
R Schlichter, V Rybalchenko, P Poisbeau, M Verleye, J Gillardin (2000)  Modulation of GABAergic synaptic transmission by the non-benzodiazepine anxiolytic etifoxine   Neuropharmacology 39: 9. 1523-35  
Abstract: We have investigated the effects of 2-ethylamino-6-chloro-4-methyl-4-phenyl-4H-3,1-benzoxazine hydrochloride (etifoxine) on GABA(A) receptor function. Etifoxine displaced [(35)S]TBPS (t-butylbicyclophosphorothionate) from GABA(A) receptors of rat cortical membranes with an IC(50) of 6.7+/-0.8 microM and [(3)H]PK11195 from peripheral (mitochondrial)-type benzodiazepine receptors (PBRs) of rat heart homogenates with an IC(50) of 27.3+/-1.0 microM. Etifoxine displayed anxiolytic properties in an anticonflict test in rats, and potentiated GABA(A) receptor-mediated membrane currents elicited by submaximal (5-10 microM) but not saturating (0.5 mM) concentrations of GABA in cultured rat hypothalamic and spinal cord dorsal horn neurones. In hypothalamic cultures, etifoxine induced a dose-dependent inward current for concentrations >1 microM which reflected the post-synaptic potentiation of a small ( approximately 20 pA) tonic and bicuculline-sensitive GABA(A) receptor-gated Cl(-) current. Etifoxine also increased the frequency of spontaneous and miniature GABAergic inhibitory post-synaptic currents without changing their amplitude and kinetic characteristics. Both effects of etifoxine were insensitive to flumazenil (10 microM), an antagonist of central-type benzodiazepine sites present at GABA(A) receptors, but were partly inhibited by PK11195 (10 microM) an antagonist of PBRs which control the synthesis of neurosteroids. Our results indicate that etifoxine potentiates GABA(A) receptor-function by a direct allosteric effect and by an indirect mechanism involving the activation of PBRs.
Notes: 0028-3908 xD;Journal Article
1999
P Poisbeau, M C Cheney, M D Browning, I Mody (1999)  Modulation of synaptic GABAA receptor function by PKA and PKC in adult hippocampal neurons   J Neurosci 19: 2. 674-83  
Abstract: Several protein kinases are known to phosphorylate Ser/Thr residues of certain GABAA receptor subunits. Yet, the effect of phosphorylation on GABAA receptor function in neurons remains controversial, and the functional consequences of phosphorylating synaptic GABAA receptors of adult CNS neurons are poorly understood. We used whole-cell patch-clamp recordings of GABAA receptor-mediated miniature IPSCs (mIPSCs) in CA1 pyramidal neurons and dentate gyrus granule cells (GCs) of adult rat hippocampal slices to determine the effects of cAMP-dependent protein kinase (PKA) and Ca2+/phospholipid-dependent protein kinase (PKC) activation on the function of synaptic GABAA receptors. The mIPSCs recorded in CA1 pyramidal cells and in GCs were differentially affected by PKA and PKC. In pyramidal cells, PKA reduced mIPSC amplitudes and enhanced the fraction of events decaying with a double exponential, whereas PKC was without effect. In contrast, in GCs PKA was ineffective, but PKC increased the peak amplitude of mIPSCs and also favored double exponential decays. Intracellular perfusion of the phosphatase inhibitor microcystin revealed that synaptic GABAA receptors of pyramidal cells, but not those of GCs, are continually phosphorylated by PKA and conversely, dephosphorylated, most likely by phosphatase 1 or 2A. This differential, brain region-specific phosphorylation of GABAA receptors may produce a wide dynamic range of inhibitory synaptic strength in these two regions of the hippocampal formation.
Notes: 0270-6474 xD;Journal Article
1997
P Poisbeau, S R Williams, I Mody (1997)  Silent GABAA synapses during flurazepam withdrawal are region-specific in the hippocampal formation   J Neurosci 17: 10. 3467-75  
Abstract: Whole-cell patch-clamp recordings were made from CA1 pyramidal and dentate gyrus granule cells (GCs) in hippocampal slices to assess the effects of withdrawal from chronic flurazepam (FRZ) treatment on the function of synaptic GABAA receptors. In slices from control rats, acute perfusion of FRZ (30 microM) increased the monoexponential decay time constant of miniature IPSCs (mIPSCs) in CA1 and GCs (from 3.4 +/- 0.6 to 7.6 +/- 2.1 msec and from 4.2 +/- 0. 6 to 7.1 +/- 1.8 msec, respectively) but did not change their mean conductance, 10-90% rise time, or frequency of occurrence. Withdrawal (2-5 d) from chronic in vivo FRZ treatment (40-110 mg/kg per day, per os) resulted in a dramatic loss of mIPSCs in CA1 neurons. On day 5 of withdrawal, no mIPSCs could be recorded in 40% of CA1 pyramidal cells. In the remaining 60% of the neurons, mIPSCs had a reduced mean conductance (from 0.78 +/- 0.12 nS in vehicle-treated controls to 0.31 +/- 0.05 nS) and a diminished frequency of occurrence (from 20.7 +/- 7.9 to 4.1 +/- 0.6 Hz). We have estimated that >80% of GABAA synapses on CA1 pyramidal cells had become silent, whereas at still-active synapses the number of functional GABAA receptor channels decreased by 60%. This reduction rapidly reverted to control levels on day 6 of withdrawal. FRZ withdrawal did not alter mIPSC properties in GCs. Our results are consistent with the hypothesis that chronic benzodiazepine treatment leads to a reduced number of functional synaptic GABAA receptors in a region-specific manner that may stem from differences in the subunit composition of synaptic GABAA receptors.
Notes: 0270-6474 xD;Journal Article
F Rene, P Poisbeau, C Egles, R Schlichter, J M Felix (1997)  Co-culture of hypothalamic neurons and melanotrope cells : a model to study synaptogenesis between central neurons and endocrine cells   Neuroscience 76: 1. 203-14  
Abstract: As a first step towards elucidating mechanisms involved in neuroendocrine synaptogenesis, we developed a model of co-culture based on hypothalamic-intermediate pituitary interactions. Dissociated hypothalamic neurons from fetal rats at embryonic day 15 were cultured in a defined medium together with melanotrope cells of the pituitary intermediate lobe from neonatal rats. In these co-cultures, establishment of synaptic contacts between GABAergic or dopaminergic neurons and an endocrine target cell the melanotrope cell, was studied by morphofunctional approaches. Using double immunostaining with antibodies directed against glutamate decarboxylase or tyrosine hydroxylase and alpha-melanocyte-stimulating hormone, we demonstrated morphological contacts between GABAergic or dopaminergic neurons and melanotrope cells as early as three days in vitro. Furthermore, using an antibody directed against synapsin I, we showed a modification of synapsin I immunoreactivity from diffuse to punctate distribution correlated with the establishment of contacts and the observation of characteristic neuroendocrine synapses by electron microscopy. These results were further confirmed by electrophysiological studies. Patch-clamp recordings demonstrated that, at six days in vitro, some melanotrope cells displayed GABAergic synaptic currents, which occurred either spontaneously and/or could be evoked chemically by 50 mM KCl or 100 microM kainate. The proportion of the melanotrope cells receiving functional synaptic inputs increased until 10 days in culture, a stage at which virtually all melanotrope cells in contact with neurons possessed functional synapses. The results presented here describe the establishment of neuroendocrine synapses in vitro, studied by combining morphofunctional and electrophysiological approaches.
Notes: 0306-4522 xD;Journal Article
P Poisbeau, P Feltz, R Schlichter (1997)  Modulation of GABAA receptor-mediated IPSCs by neuroactive steroids in a rat hypothalamo-hypophyseal coculture model   J Physiol 500 ( Pt 2): 475-85  
Abstract: 1. We have used the whole-cell configuration of the patch-clamp technique to investigate the effects of neuroactive steroids on GABAA receptor-mediated synaptic transmission between rat hypothalamic neurones and pituitary intermediate lobe (IL) cells grown in coculture. In order to discriminate between possible pre- and postsynaptic sites of action, the effects of neurosteroids on GABAA receptor-mediated synaptic currents (IPSCs) were compared with those of GABAA currents (IGABA) triggered by local application of 50 or 500 microM GABA, which yielded approximately half-maximal and maximal responses, respectively. 2. In primary cultures of rat pituitary IL cells, allopregnanolone (5 alpha-pregnan-3 alpha-ol-20-one) reversibly potentiated IGABA in a dose-dependent manner with a threshold between 0.1 and 1 nM. At a concentration of 10 nM, allopregnanolone increased the response evoked by 50 microM GABA by +21.4 +/- 5.1% (n = 8), but had no effect on IGABA induced by 500 microM GABA. The beta-isomer of allopregnanolone, epipregnanolone (5 beta-pregnan-3 beta-ol-20-one, 10 nM), had no effect on IGABA at any concentration of GABA tested. 3. At concentrations lower than 10 microM, pregnenolone sulphate (5-pregnen-3 alpha-ol-20-one sulphate) did not significantly inhibit IGABA. However, at 10 microM, a systematic reduction of IGABA evoked by 50 and 500 microM GABA was observed, with mean values of -80 and -60%, respectively. This blocking effect was reversible and accompanied by a marked acceleration of decay of GABAA currents during the application of GABA. 4. In isolated pairs of synaptically connected hypothalamic neurones and IL cells, allopregnanolone (10 nM) augmented the mean amplitude of spontaneous IPSCs (sIPSCs) and electrically evoked IPSCs (eeIPSCs) by about 40% and increased the mean frequency of sIPSCs. Allopregnanolone (10 nM) also markedly increased the frequency of miniature IPSCs (mIPSCs) recorded in the presence of TTX (0.5 microM), but without modifying their mean amplitude. Epipregnanolone had no effect on the amplitude or frequency of sIPSCs. Neither epipregnanolone nor allopregnanolone modified the time to peak and decay time constants of GABAergic IPSCs. 5. Pentobarbitone (50 microM), a positive allosteric modulator of GABAA receptors, did not affect the amplitude of sIPSCs or eeIPSCs, but significantly increased the decay time constants of both types of IPSCs. Pentobarbitone had no effect on the frequency of sIPSCs. 6. Pregnenolone sulphate (10 microM) completely and reversibly blocked sIPSCs and eeIPSCs. Progressive block of IPSCs was correlated with a gradual decrease of the mean decay time constant. 7. Our results suggest that, under physiological conditions, allopregnanolone might be a potent modulator of GABAergic synaptic transmission, acting at both pre- and postsynaptic sites. The involvement of pregnenolone sulphate as a modulator of GABAergic IPSCs under physiological conditions is, however, more questionable. The mechanisms of action of both types of neurosteroids are discussed.
Notes: 0022-3751 xD;Journal Article
1996
P Poisbeau, F Rene, C Egles, J M Felix, P Feltz, R Schlichter (1996)  Characterization of functional GABAergic synapses formed between rat hypothalamic neurons and pituitary intermediate lobe cells in coculture : Ca2+ dependence of spontaneous IPSCs   J Neurosci 16: 16. 4835-45  
Abstract: Rat hypothalamic neurons and endocrine cells from the intermediate lobe of the pituitary were grown in dissociated coculture. Neurons positively stained with an antibody against glutamate decarboxylase established apparent contacts with the alpha-melanocyte-stimulating hormone-positive endocrine cells. These sites of contact were intensely labeled with an antibody against the synaptic protein synapsin I and displayed ultrastructural features characteristic of synapses. Using patch-clamp recordings, we have demonstrated that these contacts correspond to functional GABAergic synapses. The synaptic currents were blocked reversibly by bicuculline (5 microM) and SR95531 (5 microM), two competitive antagonists of the GABAA receptor. At a holding potential of -60 mV, spontaneously occurring IPSCs (s-IPSCs) had small amplitudes (10-100 pA), whereas electrically evoked IPSCs (ee-IPSCs) had amplitudes up to 1 nA. The rise times of both types of IPSCs were fast ( < or = 1 msec), and their decaying phases were fitted in most cases with a single exponential function (time constant 50 msec). The amplitude distribution of s-IPSCs did not reveal clear, equally spaced peaks and was little affected by tetrodotoxin, suggesting that most s-IPSCs were miniature IPSCs. Reduction of extracellular calcium concentration to 0.3 mM induced a marked decrease in s-IPSC frequency and revealed a single amplitude peak at 10 pA, suggesting that a single quantum of GABA activates 8-10 GABAA channels. Thus, our preparation might be an interesting model to study different aspects of synapse formation between a central neuron and its target as well as the fundamental mechanisms of synaptic transmission at central synapses.
Notes: 0270-6474 xD;Journal Article
P Poisbeau, Y H Jo, P Feltz, R Schlichter (1996)  Electrophysiological characterization of non-NMDA glutamate receptors on cultured intermediate lobe cells of the rat pituitary   Neuroendocrinology 64: 2. 162-8  
Abstract: Glutamate is the major excitatory neurotransmitter in the central nervous system, yet little is known about its actions on endocrine cells. We have investigated the membrane effects of glutamate in cultured neonatal rat pituitary intermediate lobe (IL) cells using the whole-cell configuration of the patch-clamp technique. In a standard Na(+)-based extracellular solution, glutamate failed to induce a detectable membrane current at a holding potential (HP) of -60 mV (n = 40). However, when cyclothiazide (50 microM), a benzothiazide that blocks desensitization of alpha-amino-2,3-dihydro-5-methyl-3-oxo-4-isoxazole-propanoic acid (AMPA)-type receptors, was added to the extracellular solution, glutamate (0.5-1 mM) induced an inward current at a HP of -60 mV in 65% of the cells tested (n = 72). This response was usually small in amplitude (mean amplitude: 28.6 +/- 37.5 pA, n = 47). The glutamate-induced current reversed polarity close to 0 mV and was reversibly blocked when extracellular Na+ was replaced by the impermeant cation N-methyl-D-glucamine, suggesting that this current was a nonselective cation current. The response to glutamate (1 mM) was reproduced by AMPA (50 microM), kainate (200 microM), and quisqualate (200 microM). N-Methyl-D-aspartate (NMDA, 100 microM) in the presence of 10 microM glycine did not induce any membrane current in cells responding to glutamate (n = 8). The non-NMDA receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (10 microM) reversibly inhibited the response to glutamate (0.5 mM) by 85 +/- 14% (n = 7), whereas D(-)-2-amino-5-phosphonopentanoic acid (20 microM), an antagonist of NMDA receptors, had no effect on the glutamate-induced current (n = 3). Moreover, we show that although the amplitude of the glutamate currents was small, the latter induced large (30-mV) membrane depolarizations and triggered the firing of action potentials. Taken together, our results indicate that neonatal rat IL cells possess AMPA-type glutamate receptors that could possibly underlie a fast excitatory glutamatergic synaptic input to these cells.
Notes: 0028-3835 xD;Journal Article
1994
P Poisbeau, J Trouslard, P Feltz, R Schlichter (1994)  Calcium influx through neuronal-type nicotinic acetylcholine receptors present on the neuroendocrine cells of the porcine pars intermedia   Neuroendocrinology 60: 4. 378-88  
Abstract: The properties of neuronal-type nicotinic acetylcholine receptors (nAChRs) present on the neuroendocrine cells of the porcine pars intermedia of the pituitary were studied in intact single cell using measurements of the free intracellular Ca2+ concentration ([Ca]i) with the calcium-sensitive dye fura 2. Local application of an extracellular solution containing 50 mM K+ or of the selective nAChR agonist, 1,1-dimethyl-4-phenylpiperazinium (DMPP) depolarised the cells and induced an elevation in [Ca]i. The effect of DMPP on [Ca]i was dose dependent (EC50 = 6 microM), reversibly blocked by d-tubocurarine and strictly dependent on the concentration of extracellular Ca2+. The calcium channel blocker Cd2+ (100 microM) reversibly blocked 80% of the response induced by 50 mM K+, whereas it reduced the DMPP response by only 50%. In the absence of extracellular Na+, DMPP no longer depolarised the cells but still increased [Ca]i. The rise in [Ca]i under these conditions represented 41% of the control response, i.e. in the presence of external Na+. Thus activation of nAChRs induced an elevation in [Ca]i which was in part independent of cell depolarisation. This was confirmed by recording simultaneously, under whole-cell voltage-clamp, a rise in [Ca]i associated with the inward nicotinic current. During prolonged application of the agonist (50 s), the amplitude of the nicotinic current decayed rapidly to a very low plateau level reflecting nAChR desensitisation. However, photometric experiments performed on intact non-dialysed cells revealed the presence of a slowly decaying phase in [Ca]i throughout the application of DMPP. This suggests the persistence of a substantial Ca2+ influx during prolonged exposure to the agonist. Taken together, our results show that stimulation of nAChRs induces an influx of Ca2+ which elevates [Ca]i. This phenomenon is due to activation of voltage-dependent Ca2+ channels and to Ca2+ entry through the nAChR.
Notes: 0028-3835 xD;Journal Article
Powered by publicationslist.org.