hosted by
publicationslist.org
    

Robert C Lyon

Department of Medicine, University of California San Diego.
rclyon@ucsd.edu

Journal articles

2013
Robert C Lyon, Stephan Lange, Farah Sheikh (2013)  Breaking down protein degradation mechanisms in cardiac muscle.   Trends Mol Med Feb  
Abstract: Regulated protein degradation through the ubiquitin-proteasome and lysosomal/autophagy systems is critical for homeostatic protein turnover in cardiac muscle and for proper cardiac function. The discovery of muscle-specific components in these systems has illuminated how aberrations in their levels are pivotal to the development of cardiac stress and disease. New evidence suggests that equal importance in disease development should be given to ubiquitously expressed degradation components. These are compartmentalized within cardiac muscles and, when mislocalized, can be critical in the development of specific cardiac diseases. Here, we discuss how alterations in the compartmentalization of degradation components affect disease states, the tools available to investigate these mechanisms, as well as recent discoveries that highlight the therapeutic value of targeting these pathways in disease.
Notes:
Robert C Lyon, Dan Li, Gail McGarvie, Elizabeth M Ellis (2013)  Aldo-keto reductases mediate constitutive and inducible protection against aldehyde toxicity in human neuroblastoma SH-SY5Y cells.   Neurochem Int 62: 1. 113-121 Jan  
Abstract: Reactive aldehydes including methyl glyoxal, acrolein and 4-hydroxy-2-nonenal (4-HNE) have been implicated in the progression of neurodegenerative diseases. The reduction of aldehydes to alcohols by the aldo-keto reductase (AKR) family of enzymes may represent an important detoxication route within neuronal cells. In this study, the ability of AKR enzymes to protect human neuroblastoma SH-SY5Y cells against reactive aldehydes was assessed. Using gene-specific RNA interference (RNAi), we report that AKR7A2 makes a significant contribution to the reduction of methyl glyoxal in SH-SY5Y cells, with its knockdown altering the IC(50) from 410 to 25.8μM, and that AKR1C3 contributes to 4-HNE reduction, with its knockdown lowering the IC(50) from 1.25 to 0.58μM. In addition, we have shown that pretreatment of cells with sub-lethal concentrations of 4-HNE or methyl glyoxal leads to a significant increase in IC(50) when cells are exposed to higher concentrations of the toxic aldehyde. The IC(50) for methyl glyoxal increased from 410μM to 1.9mM, and the IC(50) for 4-HNE increased from 120 to 690nM. To investigate this protection, we show that pretreatment of cells with the AKR inhibitor sorbinil lead to decreased resistance to aldehydes. We show that AKR1C can be induced 8-fold in SH-SY5Y cells by treatment with sub-lethal concentrations of methyl glyoxal, and 5-fold by 4-HNE treatment. AKR1B is not induced by methyl glyoxal but is induced 10-fold by 4-HNE treatment. Furthermore, we have shown that this adaptive response can also be induced using the chemoprotective agent tert-butyl hydroquinone (t-BHQ), and that this also evokes an increase in the expression and activity of AKR1B and AKR1C. These findings highlight the potential for the interventional upregulation of AKR via non-toxic derivatives or natural compounds as a novel therapeutic approach towards the detoxication of aldehydes, with the aim of halting the progression of aldehyde-dependent neurodegenerative diseases.
Notes:
Farah Sheikh, Robert C Lyon, Ju Chen (2013)  Getting the skinny on thick filament regulation in cardiac muscle biology and disease.   Trends in cardiovascular medicine Aug  
Abstract: Thin (actin) filament accessory proteins are thought to be the regulatory force for muscle contraction in cardiac muscle; however, compelling new evidence suggests that thick (myosin) filament regulatory proteins are emerging as having independent and important roles in regulating cardiac muscle contraction. Key to these new findings is a growing body of evidence that point to an influential and, more recently, direct role for ventricular myosin light chain-2 (MLC2v) phosphorylation in regulating cardiac muscle contraction, function, and disease. This includes the discovery and characterization of a cardiac-specific myosin light chain kinase capable of phosphorylating MLC2v as well as a myosin phosphatase that dephosphorylates MLC2v in the heart, which provides added mechanistic insights on MLC2v regulation within cardiac muscle. Here, we review evidence for an emerging and critical role for MLC2v phosphorylation in regulating cardiac myosin cycling kinetics, function, and disease, based on recent studies performed in genetic mouse models and humans. We further provide new perspectives on future avenues for targeting these pathways as therapies in alleviating cardiac disease.
Notes:
2012
Farah Sheikh, Kunfu Ouyang, Stuart G Campbell, Robert C Lyon, Joyce Chuang, Dan Fitzsimons, Jared Tangney, Carlos G Hidalgo, Charles S Chung, Hongqiang Cheng, Nancy D Dalton, Yusu Gu, Hideko Kasahara, Majid Ghassemian, Jeffrey H Omens, Kirk L Peterson, Henk L Granzier, Richard L Moss, Andrew D McCulloch, Ju Chen (2012)  Mouse and computational models link Mlc2v dephosphorylation to altered myosin kinetics in early cardiac disease.   J Clin Invest 122: 4. 1209-1221 Apr  
Abstract: Actin-myosin interactions provide the driving force underlying each heartbeat. The current view is that actin-bound regulatory proteins play a dominant role in the activation of calcium-dependent cardiac muscle contraction. In contrast, the relevance and nature of regulation by myosin regulatory proteins (for example, myosin light chain-2 [MLC2]) in cardiac muscle remain poorly understood. By integrating gene-targeted mouse and computational models, we have identified an indispensable role for ventricular Mlc2 (Mlc2v) phosphorylation in regulating cardiac muscle contraction. Cardiac myosin cycling kinetics, which directly control actin-myosin interactions, were directly affected, but surprisingly, Mlc2v phosphorylation also fed back to cooperatively influence calcium-dependent activation of the thin filament. Loss of these mechanisms produced early defects in the rate of cardiac muscle twitch relaxation and ventricular torsion. Strikingly, these defects preceded the left ventricular dysfunction of heart disease and failure in a mouse model with nonphosphorylatable Mlc2v. Thus, there is a direct and early role for Mlc2 phosphorylation in regulating actin-myosin interactions in striated muscle contraction, and dephosphorylation of Mlc2 or loss of these mechanisms can play a critical role in heart failure.
Notes:
Anna Raskin, Stephan Lange, Katherine Banares, Robert C Lyon, Anke Zieseniss, Leonard K Lee, Katrina G Yamazaki, Henk L Granzier, Carol C Gregorio, Andrew D McCulloch, Jeffrey H Omens, Farah Sheikh (2012)  A novel mechanism involving four and a half lim domain protein-1 and extracellular-signal-regulated kinase-2 regulates titin phosphorylation and mechanics.   J Biol Chem Jul  
Abstract: Understanding mechanisms underlying titin regulation in cardiac muscle function is of critical importance given recent compelling evidence that highlight titin mutations as major determinants of human cardiomyopathy. We previously identified a cardiac biomechanical stress-regulated complex at the cardiac-specific N2B region of titin, that includes four and a half LIM domain protein-1 (Fhl1) and components of the mitogen activated protein signaling cascade, which impacted muscle compliance in Fhl1 knockout cardiac muscle. However, direct regulation of these molecular components in mediating titin N2B function remained unresolved. Here we identify Fhl1 as a novel negative regulator of titin N2B levels and phosphorylation-mediated mechanics. We specifically identify titin N2B as a novel substrate of extracellular signal-regulated-kinase-2 (Erk2) and demonstrate that Fhl1 directly interferes with Erk2-mediated titin-N2B phosphorylation. We highlight the critical region in titin-N2B that interacts with Fhl1 and residues that are dependent on Erk2-mediated phosphorylation in situ. We also propose a potential mechanism for a known titin-N2B cardiomyopathy-causing mutation that involves this regulatory complex. These studies shed light on a novel mechanism regulating titin-N2B mechano-signaling as well as suggest that dysfunction of these pathways could be important in cardiac disease states affecting muscle compliance.
Notes:
2011
2010
Thalia S Seeger, Derk Frank, Claudia Rohr, Rainer Will, Steffen Just, Christine Grund, Robert Lyon, Mark Luedde, Manfred Koegl, Farah Sheikh, Wolfgang Rottbauer, Werner W Franke, Hugo A Katus, Eric N Olson, Norbert Frey (2010)  Myozap, a novel intercalated disc protein, activates serum response factor-dependent signaling and is required to maintain cardiac function in vivo.   Circ Res 106: 5. 880-890 Mar  
Abstract: The intercalated disc (ID) is a highly specialized cell-cell contact structure that ensures mechanical and electric coupling of contracting cardiomyocytes. Recently, the ID has been recognized to be a hot spot of cardiac disease, in particular inherited cardiomyopathy.
Notes:
Jason Pellman, Robert C Lyon, Farah Sheikh (2010)  Extracellular matrix remodeling in atrial fibrosis: mechanisms and implications in atrial fibrillation.   J Mol Cell Cardiol 48: 3. 461-467 Mar  
Abstract: Atrial fibrosis has been strongly associated with the presence of heart diseases/arrhythmias, including congestive heart failure (CHF) and atrial fibrillation (AF). Inducibility of AF as a result of atrial fibrosis has been the subject of intense recent investigation since it is the most commonly encountered arrhythmia in adults and can substantially increase the risk of premature death. Rhythm and rate control drugs as well as surgical interventions are used as therapies for AF; however, increased attention has been diverted to mineralocorticoid receptor (MR) antagonists including spironolactone as potential therapies for human AF because of their positive effects on reducing atrial fibrosis and associated AF in animal models. Spironolactone has been shown to exert positive effects in human patients with heart failure; however, the mechanisms and effects in human atrial fibrosis and AF remain undetermined. This review will discuss and highlight developments on (i) the relationship between atrial fibrosis and AF, (ii) spironolactone, as a drug targeted to atrial fibrosis and AF, as well as (iii) the distinct and common mechanisms important for regulating atrial and ventricular fibrosis, inclusive of the key extracellular matrix regulatory proteins involved.
Notes:
2009
Richard A Maki, Vladimir A Tyurin, Robert C Lyon, Ronald L Hamilton, Steven T DeKosky, Valerian E Kagan, Wanda F Reynolds (2009)  Aberrant expression of myeloperoxidase in astrocytes promotes phospholipid oxidation and memory deficits in a mouse model of Alzheimer disease.   J Biol Chem 284: 5. 3158-3169 Jan  
Abstract: Myeloperoxidase (MPO) is expressed in Alzheimer disease (AD) but not normal aged brain. A functional -463G/A MPO promoter polymorphism has been associated with AD risk through as yet unidentified mechanisms. Here we report that human MPO-463G allele, but not MPO-463A or mouse MPO, is strongly expressed in astrocytes and deposited in plaques in huMPO transgenic mice crossed to the APP23 model. MPO is similarly expressed in astrocytes in human AD tissue. In cortical homogenates of the MPOG-APP23 model, MPO expression correlated with increased levels of a lipid peroxidation product, 4-hydroxynonenal. Fluorescence high-performance liquid chromatography and electrospray ionization mass spectroscopy identified selective accumulation of phospholipid hydroperoxides in two classes of anionic phospholipids, phosphatidylserine (PS-OOH) and phosphatidylinositol (PI-OOH). The same molecular species of PS-OOH and PI-OOH were elevated in human AD brains as compared with non-demented controls. Augmented lipid peroxidation in MPOG-APP23 mice correlated with greater memory deficits. We suggest that aberrant huMPO expression in astrocytes leads to a specific pattern of phospholipid peroxidation and neuronal dysfunction contributing to AD.
Notes:
Robert C Lyon, Stuart M Johnston, Andreas Panopoulos, Samar Alzeer, Gail McGarvie, Elizabeth M Ellis (2009)  Enzymes involved in the metabolism of gamma-hydroxybutyrate in SH-SY5Y cells: identification of an iron-dependent alcohol dehydrogenase ADHFe1.   Chem Biol Interact 178: 1-3. 283-287 Mar  
Abstract: The metabolism of the endogenous metabolite gamma-hydroxybutyrate (GHB) has been studied in a human neuroblastoma cell line SH-SY5Y as a model for examining neuronal metabolism. We show that GHB can be synthesized and released from these cells, indicating that pathways for GHB synthesis and secretion are present. Activities for the major enzymes that are involved in GHB metabolism are reported, and transcripts for AKR1A1, AKR7A2, ALDH5A1 and GABA-T can be detected by RT-PCR. We also demonstrate the presence of the ADHFe1 transcript, a gene that has been reported to encode a hydroxyacid-oxoacid transhydrogenase (HOT). We show that the ADHFe1 gene is related to bacterial GHB dehydrogenases and has a conserved NAD-binding site. The potential for using the SH-SY5Y cell line for investigating GHB catabolism is discussed.
Notes:
2007
Robert C Lyon, Stuart M Johnston, David G Watson, Gail McGarvie, Elizabeth M Ellis (2007)  Synthesis and catabolism of gamma-hydroxybutyrate in SH-SY5Y human neuroblastoma cells: role of the aldo-keto reductase AKR7A2.   J Biol Chem 282: 36. 25986-25992 Sep  
Abstract: gamma-Hydroxybutyrate (GHB) is an endogenous metabolite synthesized in the brain. There is strong evidence to suggest that GHB has an important role as a neurotransmitter or neuromodulator. The human aldo-keto reductase AKR7A2 has been proposed previously to catalyze the NADPH-dependent reduction of succinic semialdehyde (SSA) to GHB in human brain. In this study we have used RNA interference to evaluate the role of AKR7A2 in GHB biosynthesis in human neuroblastoma SH-SY5Y cells. Quantitative reverse transcription-PCR analysis and immunoblotting revealed that short interfering RNA molecules directed against AKR7A2 led to a significant reduction in both AKR7A2 transcript and protein levels 72 h post-transfection. We have shown that reduced expression of AKR7A2 results in a 90% decrease in SSA reductase activity of cell extracts. Furthermore, we have shown using gas chromatography-mass spectrometry that a decrease in the level of AKR7A2 was paralleled with a significant reduction in intracellular GHB concentration. This provides conclusive evidence that AKR7A2 is the major SSA reductase in these cells. In contrast, short interfering RNA-dependent reduction in AKR7A2 levels had no effect on the GHB dehydrogenase activity of the extracts, and inhibitor studies suggest that another enzyme characteristic of an NAD-dependent alcohol dehydrogenase may be responsible for catalyzing this reverse reaction. Together these findings delineate pathways for GHB metabolism in the brain and will enable a better understanding of the relationship between GHB biosynthesis and catabolism in disease states and in drug overdose.
Notes:
2006
Duncan M Short, Robert Lyon, David G Watson, Oleg A Barski, Gail McGarvie, Elizabeth M Ellis (2006)  Metabolism of trans, trans-muconaldehyde, a cytotoxic metabolite of benzene, in mouse liver by alcohol dehydrogenase Adh1 and aldehyde reductase AKR1A4.   Toxicol Appl Pharmacol 210: 1-2. 163-170 Jan  
Abstract: The reductive metabolism of trans, trans-muconaldehyde, a cytotoxic metabolite of benzene, was studied in mouse liver. Using an HPLC-based stopped assay, the primary reduced metabolite was identified as 6-hydroxy-trans, trans-2,4-hexadienal (OH/CHO) and the secondary metabolite as 1,6-dihydroxy-trans, trans-2,4-hexadiene (OH/OH). The main enzymes responsible for the highest levels of reductase activity towards trans, trans-muconaldehyde were purified from mouse liver soluble fraction first by Q-sepharose chromatography followed by either blue or red dye affinity chromatography. In mouse liver, trans, trans-muconaldehyde is predominantly reduced by an NADH-dependent enzyme, which was identified as alcohol dehydrogenase (Adh1). Kinetic constants obtained for trans, trans-muconaldehyde with the native Adh1 enzyme showed a Vmax of 2141+/-500 nmol/min/mg and a Km of 11+/-4 microM. This enzyme was inhibited by pyrazole with a KI of 3.1+/-0.57 microM. Other fractions were found to contain muconaldehyde reductase activity independent of Adh1, and one enzyme was identified as the NADPH-dependent aldehyde reductase AKR1A4. This showed a Vmax of 115 nmol/min/mg and a Km of 15+/-2 microM and was not inhibited by pyrazole.
Notes:
Powered by PublicationsList.org.