hosted by
publicationslist.org
    

rocco palermo


rocco.palermo@uniroma1.it

Journal articles

2009
S Checquolo, R Palermo, S Cialfi, G Ferrara, C Oliviero, C Talora, D Bellavia, A Giovenco, P Grazioli, L Frati, A Gulino, I Screpanti (2009)  Differential subcellular localization regulates c-Cbl E3 ligase activity upon Notch3 protein in T-cell leukemia.   Oncogene Dec  
Abstract: Notch3 and pTalpha signaling events are essential for T-cell leukemogenesis and characterize murine and human T-cell acute lymphoblastic leukemia. Genetic ablation of pTalpha expression in Notch3 transgenic mice abrogates tumor development, indicating that pTalpha signaling is crucial to the Notch3-mediated leukemogenesis. Here we report a novel direct interaction between Notch3 and pTalpha. This interaction leads to the recruitment and persistence of the E3 ligase protein c-Cbl to the lipid rafts in Notch3-IC transgenic thymocytes. Conversely, deletion of pTalpha in Notch3 transgenic mice leads to cytoplasmic retention of c-Cbl that targets Notch3 protein to the proteasomal-degradative pathway. It appears that protein kinase C theta (PKCtheta), by regulating tyrosine and serine phosphorylation of Cbl, is able to control its function. We report here that the increased Notch3-IC degradation correlates with higher levels of c-Cbl tyrosine phosphorylation in Notch3-IC/pTalpha(-/-) double-mutant thymocytes, which also display a decreased PKCtheta activity. Our data indicate that pTalpha/pre-T-cell receptor is able to regulate the different subcellular localization of c-Cbl and, by regulating PKCtheta activity, is also able to influence its ubiquitin ligase activity upon Notch3 protein.Oncogene advance online publication, 7 December 2009; doi:10.1038/onc.2009.446.
Notes:
2008
Maddalena Napolitano, Daniela Zei, Diego Centonze, Rocco Palermo, Giorgio Bernardi, Alessandra Vacca, Paolo Calabresi, Alberto Gulino (2008)  NF-kB/NOS cross-talk induced by mitochondrial complex II inhibition: implications for Huntington's disease.   Neurosci Lett 434: 3. 241-246 Apr  
Abstract: Nuclear factor-kB (NF-kB) is a family of DNA-binding proteins that are important regulators involved in immune and inflammatory responses, as well as in cell survival and apoptosis. In the nervous system NF-kB is activated under physiological and pathological conditions including learning and memory mechanisms and neurodegenerative diseases. NF-kB is activated in neurons in response to excitotoxic, metabolic and oxidative stress and there is a body of evidence to suggest that glutamate induces NF-kB by the main ionotropic glutamate receptors. In the present study, 3 nitroproprionic acid (3NP), an irreversible inhibitor of succinate dehydrogenase (SD, complex II) has been employed to provide an experimental model of Huntington's disease (HD). Specifically, we described 3NP-induced activation of NF-kB and of iNOS and nNOS genes in striatal treated slices. To aim to better understand the relationship between these identified dysregulated genes and mitochondrial dysfunction, we investigated in SK-N-MC human neuroblastoma cells following 3NP treatment, whether NF-kB nuclear translocation and activation might be involved in the mechanisms by which 3NP leads to transcriptional activation of NOS genes. These results are relevant to more precisely define the role of NF-kB in neuronal cells and better understand its putative involvement in neurodegeneration.
Notes:
2006
Claudio Talora, Samantha Cialfi, Christian Oliviero, Rocco Palermo, Monica Pascucci, Luigi Frati, Alessandra Vacca, Alberto Gulino, Isabella Screpanti (2006)  Cross talk among Notch3, pre-TCR, and Tal1 in T-cell development and leukemogenesis.   Blood 107: 8. 3313-3320 Apr  
Abstract: Integrated pathways are believed to determine hematopoietic cell fate and/or neoplastic transformation. Notch signaling has been shown to regulate T-cell differentiation and leukemogenesis. However, specific target genes and molecular partners are not fully elucidated. We show that Notch3 activation sustains aberrant SCL/Tal1 overexpression and phosphorylation in mature thymocytes. Furthermore, we define the role of SCL/Tal1 as a component of an activator complex, including phosphorylated Tal1 and Sp1, that specifically enhances cyclin D1 expression and demonstrate that Tal1/Sp1 specifically co-occupy the D1 promoter in vivo, only in the presence of pre-T-cell receptor (TCR). We therefore conclude not only that cyclin D1 is a target of the Tal1/Sp1 complex, but also that Notch3-dependent activation of pre-TCR/ERK signaling regulates SCL/Tal1 function.
Notes:
Alessandra Vacca, Maria Pia Felli, Rocco Palermo, Giuseppina Di Mario, Angelica Calce, Monica Di Giovine, Luigi Frati, Alberto Gulino, Isabella Screpanti (2006)  Notch3 and pre-TCR interaction unveils distinct NF-kappaB pathways in T-cell development and leukemia.   EMBO J 25: 5. 1000-1008 Mar  
Abstract: Notch signaling plays a critical role in T-cell differentiation and leukemogenesis. We previously demonstrated that, while pre-TCR is required for thymocytes proliferation and leukemogenesis, it is dispensable for thymocyte differentiation in Notch3-transgenic mice. Notch3-transgenic premalignant thymocytes and T lymphoma cells overexpress pTalpha/pre-TCR and display constitutive activation of NF-kappaB, providing survival signals for immature thymocytes. We provide genetic and biochemical evidence that Notch3 triggers multiple NF-kappaB activation pathways. A pre-TCR-dependent pathway preferentially activates NF-kappaB via IKKbeta/IKKalpha/NIK complex, resulting in p50/p65 heterodimer nuclear entry and recruitment onto promoters of Cyclin D1, Bcl2-A1 and IL7-receptor-alpha genes. In contrast, upon pTalpha deletion, Notch3 binds IKKalpha and maintains NF-kappaB activation through an alternative pathway, depending on an NIK-independent IKKalpha homodimer activity. The consequent NF-kappaB2/p100 processing allows nuclear translocation of p52/RelB heterodimers, which only trigger transcription from Bcl2-A1 and IL7-receptor-alpha genes. Our data suggest that a finely tuned interplay between Notch3 and pre-TCR pathways converges on regulation of NF-kappaB activity, leading to differential NF-kappaB subunit dimerization that regulates distinct gene clusters involved in either cell differentiation or proliferation/leukemogenesis.
Notes:
2005
Maria Pia Felli, Alessandra Vacca, Angelica Calce, Diana Bellavia, Antonio F Campese, Rita Grillo, Monica Di Giovine, Saula Checquolo, Claudio Talora, Rocco Palermo, Giuseppina Di Mario, Luigi Frati, Alberto Gulino, Isabella Screpanti (2005)  PKC theta mediates pre-TCR signaling and contributes to Notch3-induced T-cell leukemia.   Oncogene 24: 6. 992-1000 Feb  
Abstract: Protein kinase (PK)C theta is a critical regulator of mature T-cell activation and proliferation, being implicated in TCR-triggered nuclear factor (NF)-kappa B activation and providing important survival signals to leukemic T cells. We previously showed that overexpression of pT alpha/pre-TCR and constitutive activation of NF-kappa B characterize the T-cell leukemia/lymphoma developing in Notch3-IC transgenic mice. We report here that PKC theta is a downstream target of Notch3 signaling and that its activation and membrane translocation require a functional pre-TCR in order to trigger NF-kappa B activation in thymocytes and lymphoma cells of transgenic mice. Furthermore, deletion of PKC theta in Notch3-IC transgenic mice reduces the incidence of leukemia, correlating with decreased NF-kappa B activation. This paper therefore suggests that PKC theta mediates the activation of NF-kappa B by pre-TCR in immature thymocytes and contributes to the development of Notch3-dependent T-cell lymphoma.
Notes:
Nadia Pedullà, Rocco Palermo, David Hasenöhrl, Udo Bläsi, Piero Cammarano, Paola Londei (2005)  The archaeal eIF2 homologue: functional properties of an ancient translation initiation factor.   Nucleic Acids Res 33: 6. 1804-1812 03  
Abstract: The eukaryotic translation initiation factor 2 (eIF2) is pivotal for delivery of the initiator tRNA (tRNAi) to the ribosome. Here, we report the functional characterization of the archaeal homologue, a/eIF2. We have cloned the genes encoding the three subunits of a/eIF2 from the thermophilic archaeon Sulfolobus solfataricus, and have assayed the activities of the purified recombinant proteins in vitro. We demonstrate that the trimeric factor reconstituted from the recombinant polypeptides has properties similar to those of its eukaryal homologue: it interacts with GTP and Met-tRNAi, and stimulates binding of the latter to the small ribosomal subunit. However, the archaeal protein differs in some functional aspects from its eukaryal counterpart. In contrast to eIF2, a/eIF2 has similar affinities for GDP and GTP, and the beta-subunit does not contribute to tRNAi binding. The detailed analysis of the complete trimer and of its isolated subunits is discussed in light of the evolutionary history of the eIF2-like proteins.
Notes:
Powered by publicationslist.org.