hosted by
publicationslist.org
    

Shameer Khader


shameer@ncbs.res.in

Journal articles

2009
K Shameer, S Ambika, Susan Mary Varghese, N Karaba, M Udayakumar, R Sowdhamini (2009)  STIFDB-Arabidopsis Stress Responsive Transcription Factor DataBase.   Int J Plant Genomics 2009: 10  
Abstract: Elucidating the key players of molecular mechanism that mediate the complex stress-responses in plants system is an important step to develop improved variety of stress tolerant crops. Understanding the effects of different types of biotic and abiotic stress is a rapidly emerging domain in the area of plant research to develop better, stress tolerant plants. Information about the transcription factors, transcription factor binding sites, function annotation of proteins coded by genes expressed during abiotic stress (for example: drought, cold, salinity, excess light, abscisic acid, and oxidative stress) response will provide better understanding of this phenomenon. STIFDB is a database of abiotic stress responsive genes and their predicted abiotic transcription factor binding sites in Arabidopsis thaliana. We integrated 2269 genes upregulated in different stress related microarray experiments and surveyed their 1000 bp and 100 bp upstream regions and 5'UTR regions using the STIF algorithm and identified putative abiotic stress responsive transcription factor binding sites, which are compiled in the STIFDB database. STIFDB provides extensive information about various stress responsive genes and stress inducible transcription factors of Arabidopsis thaliana. STIFDB will be a useful resource for researchers to understand the abiotic stress regulome and transcriptome of this important model plant system.
Notes:
Khader Shameer, Paramasivam Nagarajan, Kumar Gaurav, Ramanathan Sowdhamini (2009)  3PFDB - A database of Best Representative PSSM Profiles (BRPs) of Protein Families generated using a novel data mining approach.   BioData Min 2: 1. 12  
Abstract: ABSTRACT: BACKGROUND: Protein families could be related to each other at broad levels that group them as superfamilies. These relationships are harder to detect at the sequence level due to high evolutionary divergence. Sequence searches are strongly directed and influenced by the best representatives of families that are viewed as starting points. PSSMs are useful approximations and mathematical representations of protein alignments, with wide array of applications in bioinformatics approaches like remote homology detection, protein family analysis, detection of new members and evolutionary modelling. Computational intensive searches have been performed using the neural network based sensitive sequence search method called FASSM to identify the Best Representative PSSMs for families reported in Pfam database version 22. RESULTS: We designed a novel data mining approach for the assessment of individual sequences from a protein family to identify a single Best Representative PSSM profile (BRP) per protein family. Using the approach, a database of protein family-specific best representative PSSM profiles called 3PFDB has been developed. PSSM profiles in 3PFDB are curated using performance of individual sequence as a reference in a rigorous scoring and coverage analysis approach using FASSM. We have assessed the suitability of 10, 85,588 sequences derived from seed or full alignments reported in Pfam database (Version 22). Coverage analysis using FASSM method is used as the filtering step to identify the best representative sequence, starting from full length or domain sequences to generate the final profile for a given family. 3PFDB is a collection of best representative PSSM profiles of 8,524 protein families from Pfam database. CONCLUSION: Availability of an approach to identify BRPs and a curated database of best representative PSI-BLAST derived PSSMs for 91.4% of current Pfam family will be a useful resource for the community to perform detailed and specific analysis using family-specific, best-representative PSSM profiles. 3PFDB can be accessed using the URL: http://caps.ncbs.res.in/3pfdb.
Notes:
2008
Ambika Shyam Sundar, Susan Mary Varghese, Khader Shameer, Nataraja Karaba, Makarla Udayakumar, Ramanathan Sowdhamini (2008)  STIF: Identification of stress-upregulated transcription factor binding sites in Arabidopsis thaliana.   Bioinformation 2: 10. 431-437 07  
Abstract: The expressions of proteins in the cell are carefully regulated by transcription factors that interact with their downstream targets in specific signal transduction cascades. Our understanding of the regulation of functional genes responsive to stress signals is still nascent. Plants like Arabidopsis thaliana, are convenient model systems to study fundamental questions related to regulation of the stress transcriptome in response to stress challenges. Microarray results of the Arabidopsis transcriptome indicate that several genes could be upregulated during multiple stresses, such as cold, salinity, drought etc. Experimental biochemical validations have proved the involvement of several transcription factors could be involved in the upregulation of these stress responsive genes. In order to follow the intricate and complicated networks of transcription factors and genes that respond to stress situations in plants, we have developed a computer algorithm that can identify key transcription factor binding sites upstream of a gene of interest. Hidden Markov models of the transcription factor binding sites enable the identification of predicted sites upstream of plant stress genes. The search algorithm, STIF, performs very well, with more than 90% sensitivity, when tested on experimentally validated positions of transcription factor binding sites on a dataset of 60 stress upregulated genes. AVAILABILITY: Supplementary data is available at http://caps.ncbs.res.in/download/stif.
Notes:
Chilamakuri C S Reddy, Khader Shameer, Bernard O Offmann, Ramanathan Sowdhamini (2008)  PURE: a webserver for the prediction of domains in unassigned regions in proteins.   BMC Bioinformatics 9: 06  
Abstract: BACKGROUND: Protein domains are the structural and functional units of proteins. The ability to parse proteins into different domains is important for effective classification, understanding of protein structure, function, and evolution and is hence biologically relevant. Several computational methods are available to identify domains in the sequence. Domain finding algorithms often employ stringent thresholds to recognize sequence domains. Identification of additional domains can be tedious involving intense computation and manual intervention but can lead to better understanding of overall biological function. In this context, the problem of identifying new domains in the unassigned regions of a protein sequence assumes a crucial importance. RESULTS: We had earlier demonstrated that accumulation of domain information of sequence homologues can substantially aid prediction of new domains. In this paper, we propose a computationally intensive, multi-step bioinformatics protocol as a web server named as PURE (Prediction of Unassigned REgions in proteins) for the detailed examination of stretches of unassigned regions in proteins. Query sequence is processed using different automated filtering steps based on length, presence of coiled-coil regions, transmembrane regions, homologous sequences and percentage of secondary structure content. Later, the filtered sequence segments and their sequence homologues are fed to PSI-BLAST, cd-hit and Hmmpfam. Data from the various programs are integrated and information regarding the probable domains predicted from the sequence is reported. CONCLUSION: We have implemented PURE protocol as a web server for rapid and comprehensive analysis of unassigned regions in the proteins. This server integrates data from different programs and provides information about the domains encoded in the unassigned regions.
Notes:
2007
Khader Shameer, Ramanathan Sowdhamini (2007)  IWS: Integrated web server for protein sequence and structure analysis.   Bioinformation 2: 3. 86-90 11  
Abstract: Rapid increase in protein sequence information from genome sequencing projects demand the intervention of bioinformatics tools to recognize interesting gene-products and associated function. Often, multiple algorithms need to be employed to improve accuracy in predictions and several structure prediction algorithms are on the public domain. Here, we report the availability of an Integrated Web-server as a bioinformatics online package dedicated for in-silico analysis of protein sequence and structure data (IWS). IWS provides web interface to both in-house and widely accepted programs from major bioinformatics groups, organized as 10 different modules. IWS also provides interactive images for Analysis Work Flow, which will provide transparency to the user to carry out analysis by moving across modules seamlessly and to perform their predictions in a rapid manner. AVAILABILITY: IWS IS AVAILABLE FROM THE URL: http://caps.ncbs.res.in/iws.
Notes:
2006
G Pugalenthi, K Shameer, N Srinivasan, R Sowdhamini (2006)  HARMONY: a server for the assessment of protein structures.   Nucleic Acids Res 34: Web Server issue. W231-W234 Jul  
Abstract: Protein structure validation is an important step in computational modeling and structure determination. Stereochemical assessment of protein structures examine internal parameters such as bond lengths and Ramachandran (varphi,psi) angles. Gross structure prediction methods such as inverse folding procedure and structure determination especially at low resolution can sometimes give rise to models that are incorrect due to assignment of misfolds or mistracing of electron density maps. Such errors are not reflected as strain in internal parameters. HARMONY is a procedure that examines the compatibility between the sequence and the structure of a protein by assigning scores to individual residues and their amino acid exchange patterns after considering their local environments. Local environments are described by the backbone conformation, solvent accessibility and hydrogen bonding patterns. We are now providing HARMONY through a web server such that users can submit their protein structure files and, if required, the alignment of homologous sequences. Scores are mapped on the structure for subsequent examination that is useful to also recognize regions of possible local errors in protein structures. HARMONY server is located at http://caps.ncbs.res.in/harmony/
Notes:
Powered by publicationslist.org.